

Modeling User Satisfaction Transitions in Dialogues from Overall Ratings

Ryuichiro Higashinaka, Yasuhiro Minami, Kohji Dohsaka, Toyomi Meguro NTT Corporation

Objective

- Predict user satisfaction transitions during a dialogue
 - Useful for an analysis to improve dialogue systems

Related Work

- Plenty of work on predicting overall user satisfaction of a dialogue
 - PARADISE (Walker et al., Möller et al.)

– N-gram based method (Hara et al.)

- Little work on predicting user satisfaction transitions during a dialogue
 - One exception: Engelbrecht et al., 2009
 - Models user satisfaction transitions using hidden Markov models (HMMs)

Engelbrecht et al., 2009

• Uses manually-labeled reference transitions

Problem: High cost for making reference data

Approach

- Train an HMM from dialogues with overall ratings
 - No utterance-level references are necessary
 - Requires only a single overall rating per dialogue

How to connect the states

- Connect with equal transition probabilities
 Common dialogue acts (e.g. Greeting) are always predicted as the same rating
- Add a state (common state) trained from the data of all ratings to avoid evaluating rating-wide DAs

Solution: Concatenated Training

• We can sharpen the output distributions

NOTE:

We ignore transition probabilities. We assume the same initial probabilities 8

Polite Rude Funny Greet

Experiment

- Dialogue data (text chat) in two domains
 - Animal Discussion (human-system)
 - User and system discuss about animals
 - Attentive Listening (human-human)
 - Listener attentively listens to a speaker
 - Annotated with dialogue acts and US ratings (7-levels)

	Animal Discussion	Attentive Listening
# dialogues with overall ratings	180	1260
# dialogues with utterance-level	90	100
ratings	(subset)	(subset)
Dialogue act types	29	40

• Comparison with a random baseline and an upper bound (Engelbrecht et al.) trained from reference transitions

Evaluation Criterion

- Match rate per rating (MR/r)
 - Equally treats easy and difficult-to-guess ratings
 - We want to predict rare but important ratings
 - Reliable than other metrics

(Higashinaka et al., 2010, IWSDS)

		U1	U2	U3	U4	U5	U6	U7	U8	U9	U10	U11	U12
	Ref	4	4	5	5	6	6	7	4	3	2	1	1
	Нур	4	0	0	6	6	7	0	5	0	3	1	0
$\langle \rangle$	Hyp'	4	4	4	6	6	7	7	5	5	3	1	1
	Avg MR/r												

ng	1	2	3	4	5	6	7	
Match rate	2/2	0/1	0/1	2/3	0/2	1/2	1/1	0.45

Simple connection of rating-Results related states with equal transition probabilities

Animal Discussion domain

	random	simple	concat	Upper B
Smoothness	0.143	0.137	0.177	0.217
Closeness	0.143	0.156	0.164	0.231
Willingness	0.143	0.152	0.181	0.224

Attentive Listening domain

	random	simple	concat	Upper B
Smoothness	0.141	0.118	0.167	0.231
Closeness	0.143	0.090	0.159	0.237
Good Listener	0.143	0.121	0.224	0.227

Common states with concatenated training improve prediction performance

Summary and Future work

- A novel approach for predicting user satisfaction transitions using HMMs
 - Uses only the dialogues with overall user satisfaction ratings
 - Reduces the cost for training prediction models
 - Can be a viable option for evaluation
 - Overall ratings can be obtained easily
- Future work
 - New emissions to improve prediction accuracy
 - Apply our HMMs to other tasks