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Problem

N
*Build a dialogue system capable of casual conversation on a wide range of topics
Procedure
J
*Need a dialogue model (e.g., state diagram, HMM) that can cope with many topics ) Dialogue
*Need a lot of dialogue data in order to train such a model model
eCan we use Twitter data? They are conversational and are in abundance )
Data
*Only 2.6% of Twitter data are conversational (connected by an in-reply-to relationship) h
eWithin conversations, 91% are two-tweets (one-shot interactions)
eScarcity in long conversations needed for creating a dialogue model
N
*Build a dialogue model for long conversations by only using two-tweets
eCluster utterances within two-tweets to create pseudo long conversations
J
Evaluation
\ measures
Two-tweet Two-tweet

A. | went to Hawaii. == B. How was Hawaii?

B’. How is Hawaii?

\/

Experiment

Train a dialogue model from two-tweets
Evaluate the model by how it explains long conversations

Infinite HMM (number of states determined by data)
Features: bag-of-words of top 5000 words

Training data: two-tweet conversations on food and
sports for training two-tweet models

Test data: Long-tweet conversations (having three or
more tweets) on food and sports (each containing 5043
and 3178 conversations)

Test data split in half:

1. One for training a long-tweet open model

2. The other for testing and for training a closed model

Likelihood
Kendall’s tau (evaluates the order of tweets)

—> cC Verygood. ( Equivalent to the

number reported

N B. How was Hawaii? in previous work
A. | went to Hawaii. — B’. How is Hawaii? —31 C. Very good. (Ritter et al.,
2010) that uses
\_ Only long tweets
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Training data size (number of conversations)

Training data size (number of conversations)

® Likelihood approaches the open model
® Kendall’s tau reaches the closed model

»

Validates our approach to build a
conversational model from two-tweets
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Visualization of a trained HMM (food)



