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Abstract. From the viewpoint of supporting users’ natural dialogue
communication with conversational agents, their dialogue management
has to determine any agent’s action, based on probabilistic methods
derived from noisy data through sensors in the real world. We believe
unique Partially Observable Markov Decision Processes (POMDPs) should
be applied to such action control systems. The agents must flexibly
choose their actions to reach a state suitable for the users while re-
taining as many statistical characteristics of the data as possible. We
offer two technical points to resolve this issue. One is the automatic
acquisition of POMDPs ¡̇ state transition probabilities through DBNs
with a large amount of dialogue data, and the other is applying re-
wards from the emission probabilities of agent actions into POMDPs’
reinforcement learning. This paper proposes a method to simultane-
ously achieve purpose-oriented and stochastic naturalness-oriented ac-
tion controls. Our experimental results demonstrate the effectiveness of
our framework, which shows that the agent can generate both actions
without being locked into either of them.
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1 Introduction

To activate communication between users and agents, the latter have to con-
versationally acquire adequate tips while recognizing and understanding the sit-
uations available through person-to-person dialogues. The systems must create
and establish behavioral strategies based on a large amount of data with their
communication. Markov Decision Processes (MPDs) are ordinarily applied to
the acquisition of strategies with reinforcement learning (RL) if the state tran-
sitions by the agents occur stochastically, depending on their current states and



actions. When we think about conversations between users and agents in the
real world, diverse varieties of data exist from participant’s facial expression,
behaviors, and the execution timings of their actions. Basically the data hold
errors and uncertainties that originated from faults and observation. As a result,
learning and behavioral acquisition under MDPs do not always work effectively.

So that both users and agents are mutually understood and activated in a
multi-party dialogue system, another scheme is required for controlling their in-
teractions while gathering ambiguous multi-modal information from sensors. In
this case, such information includes the state of other participants, their behav-
iors, and speech with paralinguistic information in addition to the surrounding
environment. Observation data from sensing a real environment essentially pos-
sess errors and uncertainty about both inputs and outputs. Therefore, difficul-
ties exist to deterministically select and take any action suitable for the changes.
That is why the dialogue system should be described statistically as an action-
determining, task-executing, and observing one with such probabilistic variables
as actions, states, transitions, and emission. We believe a partially observable
Markov decision process (POMDP) helps formally describe the environment of
any user-agent dialogue system by using the measurements of sensors and the
existing characteristics of the real world.

This paper shows related works about action control under uncertainty in
Section 2, a POMDP applicable to multi-party dialogue in Section 3, results and
evaluations of simulation experiments on one-to-one dialogue with our action
control algorithm in Section 4, and finally a conclusion.

2 Related Work

POMDPs, which play an effective role in making decisions about selecting the
most probabilistically reliable actions available through observed sensor data
with uncertainty and their records[1, 8], are applied to spoken dialogue man-
agement[2], dialogue support for buying train tickets [3, 9], weather information
dialogues [7], dialogues for DSL trouble shooting [4] and the action control of
robots by human speech and gestures [5]. The results from these cases demon-
strate that POMDPs compensate for uncertainty on such observed data as speech
and gestures in action-determination. As a result, they get better performance in
terms of the correct accomplishment of given tasks than a conventional Markov
Decision Process (MDP). Since these systems are based on purpose-oriented di-
alogue management and we know how the agent should work, setting rewards
and calculating transition probability are easy. However, if we do not know how
the agent should work, such as in person-to-person communication, we have to
estimate how it should work using a large amount of data. The problem is how
to make the POMDP structure from a large amount of data. Although Fujita[6]
solves this problem with DBNs to model a POMDP structure with a lot of data,
the task is still simple and purpose-oriented.

In this paper, we propose a new type of POMDP-based action control algo-
rithm with unique protocol acquisition and data property characteristics. One



automatically acquires a protocol specific to the conversations available through
a large amount of dialogue data among users and agents. The other automati-
cally reflects the statistical characteristics of the data upon action selection in
the agent’s decision processes. For English conversation lessons, such acquisition
resembles how students instantly respond to a teacher’s messages while learning
typical conversational protocols like greetings and hand-shaking. To learn and
perform like this, we have to consider the following two issues.

1. Automatic POMDP learning probabilities of internal states and acquiring a
specific conversational protocol, based on Expectation-Maximization (EM)
and reinforcement learning algorithms by giving a large amount of data.

2. Reflecting emission probabilities of actions upon action-selection rules through
reinforcement learning.

We propose two methods to resolve the above issues.

1. Automatically acquiring the probabilities of internal states and outputting
observed values with a dynamic Bayesian network (DBN)

2. Selecting actions based on emission probabilities by making internal states
that match actions with one-to-one correspondence and reflecting their prob-
abilities upon POMDP rewards

3 POMDP Controller Created from Large Amount of

Data

3.1 POMDP Model for Dialogue Control

A POMDP is defined as (S,O,A,T,Z,R, γ, and b0). S is a set of states described
by s ∈ S. O is a set of observation o described by o ∈ O. A is a set of actions a

described by a ∈ A. T is a set of the state transition probabilities from s to s′,
given a, Pr(s′|s, a). Z is a set of the emission probabilities of o′ at state s′, given
a, Pr(o′|s′, a). R is a set of expected rewards when the agent performs action a

at state s, r(s, a). The basic employed structure is shown in Fig. 1.
Before referring to γ and b0, we explain the state transition probability up-

date method. In POMDP, since states are directly unobservable like in HMMs,
we can only treat their distribution. Here, suppose that the distribution of states
bt−1(s) is known. Using the transition and emission probabilities, the distribu-
tion update is performed by

bt(s
′) = η · Pr(o′|s′, a)

∑

s

Pr(s′|s, a)bt−1(s), (1)

where η is a factor so that the distribution summation is one. If the initial value
of b is set as b0, bt(s

′) can be obtained iteratively using a recursive equation.
Using this distribution, the average discounted reward at time t can be ob-

tained as

Vt =

∞∑

τ=0

γτ
∑

s

bτ+t(s)r(s, aτ+t), (2)



where γ is a discount factor. POMDP obtains a policy that is a function from
bt(s) to a by maximizing the average discounted reward at infinite time. The
policy, which is independent of time, is obtained by reinforcement learning.

:
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Fig. 1. POMDP structure

3.2 Training acquired specific conversational protocols

The POMDP is required to train the transition probabilities, the emission prob-
abilities, and the rewards described in 3.1. Ordinary dialogue systems assume
that the probabilities and the rewards are given. In this paper, these parameters
are automatically trained from data, examples of which are shown in Table 1.
The agent and user perform eight actions: shaking hands, greeting, laughing,
moving, speaking, nodding their heads, shaking their heads, and doing nothing.
The user and agent alternately perform an action from among the eight to have
a dialogue. After the dialogue, the user evaluates whether the dialogue was a
typical conversational protocol by looking at its sequence. Based on this result,
the user scores it. In this example, the user shows the period of a typical conver-
sational protocol by setting one for a certain length. We used variable d for these
scores as shown in the final row in Table 1. The corresponding DBN shown in
Fig. 2 is used to train the probabilities for variables o, a, d by the EM algorithm.
After training the DBN, it is converted into a POMDP. Each probability in DBN
is used for a corresponding probability in POMDP without modification. Since
POMDPs use rewards that DBN do not have, rewards should be obtained. The
objective of the POMDP is to perform typical conversation. To attain this, the
rewards are obtained from the d variable by

r1(s, a) =
1∑

d=0

d × Pr(d|s, a). (3)



Table 1. Example of dalogue data

observation o agent action a user evaluation d

doing nothing doing nothing 0
nodding speaking 0

shaking hands shaking hands 1
greeting greeting 1
laughing speaking 1

shaking head speaking 1
greeting greeting 1

shaking hands shaking hands 1
doing nothing shaking hands 0

greeting doing nothing 0

Here we call such a conversation a purpose-oriented dialogue.

:user evaluation

:
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Fig. 2. DBN structure corresponding to POMDP

3.3 Reflecting Action Emission Probability on POMDP Rewards

Our goal is to make an appropriate policy using the interaction data between the
users and the agent. Our target interaction characteristic is that the interaction
should be processed based on probabilistic characteristics; however sometimes
typical protocols occur, and the agent should obey them. The problem is how
to obtain the policies that achieve this behavior by reinforcement learning.

We propose the following methods to solve this problem. First we introduce
an extra hidden DBN and POMDP states to the ordinary states as s = (so, sa)
(Fig. 3-4).
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Fig. 3. POMDP structure employed in this paper

:user evaluation
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Fig. 4. DBN structure employed in this paper



The training algorithm’s procedure is as follows (Fig. 5).

1. Positive reward 1.0 is set to the typical protocol data and 0.0 reward to the
other data (see Table 1).

2. A DBN is trained whose probabilities are Pr(s′|s, a) ≈ Pr(s′o|so, a) Pr(s′a|s
′

o, sa),
Pr(d|so,a), and Pr(o′|s′o) (Fig. 4). d is also treated as a random variable.

3. The DBN is converted into a POMDP, where we convert an evaluation ran-
dom variable into POMDP fixed rewards by Eq. (3).

4. We set reward bτ+t(sa)r(sa, aτ+t), so that if bτ+t(sa) is high, POMDP may
obtain a higher reward.
If a = sa, we set Pr(a|sa) = 1 in the DBN (Fig. 4) so that sa corresponds
one-on-one with a. Based on this, if at = sa is given, we obtain

Pr(at|o1, a1, . . . , at−1, ot)

=
∑

s′

a

Pr(at|s
′

a) Pr(s′a|o1, a1, . . . , at−1, ot) (4)

= Pr(sa|o1, a1, . . . , ot−1, at−1, ot) = bt(sa). (5)

This is for propagating the emission probabilities of the actions into the
probabilities of the hidden states. Our objective here is to select at so that
the probability of at is maximized when o1, a1, . . . , ot−1, at−1, ot is given. The
reward should be set to satisfy this. This means the rewards should be set by
maximizing Eq. (5). To do this¡⁄we set r2(s = (∗, sa), a) = 1 when sa = a,
where * is arbitrary so. Otherwise, r2(s = (∗, sa), a) = 0. Replacing r in Eq.
(2) into r1 + r2 as

r(s, a) = r1((so, ∗), a) + r2((∗, sa), a), (6)

we obtain new objective function Vt. We modify rewards r1 described in 3.1
using * so that we can treat extra hidden states sa.
The POMDP is then trained by reinforcement learning to generate the policy.
Using this formulation, the POMDP can select the action that simultane-
ously gives higher probability of the action and obeys the purpose-oriented
action control.

4 Evaluation and Result

We prepared two types of patterns as typical conversational protocols between
the agent and the user. The following is the sequence of one protocol. They
shake hands and greet each other. Then they talk randomly, laugh, and nod
their heads. Finally they greet and shake hands again. In the other sequence,
first the user moves and the agent does nothing. Then they greet each other,
speak randomly, laugh, and nod their heads. Next they greet each other. Finally
the user moves and the agent does nothing. The amount of these data is one
tenth of the total data.



EM Algorithm

From DBN to POMDP

Reinforcement Learning

Data sequences of o & a

Table of Pr(sa|o, aτ) & r(sa, aτ)

POMDP policy

Table of DBN Pr(s’|s,a)

Fig. 5. Policy generation procedure by POMDP

The rest of the data is generated so that the joint probabilities of the obser-
vation and action pairs (shaking hands/shaking hands, greeting/greeting, laugh-
ing/laughing, moving/moving, speaking/speaking, nodding/speaking, shaking
head/speaking, doing nothing/doing nothing) have the highest probabilities. We
call these everyday dialogue data. The lengths of the sequences of all samples
were identical. When the lengths of the typical protocol samples were shorter
than the fixed length, we added everyday dialogue data at the start and the end
of the samples. 10,000 samples were made for the training data. For the typical
protocols, we set the reward values to one per frame. For everyday dialogue data
we set the reward values to zero and trained a DBN using these data. Then the
DBN was converted to POMDP by the proposed method. 2,000 samples were
used for the evaluation data. Only observation data were generated using the
same algorithm to generate the training data. We evaluated the action generation
results of two POMDPs: our proposed POMDP and a purpose-oriented POMDP
that only gives rewards to typical conversational protocol training data.

The experimental results show that both methods generated complete se-
quences for all the data of the typical conversational protocols. Table 2 shows
the results of the joint probabilities of the observation and agent action pairs.
The second column shows the joint probabilities for the training data. Although
we can tune the weight value for the rewards of and , weight tuning was not
performed for the proposed method. The purpose-oriented POMDP tunes the
typical conversational protocol data and always tries to attract the user to the
typical conversational protocols. It did not generate any laughing/laughing, mov-
ing/moving, nodding/speaking, shaking head/speaking, and shaking head/speaking
pairs. The far right column shows that the proposed method improved the
joint probabilities, confirming that the proposed method simultaneously achieved
purpose-oriented and stochastic naturalness-oriented action control.



Table 2. Joint probability of observation and action pairs

Obs.-act. pairs Training sample
Purpose-oriented

POMDP
Proposed POMDP

shaking hands/shaking hands 0.09 0.13 0.13

greeting/greeting 0.10 0.11 0.13

laughing/laughing 0.08 0.00 0.02

moving/moving 0.08 0.00 0.002

speaking/speaking 0.04 0.00 0.00

nodding/speaking 0.09 0.00 0.08

shaking head/speaking 0.09 0.00 0.05

doing nothing/doing nothing 0.10 0.00 0.05

5 Conclusion

In this paper, we presented a POMDP-based dialogue control scheme that can
automatically acquire a conversational protocol typical of daily dialogues with a
reinforcement learning algorithm, which can reflect statistical characteristics au-
tomatically acquired with a large amount of dialogue data based on the agent’s
decision processes in selecting actions. Our experiment results indicate that the
action control algorithm functions effectively through our simulation experi-
ments.
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