
AUGMENTING VARIATION OF SYSTEM UTTERANCES USING CORPORA IN SPOKEN
DIALOGUE SYSTEMS

Ryuichiro Higashinaka1,3, Rashmi Prasad2, and Marilyn Walker3

1 NTT Communication Science Laboratories, NTT Corporation, Japan
2 Institute for Research in Cognitive Science, University of Pennsylvania, USA

3 Department of Computer Science, University of Sheffield, UK
rh@cslab.kecl.ntt.co.jp, rjprasad@linc.cis.upenn.edu, walker@dcs.shef.ac.uk

ABSTRACT

Compared to the variation in utterances that users may exhibit in
conversation with spoken dialogue systems, system utterances can
be very rigid with little variation. One recent approach to deal-
ing with this problem is a trainable sentence planner, which uses
natural language generation techniques to create a large number of
alternative utterances for a given content, by randomly combining
an initial set of basic syntactic structures. However, the amount of
variation achieved is limited by the size of the initial set, which is
usually specified by hand. We propose augmenting the variation of
system utterances by automatically incorporating useful sentences
obtained from corpora into the initial set used by the generation
process. Experimental results show that this approach can suc-
cessfully create a generator with augmented variation.

1. INTRODUCTION

Spoken dialogue systems can now perform various tasks with rea-
sonable task completion rates [1, 2, 3] and have been increasingly
developed and deployed in recent years. Since these systems have
to be able to handle unconstrained speech to understand users’ re-
quests and carry out certain tasks, much work has been devoted to
improving the ability of systems to understand speech. As a result,
users can express their requests in multiple ways, using a variety
of syntactic structures and different sets of vocabulary [4, 5].

On the other hand, compared to the variation in utterances that
users may exhibit in conversation with systems, system utterances
can be very rigid with little variation. Many practical systems still
make use of a limited number of templates or rules for utterance
generation [6, 7]. It is therefore unusual for a system to use differ-
ent forms to deliver the same content. This rigidity persists partly
because it is sometimes not desirable to convey the same content
in different ways for fear of confusing the users, but mainly be-
cause it is costly to prepare different generation templates or rules
for the same content. Since humans rarely use the same expres-
sion for the same content, we believe it is desirable for systems to
exhibit variation in their utterances so that they can communicate
with humans more naturally.

Recently, the idea of a trainable sentence planner has been in-
troduced [8]. A trainable sentence planner generates a large num-
ber of alternative utterances for a given content and ranks them
according to the user’s preference so that it can deliver the content
in a way the user prefers. This technique is promising for creating
variation in system utterances, since, by changing the ranking pa-
rameters, the system can produce different utterances for the same

content instead of the same utterances again and again. However,
since the generation process works by randomly combining an ini-
tial set of basic syntactic structures, which are specified by hand,
the resulting alternative utterances are sometimes not very differ-
ent from one another, leaving an open problem as to how to achieve
system utterance variation that approaches the variation exhibited
by system users.

This paper proposes a technique for increasing the variation
of alternative system utterances, by extracting useful sentences
from corpora, and converting them into the basic syntactic struc-
tures used as the initial set by the generation process of a train-
able sentence planner. We focus on restaurant recommendation
utterances in MATCH, a multi-modal dialogue system providing
entertainment information for New York. Section 2 briefly de-
scribes SPaRKy (Sentence Planning with Rhetorical Knowledge),
the trainable sentence planner used in MATCH [9, 10]. Section
3 describes the problem in detail, and Section 4 mentions related
work. Section 5 explains our method for extracting useful sen-
tences from corpora and how the acquired sentences are incorpo-
rated into the generation process. Section 6 describes the experi-
ment we performed to verify our approach. The last section sum-
marizes and mentions future work.

2. SENTENCE GENERATION IN A TRAINABLE
SENTENCE PLANNER

The generation process in a trainable sentence planner aims to gen-
erate a large number of alternative utterances for a given content.
In SPaRKy, the content is represented by a text plan [9], which is
a set of propositions and the rhetorical relations among them. Fig-
ure 1 shows a text plan for a recommendation for an Italian restau-
rant in MATCH. In this example, the proposition that Babbo is the
best restaurant (p1) is justified by three propositions (p2-p4). Each
proposition is associated with one or more basic syntactic struc-
tures, that can be realized by the RealPro realizer [11], as a short
sentence that asserts that proposition. These basic syntactic struc-
tures are linguistic representations in the form of RealPro’s deep
syntactic structures (DSyntSs), which represent semantic roles and
dependency structures. These linguistic representations support
the generation of a large number of alternatives by the application
of clause-combining operations, which we describe later. (See [11]
for details of DSyntS.) Figure 2 shows some potential realizations
of p1-p4.

SPaRKy takes the text plan and converts it into a tree called a
text plan tree. The text plan tree encodes the ordering of proposi-

262 ASRU 20050-7803-9479-8/05/$20.00  2005 IEEE

Relations

justify(nuc:p1, sat:p2), justify(nuc:p1, sat:p3), justify(nuc:p1,
sat:p4)

Propositions

p1. assert-best(Babbo)
p2. assert-food quality(Babbo, superb)
p3. assert-decor(Babbo, excellent)
p4. assert-service(Babbo, excellent)

Fig. 1. Text plan for a recommendation for an Italian restaurant in
MATCH, where p1-p4 are the IDs assigned to the propositions and
nuc and sat stand for nucleus and satellite.

p1 Babbo has the best overall quality among the selected
restaurants.

p2 Babbo has superb food quality.

p3 Babbo has excellent decor.

p4 Babbo has excellent service

Fig. 2. Possible realizations of propositions p1-p4.

tions and relations among propositions and sets of propositions.
The conversion is performed by text plan transformation rules.
These rules randomize the order of the propositions and assign
a hierarchical structure to the propositions while guaranteeing the
validity of the resulting text plan tree in terms of (a) principles of
rhetorical structure and (b) principles of entity-based coherence.
A text plan tree for the text plan in Fig.1 is in Fig.3 (step 0). The
tree is composed of relation nodes (justify, infer) and proposition
nodes (p1-p4).

The text plan tree then undergoes the aggregation process to
generate an alternative utterance. Figure 3 shows how the aggre-
gation proceeds. The process first finds the left-most bottom-most
relation node that has two or more propositions as its children, and
randomly selects a clause-combining operation to apply to their
associated DSyntS two at a time. The operations include merg-
ing two DSyntS with conjunctions, forming relative clauses, or
joining two DSyntS by a period. (See [9] for details.) When the
period clause-combining operation is applied, the alternative ut-
terance contains more than one sentence. When two nodes are
combined, a new node called an aggregation node replaces them
and appends the two nodes to itself (Step 1). The aggregation node
specifies the operation that was applied to the two nodes as well as
the resulting aggregated DSyntS. We collectively call propositions
and aggregation nodes aggregatable nodes because they both have
corresponding DSyntS and therefore can be aggregated by clause-
combining operations. If there are still aggregatable nodes under
the relation node, they are aggregated in the same fashion until
there remains only one aggregation node under the relation node
(Step 2). In this case, the relation node is replaced by the aggre-
gation node (Step 3). The aggregation continues by processing the
next relation node that has two or more aggregatable nodes (Step
4). The process ends when there is only one aggregation node at
the root of the text plan tree (Step 5). Each iteration of the above
process creates one alternative utterance. With N iterations, N al-
ternative utterances are created for a given text plan.

3. PROBLEM

In SPaRKy, variation in the alternative utterances is created in two
stages: the random ordering of propositions in the text plan trans-

alt1 Babbo has the best overall quality among the selected
restaurants since it has excellent service with excellent
decor and it has superb food quality.

alt2 Babbo has excellent decor and it has superb food qual-
ity with excellent service. It has the best overall quality
among the selected restaurants.

alt3 Babbo has the best overall quality among the selected
restaurants with excellent decor, excellent service and
superb food quality.

alt4 Since Babbo has superb food quality and excellent ser-
vice with excellent decor, it has the best overall quality
among the selected restaurants.

alt5 Babbo has the best overall quality among the selected
restaurants because it has excellent service with superb
food quality and excellent decor.

Fig. 4. Examples of alternative utterances for a text plan.

formation, and the random application of clause-combining op-
erations. Although the two stages can create a large number of
different alternative utterances for a given text plan, the generated
alternatives are sometimes very similar.

Figure 4 shows five of the alternative utterances for the text
plan in Fig.1. It is clearly noticeable that the same words appear
repeatedly, with the variation arising primarily from changes in or-
dering, or from the cue words or conjunctions that are used. This
is because there is only a limited number of basic syntactic struc-
tures in the initial set of DSyntS associated with each proposition.
The specification of the mapping from a proposition to a syntactic
structure is done by hand, with the result that each proposition may
have only one basic syntactic structure associated with it. For ex-
ample, the proposition that restaurant X has good food is expressed
only by “X has good food,” and restaurant X has good service by
“X has good service.” While many randomized operations may be
applied to these two basic syntactic structures during the aggrega-
tion process, it is inevitable that the resulting alternative utterances
are limited in variation by the fact that they are composed from
only these basic syntactic structures.

Since preparing the basic syntactic structures by hand is very
costly, requiring potentially a large effort of corpus study, and lin-
guistic expertise, to specify structures that have the same meaning
as the propositions, we need a systematic method of finding sen-
tences that can be safely associated with the propositions. Our idea
is to find a method for automatically augmenting the number of
basic syntactic structures associated with the propositions, by data
mining of corpora, and thereby generate alternative utterances with
more variation.

4. RELATED WORK

Automatically finding sentences bearing the same meaning has
been extensively studied in the field of automatic paraphrasing.
Studies have made use of parallel corpora and corpora of sentences
describing the same events to collect a set of sentences of similar
meanings so that paraphrasing patterns can be derived by multiple
sequence alignment (MSA) techniques [12, 13]. Other work has
proposed finding predicates of similar meanings from corpora by
using the similarity of contexts around the predicates [14].

Although much work has been done, the reported techniques
cannot be directly applied for our purpose because they focus only
on finding a set of sentences of the same meaning and not on as-

263

(Step 0) a text plan tree (Step 1) (Step 2) (Step 3) (Step 4) (Step 5)

justify

infer

p3 p4 p2

p1

justify

infer

a1
merge

p3 p4

p2

p1

justify

infer

a2
with ns

a1
merge

p3 p4

p2

p1

justify

a2
with ns

a1
merge

p3 p4

p2

p1

justify

a3
cw because sn

a2
with ns

a1
merge

p3 p4

p2

p1

a3
cw because sn

a2
with ns

a1
merge

p3 p4

p2

p1

Fig. 3. Example of an aggregation process. Justify and infer are relation nodes and a1-a3 are aggregation nodes. Merge, with ns, and
cw because ns are the randomly selected clause-combining operations associated with the aggregation nodes. The aggregated sentences
for a1-a3 are “Babbo has excellent decor and excellent service,” “Babbo has excellent decor and excellent service with superb food quality,”
and “Because Babbo has excellent decor and excellent service with superb food quality, it has the best overall quality among the selected
restaurants,” respectively. Here, the aggregated sentence of a3 becomes the alternative utterance.

sociating a specific meaning with the sentences. In other words,
previous work assumes some underlying meaning behind the sen-
tences but does not deal with it directly. Although there have been
some attempts to use logical forms to represent propositions of
the sentences [15, 16], the approach is only used as a way to ab-
sorb some surface-level differences of sentences to find accurate
answers for question answering systems.

5. PROPOSED METHOD

We propose automatically acquiring basic syntactic structures
from corpora that can be associated with propositions, and incor-
porating them into SPaRKy. In this paper, we focus specifically
on the restaurant recommendations in MATCH. Since propositions
in recommendations concern the features of a restaurant, such as
food quality, service, decor, and location, we first need a corpus
that includes sentences expressing such features. We create such
a corpus by collecting restaurant user restaurant reviews from the
web.

Then, to extract only the sentences that can be associated with
the propositions from the corpus, we have to determine what the
sentences are about. We use the rating information attached to
the reviews and some restaurant-related keywords to pinpoint the
meaning of the sentences. The rating information is generally cou-
pled with reviews and provides an explicit polarity (e.g., good or
bad) for the sentences. We create a meaning representation con-
sisting of rating information and keywords for each sentence. We
use this meaning representation and several word-level features
of a sentence to decide whether to extract the sentence. We ex-
tract only those that are strongly considered to be associated with
the propositions. When incorporating the extracted sentences into
SPaRKy, we need to perform a match between the extracted sen-
tences and the propositions to see if any of the extracted sentences
can actually be associated with the propositions. We perform this
matching via the meaning representation.

In what follows, we describe the step-by-step procedure used
to extract the sentences. The procedure includes collecting user
reviews on the web, creating meaning representations for the sen-
tences, screening inappropriate sentences, and converting the sen-
tences into DSyntS, which is the sentence representation used in
SPaRKy. Then, we describe how we perform the matching be-
tween the propositions and the extracted sentences. Lastly, we

Ratings

Food=5, Service=5, Atmosphere=5, Price/Value=5, Overall=5

User review comment

The best Spanish food in New York. I am from Spain and I had
my 28th birthday there and we all had a great time. Salud!

Fig. 5. Example of a user review comment with associated ratings

describe how to incorporate the automatically constructed DSyntS
for the extracted sentences into SPaRKy.

5.1. Creating the corpus

We created a corpus of restaurant reviews by scraping user review
comments posted at we8there.com (http://www.we8there.com/).
Although there are other websites dealing with reviews such as
london-eating (http://www.london-eating.co.uk/), we selected this
particular one because it includes a 1-to-5 Likert-scale rating of
food, service, atmosphere, price/value, and overall rating for each
individual user review. Although other information is available,
such as whether the restaurant accepts reservations, we did not use
this information because it is not related to the recommendation
utterances in MATCH. Figure 5 shows an example of review com-
ments with associated ratings. We collected 3004 comments on
1810 restaurants with associated ratings. The corpus contains a
total of 18811 sentences.

5.2. Determining the meaning of user review sentences

To determine the meaning of the user review sentences, we use the
ratings and several keywords associated with them. Each rating
has a rating-key and a score. For example, for food=5, food is
the rating-key and 5 is the score. We define by hand a set of key-
words that are considered to be strongly associated with a rating-
key (Fig.6). For example, food and meal are keywords for the
rating-key food. Note that the keywords need not be complete, be-
cause it is not necessary for our purposes to extract every possible
sentence from the corpus.

Having defined the keywords, we hypothesize that a sentence
containing keywords of a rating-key concerns that rating-key. For
example, a sentence containing food or meal is assumed to be
about food. We also hypothesize that the score is reflected in the

264

rating-key keywords

Food food, meal

Service service, staff, waitstaff, wait staff, server,
waiter, waitress

Atmosphere atmosphere, decor, ambiance, decoration

Price/Value value, price, overprice, pricey, expensive, inex-
pensive, cheap, affordable, afford

Overall recommend, place, experience, establishment

Fig. 6. Keywords for rating-keys.

token=The root=the pos=DT ne=NULL=NULL
token=best root=best pos=JJS ne=NULL=NULL
token=Spanish root=spanish pos=JJ ne=foodtype=Spanish
token=food root=food pos=NN ne=food=food
token=in root=in pos=IN ne=NULL=NULL
token=New root=new pos=NNP ne=location=New York
token=York root=york pos=NNP ne=location=New York
token=. root=. pos=. ne=NULL=NULL

Fig. 7. The result of keyword detection and POS-tagging.

sentence. Based on these two hypotheses, we assume that if a sen-
tence has a keyword of a rating-key K and K has a score S, then
that sentence has the meaning K=S. For “The best Spanish food
in New York” (Fig.5), since there is a keyword food and the rating
for this sentence has food=5, this sentence is assumed to have the
meaning food=5.

Other than the rating-keys, features of a restaurant also include
location, food types, food subtypes (specific food served), and so
forth. To see if the sentences contain such information, we again
exploit keywords. We created a list of keywords for locations,
country names, food types, and food subtypes (these can be ex-
tracted from a database for the application or from the vocabulary
of the speech recognizer). For example, if the sentence contains
a location keyword, we assume that the sentence concerns the lo-
cation of a restaurant. For “The best Spanish food in New York,”
there is one food type and one location. Therefore, we assume that
the sentence is about the food type and the location of a restaurant.
Since this sentence also has food, the eventual meaning of this sen-
tence will be food=5, food type, and location, which is described
by our meaning representation: {food=5, food type, location}.

Using the ratings and the keywords, we created meaning rep-
resentations for all 18811 sentences in the corpus. For keyword
detection, we employed GATE [17], which is a suite of linguis-
tic processors including a tokenizer, a sentence splitter, a part-of-
speech (POS) tagger, and a named entity recognizer. We modified
the dictionary of the named entity recognizer to detect our key-
words as well as those built into GATE such as person names. Fig-
ure 7 shows the result of keyword detection for “The best Spanish
food in New York.” Notice that Spanish, food, and New York are
successfully detected as keywords of food type, food, and location,
respectively. The result also contains POS tags and base forms for
each word.

5.3. Screening

The screening process filters out sentences considered to be in-
appropriate to be associated with the propositions of recommen-
dations in MATCH. The screening is performed based on the six
rules below. These rules check the validity of the sentences at dif-

ferent levels and are not independent. They are checked against
each sentence one by one, and if one of the rules is found to be
applicable, the sentence is discarded.

• If a sentence does not have a keyword of restaurant fea-
tures, discard the sentence because it cannot be used for the
propositions concerning restaurants.

• If a sentence contains unknown words, which include typo-
graphical errors, discard the sentence because the meaning
of such a sentence is uninterpretable. Unknown words are
defined as those not included in the entries of WordNet.

• If a sentence has more than 20 words, discard the sentence
because such a sentence is likely to have a complex mean-
ing not covered by the propositions.

• If a sentence has keywords of food subtypes, person names,
country names, or named entities of dates (e.g., today, to-
morrow, Aug. 26th) and prices (e.g., 12 dollars), discard the
sentence because such keywords do not relate to the propo-
sitions in MATCH. Although prices do appear in the propo-
sitions, they mainly describe the average prices, and prices
in our corpus rarely mean average prices.

• If the POS tags for a sentence contain NN (Noun), PRP
(Personal pronoun), CD (Numeral), discard the sentence
because (1) a noun that is not a keyword may have a mean-
ing not in the propositions, (2) it is not appropriate for the
system to use pronouns such as I and we, and (3) numbers
(other than prices) do not appear in the propositions.

• If the POS tags for a sentence have LS (List item marker)
or JJR (Comparative adjective), or if the sentence contains
contextual words, discard the sentence because they all sug-
gest that the meaning of the sentence is dependent on the
surrounding sentences, so that it cannot be used indepen-
dently for a proposition. The contextual words we defined
are however, also, too, then, after, though, now, than, ei-
ther, neither. Additionally, and, because, but, for, however,
since, until, as, although, while, if, when, then, so, both,
even again, next, other, yes, no, that, needless to say are re-
garded as contextual words if they appear at the beginning
of a sentence.

The rules may seem very strict. However, for the extracted sen-
tences to be safely associated with the propositions, we have to
carefully select only those that could be strongly considered to be
useful. Out of 18811 sentences, a total of 735 sentences survived
the screening process. This is approximately 3.9% of all sentences.

5.4. DSyntS conversion

To be incorporated into SPaRKy, the extracted sentences have to
be converted to DSyntS, so we developed a DSyntS converter tool.
Since DSyntS have a form similar to dependency structure, we
first process the sentences with Minipar [18], a general-purpose
dependency parser. A sentence augmented with the dependency
structure is then processed by the DSyntS converter. Since we are
dealing with sentences of user reviews which are different from
the newspaper articles on which Minipar was trained, the output
of Minipar for such sentences can be inaccurate, leading to failure
in conversion. Out of 735 sentences, 221 sentences failed in con-
version, and 514 sentences augmented with DSyntS were obtained
(2.7% of all sentences).

265

5.5. Matching propositions with extracted sentences

Propositions used in the recommendation utterances in MATCH
have forms such as assert-food quality(Babbo, superb) and assert-
service(Babbo, good). On the other hand, the extracted sentences
have meaning representations such as {food=5, service=5}. Since
they have different forms, they cannot be directly matched to be
associated. Therefore, we convert the propositions into meaning
representations so that the matching can be performed on the same
level. We prepared several simple conversion rules:

• First, convert assert-food quality(X,Y) to food=Y. Then,
convert Y to a number by mapping superb, excellent → 5,
very good → 4, good → 3, decent → 2, and mediocre →
1, yielding food=N, where N is a number from 1 to 5. The
restaurant name X is omitted in the conversion. The same
rule applies to assert-service(X,Y) and assert-decor(X,Y).

• Convert assert-nbhd(X,Y) to location. Here, nbhd stands
for neighborhood.

• Convert assert-cuisine(X,Y) to food type.

• Convert assert-best(X) and assert-price(X,Y) to a null
string.

For example, if the proposition is assert-food quality(Babbo, su-
perb), it is converted to {food=5}. The conversion can also be
performed on a set of propositions. For example, assert-food qual-
ity(Babbo, superb), assert-nbhd(Babbo, West Village), and assert-
cuisine(Babbo, Italian) yield {food=5, location, food type}, which
can be associated with “The best Spanish food in New York” to
generate “The best Italian food in West Village.”

5.6. Incorporating sentences into SPaRKy

Here, we explain how the extracted sentences are incorporated into
SPaRKy. We propose replacing the DSyntS associated with the
propositions and aggregation nodes by the DSyntS for the match-
ing extracted sentences in the aggregation process. Note that an
aggregation node corresponds to a set of propositions because it
has propositions as its descendants.

This operation works as a wrapper for the aggregation pro-
cess of SPaRKy. Figure 8 shows the pseudocode for a function
aggregation which is called every time SPaRKy aggregates two
aggregatable nodes to create an aggregation node just as p3 and
p4 creates a1, and a2 and p1 creates a3 in Fig.3. Note that when
these replacements are made, the fact that the extracted sentences
are represented by their DSyntS means that the combination op-
erations can be applied to them in exactly the same way as the
DSyntS originally specified by hand in MATCH.

Relation, operation, ag1, and ag2 are the parameters for the
function. They are the relation node that governs ag1 and ag2, the
randomly selected clause-combining operation, and the two ag-
gregatable nodes, respectively. The replace? is a function that ran-
domly returns true or false. This function is used to suppress over-
replacement. It can be seen from the pseudocode that this function
works exactly the same as SPaRKy if the replace? always returns
false. We call the generation process described here SPaRKy+,
where + denotes the augmentation by the extracted sentences.

6. EXPERIMENT

We performed an experiment to verify our approach. We compared
alternative utterances from SPaRKy and SPaRKy+ (augmented

function aggregation(relation, operation, ag1, ag2) returns
aggregation node

sents ← {}
if relation = infer then

sents ← find matching sentences(ag1,ag2)
if sents.size > 0 and replace? = true then

sent ← random select(sents)
return new aggregation node(sent)

else
sents ← find matching sentences(ag1)
if sents.size > 0 and replace? = true then

ag1.sent ← random select(sents)
sents ← find matching sentences(ag2)
if sents.size > 0 and replace? = true then

ag2.sent ← random select(sents)
return original aggregation(relation, operation, ag1, ag2)

end

Fig. 8. Pseudocode for the aggregation process in SPaRKy+.

with 514 extracted sentences). We let each generator generate ten
alternative sentences for 15 different text plans. Each text plan is
about recommending a restaurant in New York. The utterances
were forced to be different from one another, and the utterances
of SPaRKy+ were controlled so that they incorporated at least one
of the extracted sentences in each utterance. Five subjects, all na-
tive English speakers, judged the quality of the utterances. Each
subject processed one text plan at a time, evaluating 20 utterances
(ten from SPaRKy and ten from SPaRKy+), which were randomly
ordered. Each subject rated each utterance on a scale of 1-5, where
1 is the worst and 5 the best while looking at the text plans. They
were asked to rate the utterances as if they were hearing them spo-
ken by the system and also to rate each utterance on its own merit.
We collected 300 scores for 300 alternative utterances from each
subject.

6.1. Results

Table 1 shows the distribution of the scores as well as the average
scores for SPaRKy and SPaRKy+. One can see that the distribution
of the scores is very different. SPaRKy utterances tend to be rated
mostly in the range of 2-4, whereas SPaRKy+ utterances have a
wider range. This may be because of the difference in the quality
of the extracted sentences. For example, some sentences fit the
propositions completely, while others do not fit, causing a number
of highly rated alternative utterances as well as lowly rated ones.
It should also be mentioned that the subjects rated very differently
from one another. For example, subject 2 rated the alternative ut-
terances of SPaRKy+ very low.

However, because the alternative utterances later undergo a
ranking process in the context of a trainable sentence planner,
the number of highly rated alternative utterances is more impor-
tant than the average score. Using fully automatically extracted
DSyntS, SPaRKy+ produced as many 5-rated alternative utter-
ances as SPaRKy did. Since SPaRKy+ subsumes SPaRKy, and
SPaRKy+ can generate additional alternative utterances without a
loss in quality, we claim that SPaRKy+ is a better generator in
terms of variation. Figure 9 shows some of the 5-rated alternative
utterances of SPaRKy+. Notice the difference from Fig.4.

266

Table 1. Distribution of scores and average scores for SPaRKy and SPaRKy+ alternative utterances.

subject 1 subject 2 subject 3 subject 4 subject 5
score SPaRKy SPaRKy+ SPaRKy SPaRKy+ SPaRKy SPaRKy+ SPaRKy SPaRKy+ SPaRKy SPaRKy+

1 9 25 10 43 0 4 4 11 0 0

2 51 47 23 22 24 26 20 36 8 16

3 61 40 25 21 49 60 61 48 86 67

4 26 26 34 22 65 42 43 39 49 52

5 3 12 58 42 12 18 22 16 7 15

avg. 2.75 2.69 3.71 2.99 3.43 3.29 3.39 3.09 3.37 3.44

ex1 Babbo has the best overall quality among the selected
restaurants. The food is excellent, the wait staff is pro-
fessional and the decor is beautiful and very comfort-
able.

ex2 Babbo has the best overall quality among the selected
restaurants since the food, service and atmosphere are
all excellent.

ex3 Great atmosphere, excellent food and friendly waiters.
Babbo has the best overall quality among the selected
restaurants.

ex4 Ruby Foo’s has the best overall quality among the se-
lected restaurants. Waitstaff is friendly and knowledge-
able and the Chinese, Japanese, Thai atmosphere is
wonderful. The food is good and generous.

ex5 Ruby Foo’s has the best overall quality among the
selected restaurants. Really good authentic Chinese,
Japanese, Thai food. The best kept secret in Manhat-
tan.

Fig. 9. Examples of 5-rated alternative utterances generated by
SPaRKy+.

7. SUMMARY AND FUTURE WORK

We proposed augmenting the variation of system utterances by in-
corporating sentences from corpora into the generation process in
a trainable sentence planner. Experimental results show that our
approach can successfully create a generator with augmented vari-
ation. We believe our approach is unique in that it incorporates nat-
ural occurring texts in system utterance generation and that it uses
rating-annotated corpora to pinpoint the meaning of sentences. As
future work, we plan to train a sentence ranker based on the scores
we obtained in the experiment so that a workable restaurant rec-
ommendation system based on our approach can be created. We
also plan to apply our approach to other types of utterances and do-
mains where the corpora with ratings are available such as cinema
and book recommendations.

8. REFERENCES

[1] Janienke Sturm, Els den Os, and Lou Boves, “Dialogue management
in the Dutch ARISE train timetable information system,” in Proc.
Eurospeech, 1999, pp. 1419–1422.

[2] Alexander I. Rudnicky, Chirstina Bennett, Alan Black, Ananlada
Chotomongcol, Kevin Lenzo, Alice Oh, and Rita Singh, “Task and
domain specific modelling in the carnegie mellon communicator sys-
tem,” in Proc. ICSLP, 2000, vol. 2, pp. 130–134.

[3] A. L. Gorin, G. Riccardi, and J. H. Wright, “How may I help you?,”
Speech Comm., vol. 23, pp. 113–127, 1997.

[4] Takaaki Hori, Chiori Hori, and Yasuhiro Minami, “Fast on-the-fly
composition for weighted finite-state transducers in 1.8 million-word
vocabulary continuous speech recognition,” in Proc. ICSLP, 2004,
vol. 1, pp. 289–292.

[5] Anna Corazza, Renato De Mori, Roberto Gretter, and Giorgio Satta,
“Computation of probabilities for an island-driven parser,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 13,
no. 9, pp. 936–950, 1991.

[6] Mariët Theune, “From monologue to dialogue: natural language
generation in OVIS,” in AAAI 2003 Spring Symposium on Natural
Language Generation in Written and Spoken Dialogue, 2003, pp.
141–150.

[7] Lauren Baptist and Stephanie Seneff, “GENESIS-II: A versatile sys-
tem for language generation in conversational system applications,”
in Proc. ICSLP, 2000, vol. 3, pp. 271–274.

[8] Marilyn Walker, Owen Rambow, and Monica Rogati, “SPoT: A
trainable sentence planner,” in Proc. 2nd NAACL, 2001, pp. 17–24.

[9] Marilyn Walker, Rashmi Prasad, and Amanda Stent, “A trainable
generator for recommendations in multimodal dialog,” in Proc. Eu-
rospeech, 2003, pp. 1697–1700.

[10] François Mairesse and Marilyn Walker, “Learning to personalize
spoken generation for dialogue systems,” in Proc. Eurospeech, 2005,
pp. 1881–1884.

[11] Benoit Lavoie and Owen Rambow, “A fast and portable realizer for
text generation systems,” in Proc. 5th Applied NLP, 1997, pp. 265–
268.

[12] Regina Barzilay and Kathleen McKeown, “Extracting paraphrases
from a parallel corpus,” in Proc. 39th ACL, 2001, pp. 50–57.

[13] Regina Barzilay and Lillian Lee, “Learning to paraphrase: An un-
supervised approach using multiple-sequence alignment,” in Proc.
HLT and 4th NAACL, 2003, pp. 16–23.

[14] Dekang Lin and Patrick Pantel, “Discovery of inference rules for
question answering,” Natural Language Engineering, vol. 7, no. 4,
pp. 343–360, 2001.

[15] Yutaka Sasaki, Hideki Isozaki, Koji Kokuryou, Tsutomu Hirao, and
Eisaku Maeda, “NTT’s QA Systems for NTCIR QAC-1,” in In NT-
CIR Workshop 3 Question Answering Challenge (QAC), 2002.

[16] Dan Moldovan, Christine Clark, Sanda Harabagiu, and Steve Maio-
rano, “COGEX: A logic prover for question answering,” in Proc.
HLT and 4th NAACL, 2003, pp. 87–93.

[17] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and
Valentin Tablan, “GATE: A framework and graphical development
environment for robust NLP tools and applications,” in Proc. 40th
ACL, 2002.

[18] Dekang Lin, “Dependency-based evaluation of MINIPAR,” in Work-
shop on the Evaluation of Parsing Systems, 1998.

267

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
