Evaluating Discourse Understanding in Spoken Dialogue Systems

Ryuichiro Higashinaka, Noboru Miyazaki, Mikio Nakano, and Kiyoaki Aikawa

NTT Communication Science Laboratories, NTT Corporation

Atsugi, Kanagawa 243-0198, Japan

Overview

- We propose a method for creating an evaluation measure for discourse understanding in spoken dialogue systems.
- We enumerated possible discourse-understanding-related metrics and used the metrics to create by regression methods a discourse understanding measure that correlates closely with system performance.
- The correctness of a dialogue state update is the most important factor in improving system performance.

Problem

- Discourse understanding is a process of updating a dialogue state by a user utterance.
- There is no appropriate measure to evaluate dialogue state sequences.
- For example, which of the two metrics below better evaluates the discourse understanding?

Approach

• Enumerate possible discourse-understanding-related metrics.

• Use the metrics to create by regression methods a discourse understanding measure that correlates closely with system performance.

Explaining variables	possible metrics about discourse understanding	
Explained variables	Task completion time as system performance metric	

- Experiment: Data Collection

- Dialogue data collection in two domains.
 - Weather information service domain (WI)
 - Meeting room reservation domain (MR-1, MR-2)
- We hand-annotated reference dialogue states.
- We calculated the values of 13 metrics (see the table below) for each dialogue.
- Task completion times were normalized to make them comparable among systems.

	WI	MR-1	MR-2
Subjects	12	28	28
Collected dialogues	192	224	224
Task completion rate	95.8% (184/192)	84.8% (190/224)	79.0% (177/224)

• We used multiple linear regression and support vector regression as regression methods.

Metrics 1 Slot accuracy 2 Insertion error rate 3 Deletion error rate

1. Slot accuracy	2. Insertion error rate	3. Deletion error rate
4. Substitution error rate	5. Slot error rate	6. Update precision
7. Update insertion error rate	8. Update deletion error rate	9. Update substitution error rate
10. Speech understanding rate	11. Slot accuracy for filled slots	12. Deletion error rate for filled slots
13. Substitution error rate for filled slots		

- Experiment: Results

- In both domains, obtained regression models show relatively good correlation with system performance.
- Support vector regression performs better than multiple linear regression.
- The analysis of the obtained models revealed that update precision is the most important factor in reducing the task completion time.

	Multiple Linear Regression	Support Vector Regression		
WI	0.488 (0.549)	0.471 (0.323)		
MR-1	0.291 (0.649)	0.370 (0.367)		
MR-2	0.478 (0.557)	0.494 (0.326)		
MR-1+MR-2	0.432 (0.572)	0.442 (0.335)		
WI+ MR-1+MR-2	0.415 (0.583)	0.456 (0.325)		
R-square and Root mean square error (in brackets)				

Ledicted task completion time

Distribution of actual and predicted task

completion times (SVR, WI+MR-1+MR-2)

Actual task completion time

- Conclusion

- We proposed a method for creating an evaluation measure for discourse understanding in spoken dialogue systems.
- Obtained measures show good correlation with system performance.
- The correctness of a dialogue state update is the most important factor for system improvement.

