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ABSTRACT

This paper proposes a method for the confidence scoring of in-

tention recognition results in spoken dialogue systems. To achieve
tasks, a spoken dialogue system has to recognize user intentions.

However, because of speech recognition errors and ambiguity in

user utterances, it sometimes has difficulty recognizing them cor-

rectly. Confidence scoring allows errors to be detected in inten-
tion recognition results and has proved useful for dialogue man-

agement. Conventional methods use the features obtained from

speech recognition results for single utterances for confidence

scoring. However, this may be insufficient since the intention
recognition result is a result of discourse processing. We pro-

pose incorporating discourse features for a more accurate confi-

dence scoring of intention recognition results. Experimental re-

sults show that incorporating discourse features significantly im-

proves the confidence scoring.

1. INTRODUCTION

For a spoken dialogue system to achieve certain tasks while con-

versing with users, the system has to recognize user intentions cor-

rectly. Here, we use the term user intention to express the infor-
mation that the user has to convey to the system in order to achieve

his/her goal, such as extracting some particular information from

the system. Since users do not always convey their intentions in

one utterance and speech recognition errors might occur, the sys-
tem and the user normally have to exchange several utterances be-

fore the system recognizes the user’s true intention. This paper

addresses this interactive intention recognition process, focusing

on the types of tasks in which intention recognition results are rep-
resented by frames that consist of slot-value pairs [1]. We also

assume that the slots are filled with words in speech recognition

hypotheses as in many speech applications.

In such interactive intention recognition, the system updates
the intention recognition result after each user utterance. Fig. 1

shows how the intention recognition result is updated in the course

of a dialogue in a weather information system. In the example, “to-

morrow” was misrecognized as “today” by the speech recognizer
(U1), causing the system to have an incorrect value for date (F2).

The misunderstood item was later corrected by the user (U3), who

noticed the error in the intention recognition result because of the

system’s incorrect confirmation request (S3). Through the inter-
active process with the user, the intention recognition results get

closer to the correct user intention (F1-F4).
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Fig. 1. Updating an intention recognition result. (S, U and F in-
dicate a system utterance, a user utterance, and a frame, respec-

tively.)

Based on the intention recognition result, the system performs
dialogue management; namely, it decides what utterances it should

produce. Good dialogue management guides a dialogue smoothly,

accelerating task completion. To improve task completion, one

simple approach for dialogue management is to confirm every item
in the slots until all items in them are acknowledged by the user.

However, too many confirmations are likely to make dialogues te-

dious. On the other hand, when the system does not confirm at

all, the system is likely to deliver undesired information based on
incorrectly recognized items. The system needs to find a balance

between too many and too few confirmations.

Recently, confidence scoring has been applied to detect errors

in intention recognition results and has proved useful for dialogue

management [2, 3, 4]. Confidence scoring enables the system

to avoid unnecessary confirmations and ask questions on unfilled
slots preferentially. Current confidence scoring for slots uses the

confidence of words that fill the slots. For example, to obtain the

confidence of the slot for the date of F4 in Fig. 1, the word con-

fidence of “tomorrow” in U3 is used. The word confidence is the
acoustic and linguistic reliability of the word and typically calcu-

lated using various features of speech recognition results. How-

ever, since the intention recognition result is the outcome of ex-

changes of utterances between the user and system, namely, a dis-

course, using only the speech recognition results of single utter-
ances may not be sufficient.

This paper proposes incorporating discourse features into con-
fidence scoring of intention recognition results. We use both the

acoustic and language model features of words that fill the slots

and the discourse information concerning the slots to achieve more

accurate confidence scoring.
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2. CONVENTIONAL METHODS

Conventional methods use the confidence of a word in a speech
recognition result for the confidence of a slot. We explain how

the confidence of a word is obtained from the speech recognition

result. Two approaches have typically been used.

One uses a score that the speech recognizer outputs for words,

such as the total acoustic and language model score or the word
posterior probability [5]. The other uses a confidence score that

a confidence model outputs [6, 7, 8]. A confidence model is a

kind of a classifier that scores elements in speech recognition re-

sults based on training data. In the case of a word, each word

in the speech recognition hypotheses is labeled correct/incorrect
and various features, such as acoustic and language model features

concerning the word, are extracted. Then, a confidence model is

trained in such a way that the label can be accurately predicted

from the features. Even though using the scores that the speech
recognizer outputs requires no training, the confidence model ap-

proach, which allows the combination of multiple features, tends

to be frequently used in research and development, for which accu-

rate confidence scoring is necessary. Although Pradhan et al. use
system prompt types before user utterances as one of the features

for confidence model training [7] and their approach can be seen

as incorporating discourse information, they only focus on speech

recognition results, not discourse understanding results, and their
discourse feature is only used as a means for classifying user ut-

terances.

3. PROPOSED METHOD

We propose using discourse features in addition to acoustic and
language model features to train confidence models for slots. Since

the slot value is an outcome of exchanges of utterances between

the user and system rather than a single utterance, discourse infor-

mation relevant to the slot is likely to improve the performance of
confidence scoring.

We came up with the twelve features enumerated below to ex-

press discourse information for slots. They concern the transition

of slot values during dialogues and the relationship between cur-

rent slot values with past user utterances (speech recognition hy-
potheses) and system utterances. We call the transition of values

for a slot the slot value sequence. For example, {null → null →
Tokyo → Tokyo} is the slot value sequence for place in F4 in Fig.

1. Here, the last value Tokyo is the current value. Null means the
slot does not have a value.

(D1) Slot purity in slot value sequence: In the slot value se-

quence, count the times the current value is found, and calculate
the ratio of the current value. For example, when the value of the

slot place changes {Tokyo → Osaka → Kyoto → Osaka}, then

the current value Osaka is found in two of the four values, making

the slot purity in context 1/2.

(D2) Top slot purity: In the slot value sequence, for all the values

that appear, count the number of times each value appears, then
calculate the ratio of the value with the highest count. When the

value for the slot place changes {Tokyo → Osaka → Kyoto →
Osaka}, Tokyo, Osaka, and Kyoto are assigned the values of 1/4,

1/2 (2/4) and 1/4, respectively. The maximum value is Osaka’s
1/2; therefore, the top slot purity is 1/2.

(D3) Slot variety: Count the number of different values that ap-

pear in the slot value sequence. For {Tokyo → Osaka → Kyoto

→ Osaka}, there are three values “Tokyo, Osaka, Kyoto”, and so

the slot variety is 3.

(D4) Deny count: Count the number of times the current value

has been deleted. For example, consider the sequence {Tokyo →
null → Kyoto → Tokyo}. The current value Tokyo is once denied

(set to null) by the user (later set to Kyoto). Therefore, the value is
1.

(D5) Overwrite count: Count the number of times the current

value has been overwritten by other values. For example, consider

the sequence {Tokyo → Osaka → Kyoto → Tokyo}. The current
value Tokyo is overwritten once by Osaka. Therefore, the value is

1.

(D6) Continue count: Count the number of times the current

value is found in the current slot successively. For example, con-
sider the sequence {null → Tokyo → Tokyo → Tokyo}. Before

the current value Tokyo, there are two Tokyo values. Therefore,

the value is 2.

(D7) Different value count: Count the number of times the cur-
rent value is not found in the sequence successively. For exam-

ple, consider the sequence {Tokyo → Osaka → Kyoto → Tokyo}.

There are two non-Tokyo values before the current value Tokyo.

Therefore, the value is 2.

(D8) Same keyword pair count: According to Grice’s maxim
of quantity [9], which suggests that one has to make one’s con-

tribution to the conversation as informative as necessary, a men-

tion of the same slot value to the system’s confirmation utterance
containing the same value is not desirable. For example, the ex-

change System: “Are you interested in the weather in Tokyo?”

User (recognition hypothesis): “I’m interested in the weather in

Tokyo” corresponds to this case. Although the sequence sounds
like an implicit confirmation of the system’s confirmation request,

in terms of Grice’s maxim of quantity, it is better for the user to

provide more information about his/her intentions. Taking this into

account, by looking back at the previous exchanges, we count the
number of times the system confirms the current slot value and the

user mentions the same value in the next utterance.

(D9) Same keyword count in user utterance: Count the number

of times the current value appears in the previous user utterances.
For example, when the current value is Tokyo, count the times

Tokyo appears in the user utterance history.

(D10) Different keyword count in user utterance: Count the
number of times values that are not the current value appear in the

previous user utterances. For example, when the current value is

Tokyo, count the times non-Tokyo values appear in the user utter-

ance history.

(D11) Same keyword count in system utterance: Count the

number of times the current value appears in the previous system

utterances. For example, when the current value is Tokyo, count

how many times Tokyo appears in the system utterance history.

(D12) Different keyword count in system utterance: Count the

number of times values that are not the current value appear in the

previous system utterances. For example, when the current value

is Tokyo, count the times non-Tokyo values appear in the system
utterance history.

4. EXPERIMENT

4.1. System

We prepared a telephone-based spoken dialogue system in the

weather information service domain. The system provides Japan-
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wide weather information. Users specify a prefecture name or a

city name, a date, and an information type (weather, temperature,

precipitation) to obtain the desired information. The speech recog-
nition engine is Julius [10] with its attached acoustic model, and

the speech synthesis engine is FinalFluet [11]. The system has

a vocabulary of 1,652 words. The language model is a trigram

trained from transcriptions obtained from our previous dialogue
data collection in the same domain. The system uses a one-best

speech recognition hypothesis for understanding. The system has

a rule-based dialogue manager and all system utterances are gen-

erated by templates.

4.2. Data collection and labeling

We collected dialogue data for confidence model training. Eigh-

teen subjects used the system over the telephone over a period of
six days; three subjects per day. Each subject was given a task

sheet listing the information to be requested. They were instructed

to complete the tasks one by one. Each subject engaged in 16

dialogues, for a total of 288 dialogues collected. Dialogues that
took more than three minutes were aborted and regarded as fail-

ures. The word error rate (WER) was 40.16%. The task comple-

tion rate was 95.83% (276/288). The WER may seem high, but

considering the nature of human-computer dialogues in which bad
speech recognition prolongs dialogues, the WER here is reason-

able. We recorded the system and user utterances and the intention

recognition results after each user utterance. The acoustic and lan-

guage model features and discourse features were extracted for all

slot values in the recorded intention recognition results. We hand-
labeled the slot values correct or incorrect.

4.3. Data screening

Before training confidence models, we screened the data. First, we
discarded the data of slots that did not have values. Then, we re-

moved the data of slots that had just been filled, since they are con-

sidered to possess little discourse information. We also removed

the data of slots that did not change during the dialogue. Although
it might be possible to estimate their confidence from the stillness

of the values, we consider it difficult to differentiate the cases in
which values do not change because of repeated misrecognitions
from those in which the recognizer keeps recognizing the correct
values, because in the data collection, users frequently repeated the

same keywords/phrases for emphases and implicit confirmations.

In addition, we did not use the data of grounded slots. The

system holds a grounding value, which is represented by a binary

value of true or false, for each slot indicating whether the value
has been acknowledged by the user. For example, when the system

confirms by asking “Are you interested in the weather in Tokyo?”

and the user says “Yes,” then, the grounding values for info and

place are set to true. It is natural that slots that have been grounded
are basically correct. Therefore, we do not use such data. There

were 4812 slot samples in all, and after screening, 777 samples

remained (362 positive samples and 415 negative samples).

4.4. Confidence model training

For confidence model training, as acoustic and language model

features, we used the same features that Hazen et al. used in

[6] (called word-level features in their paper) with some modifi-

cations. Modifications had to be made because of the differences

Table 1. False acceptance rate (FAR) and false rejection rate
(FRR) for the conventional and proposed models.

False Acceptance Rate False Rejection Rate

conv. prop. conv. prop.

grouping-1 0.172 0.200 0.385 0.231

grouping-2 0.109 0.124 0.542 0.206

grouping-3 0.432 0.286 0.300 0.333

grouping-4 0.220 0.025 0.339 0.339

grouping-5 0.175 0.077 0.250 0.182

grouping-6 0.286 0.216 0.432 0.341

total 0.218 0.149 0.406 0.257

Table 2. Matrix of counts of correct and incorrect items for the

conventional and proposed models.

prop. correct prop. incorrect

conv. correct 200 15

conv. incorrect 69 493

in speech recognizers. As discourse features, we used all the dis-
course features except D10, because we found, after testing sev-

eral combinations of the features, that it does not have a positive

contribution to confidence scoring. The confidence model training

method was adopted from [6], which uses a weighted linear combi-
nation of features to produce probabilistic confidence scores. The

weights were optimized using the training data.

4.5. Evaluation

For evaluation, we performed a six-fold cross validation. We first
separated the data into six groupings corresponding to the data for

the six experiment dates, and trained six confidence models, taking

five of the six groupings as training data and making the remain-

ing grouping the test data. For comparison, we also created confi-
dence models that only use acoustic and language model features

for training. Hereafter, we call the model trained by acoustic and

language model features the conventional model (conv. for short),

and the model trained by the acoustic and language model features
plus the discourse features (w/o D10) the proposed model (prop.

for short).

Table 1 shows the false acceptance rate (FAR) and false rejec-

tion rate (FRR) for the conventional and proposed models when
each grouping is used as the test data. The FAR is the rate at

which the model incorrectly classifies negative samples as posi-

tives, and the FRR the rate at which the model incorrectly classi-

fies positives as negatives. For both FAR and FRR, the proposed
model performs better than the conventional model. Table 2 shows

the matrix of counts of correct and incorrect items for the conven-

tional and proposed models. Of all the samples, there were 69

that only the proposed model classified correctly, and 15 that only
the conventional model classified correctly. From a statistical test

(McNemar’s test [12]), it was found that the two models have a

statistically significant difference in terms of classification perfor-

mance (p = 1.94 · 10−9), which verifies the effectiveness of the
discourse features.

4.6. Analysis on the discourse features

We investigated how each of the discourse features affects the clas-

sification results. Table 3 shows the F-measure (harmonic mean of
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Table 3. F-measure (harmonic mean of precision and recall) for
models each trained without D10 and one of the remaining dis-

course features.

F-measure Drop in F-measure

prop. (All w/o D10) 0.794 0.000

w/o D10, D1 0.765 0.029

w/o D10, D2 0.789 0.005

w/o D10, D3 0.782 0.011

w/o D10, D4 0.774 0.020

w/o D10, D5 0.754 0.040

w/o D10, D6 0.787 0.006

w/o D10, D7 0.753 0.041

w/o D10, D8 0.703 0.091
w/o D10, D9 0.730 0.063
w/o D10, D11 0.773 0.020

w/o D10, D12 0.753 0.040

the precision and recall) for models, each of which was trained

without D10 and one of the remaining discourse features. The row
indexed by prop. (All w/o D10) represents the proposed model

and the third column (drop in F-measure) shows the difference of

the F-measure from the proposed model.

From the table, one can see that the same keyword pair count

(D8) and the same keyword count in user utterance (D9) have rel-

atively larger drop values than the others, indicating that they may

be more important than other features. D8 being important may
suggest that traditional dialogue theories such as Grice’s maxim

also stand in human-computer dialogues. As for D9, when we

look at its coefficients in the confidence models, we find that the

value is positive: the larger the same keyword count, the larger the

confidence. This may indicate a strong tendency for users to utter
already correctly recognized items many times as implicit confir-

mations. On the other hand, the top slot purity (D2) has a small

drop value. Since the slot purity in slot value sequence (D1) also

has a small value, it is suggested that however many times a slot
has the same value, the correctness of the slot is not guaranteed.

Fig. 2 shows the FAR-FRR curves for the models without D2,

D8, and D9, respectively, along with those for the proposed model
and the conventional model. It can be seen clearly that models

without D8 and D9 are close to the curve for the conventional

model, and the model without D2 is almost on the curve for the

proposed model.

5. SUMMARY AND FUTURE WORK

We proposed a confidence scoring method for intention recogni-

tion results in spoken dialogue systems. To improve confidence

scoring, we utilized both the acoustic and language model features

of the speech recognition results and various discourse features re-

lated to slot values, such as the number of times that slot values are
mentioned in a dialogue. Experimental results show that the pro-

posed method significantly improves the confidence scoring, indi-

cating the effectiveness of the discourse features. Future work will

include a further analysis into the impact of the discourse features,
handling of slots that we removed this time, an exploration of other

discourse features, utilization of the relationships and constraints

among the slots, and incorporating confidence scoring results for

dialogue management in workable systems.
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