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Overview

• A new confidence scoring method for 
intention recognition results in spoken 
dialogue systems
– Intention means the information that the user 

wants to convey to the system
– Uses discourse features in addition to 

acoustic and language model features
– Useful for dialogue management

e.g., avoid unnecessary confirmations 
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Intention Recognition : an example

--Info
--Date
--PlaceFrame1

weatherInfo
tomorrowDate

KyotoPlaceFrame2

weatherInfo
tomorrowDate

KyotoPlaceFrame3

weatherInfo
tomorrowDate

TokyoPlaceFrame4

System : “May I help you?”
User      : “Tell me Tokyo’s 

weather for tomorrow”
(Tokyo was misrecognized 

as Kyoto)
System : “Kyoto’s weather for 

tomorrow?”
User      : “Tokyo”

(Tokyo was misrecognized 
as Kyoto again)

System : “Kyoto’s weather for 
tomorrow?”

User     : “No, Tokyo! ”

Example Dialogue

Confidence=?
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Conventional Methods

weatherInfo
tomorrowDate

KyotoPlace

weatherInfo
tomorrowDate

KyotoPlace

weatherInfo
tomorrowDate

TokyoPlace

Frame2

Frame3

Frame4

User      : “Tell me Kyoto’s 

weather for tomorrow”

System : “Kyoto’s weather for 
tomorrow?”

User      : “Kyoto”

System : “Kyoto’s weather for 
tomorrow?”

User     : “No, Tokyo! ”

C2 C3
C3
C2

C3
C2

C3
C2

C1C1

C4

C4

C5

C5

Use confidence of words in speech recognition
results for the confidence of slot values



5

Proposed Method

• Slot value is not a result of a single 
utterance but the entire discourse
→ Use discourse information to improve    

accuracy of confidence scoring
• Train a confidence model that outputs 

confidence scores based on both
– acoustic and language model features of a 

word filling the slot and
– discourse features for the slot value
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Discourse Features

--Info
--Date
--Place

weatherInfo
tomorrowDate

KyotoPlace

weatherInfo
tomorrowDate

KyotoPlace

weatherInfo
tomorrowDate

TokyoPlace

Frame1

Frame2

Frame3

Frame4

System : “May I help you?”
User      : “Tell me Tokyo
(Kyoto) ’s weather for tomorrow”
System : “Kyoto’s weather for 

tomorrow?”
User      : “Tokyo (Kyoto)”
System : “Kyoto’s weather for 

tomorrow?”
User     : “No, Tokyo! ”

Discourse features encode 
the relationship between
a slot value and the discourse
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Discourse Features (cont’d)

• We enumerated 11 discourse features
– How many times the same slot value is found 

in previous frames
– Ratio of the slot value in all frames
– How many times the slot value was deleted or 

overwritten by other values
– How many times the slot value has appeared 

in user and system utterances
– etc.
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Discourse Features (cont’d)

• Same keyword pair count
– The number of times the slot value is 

confirmed by the system and then uttered by 
the user immediately afterwards

– System : “Kyoto’s weather for tomorrow?”
User     :  “Kyoto”

– Grice’s maxim of quantity states that 
user utterances have to be as informative as 
necessary

– Possible penalty to slot values that are related 
to this less informative interaction
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Data Collection
• System

– Weather Information Service Domain
– Vocabulary of 1,652 words
– Has 3 slots (place, date, information-type)

• Collected data
– 18 subjects performed 16 dialogues each
– 288 dialogues collected
– Task completion rate is 95.83% (276/288)
– 4812 slot value samples
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Data Screening
• Slots that did not have values
• Slots explicitly confirmed by the user
• Slots that have only one value in all frames

777 slot samples remained

weatherInfo
--Date

KyotoPlace

All Frames

Kyoto and weather have the same discourse 
features although one of them is wrong
→ causes trouble in confidence model training

System : Kyoto’s Weather?
User     : Tokyo’s (recg:Kyoto) weather
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Confidence Model Training

• Feature extraction
– 27 acoustic and language model features 

adopted from (Hazen et al. 2002)
– 11 discourse features

• Confidence model
– Weighted linear combination of the features

adopted from (Hazen et al. 2002)
– Weights are optimized using the training data
– Outputs positive scores for correct slot values 

and negative scores for incorrect ones
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Evaluation

• Comparison of two confidence models
– Conventional Model (conv.) 

• trained only by acoustic and language 
model features

– Proposed Model (prop.)
• trained by both acoustic and language 

model features and discourse features
• 6-fold cross validation
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Evaluation (cont’d)

Proposed model outperforms conventional 
model in classification accuracy

Proposed Model

Conventional Model
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Evaluation (cont’d)

105102Conv.
Incorrect

35535Conv.
Correct

Prop.
Incorrect

Prop.
Correct

Statistically significant difference in classification 
performance (McNemar’s test,                    ) 81069.8 −⋅=p

• Matrix of counts of correct and incorrect items
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Impact of the discourse features
• relatively important features

– Same keyword pair count
→ Slot values related to the less informative 
interaction is likely to be incorrect

– Number of slot values in user utterance
→ The more the slot value is found in user   
utterances, the more correct the slot value is

• less important feature
– Ratio of the slot value in all frames
→ Ratio in frames does not guarantee its

correctness



16

Conclusion

• A new confidence scoring method for 
intention recognition results in spoken 
dialogue systems
– Uses discourse features in addition to 

acoustic and language model features
• Experimental Results show validity of our 

method
• Future work:

– Verification in other domains
– Online evaluation of the system


