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Abstract

The objective of the research presented in this thesis is to improve discourse
understanding in spoken dialogue systems so that systems and users can interact
more naturally using speech. Discourse understanding refers to a system’s ability
to understand user utterances based on the context of a dialogue. Until now,
discourse understanding has been performed in a heuristic manner because the
primary importance has been place on developing workable systems. However,
as systems become increasingly complex, systematic methods are needed if we
are to achieve continuous progress in the field and also reduce the cost of system
development. This thesis describes three approaches we developed to tackle three
problems in discourse understanding in spoken dialogue systems.

The first problem is the lack of an evaluation measure for discourse under-
standing. In any field in engineering, it is important to have an evaluation mea-
sure. An appropriate evaluation measure would enhance activity in spoken di-
alogue systems research and make it possible to compare various approaches
uniformly in a objective manner. Our approach to finding a suitable evaluation
measure is to enumerate possible metric candidates and calculate their correlation

with a system’s performance through dialogue experiments.

The second problem is the lack of discourse information in confidence scor-
ing of intention recognition results. One useful capability humans have during
conversation is that they can detect understanding errors from the context of a
dialogue. Computationally, this has been achieved by confidence scoring, which
assigns reliability scores to understanding results on the basis of various features
of a dialogue. However, little discourse information has been utilized to date.
In our approach, we incorporate discourse-related features into the confidence

scoring of intention recognition results, and show its effectiveness.



The third problem is the high cost of creating hand-crafted rules for ranking
dialogue states for disambiguating user intentions. Spoken dialogue systems have
to deal with the ambiguity arising from multiple speech recognition hypotheses
as well as from natural language. Conventionally, this ambiguity is expressed as
multiple dialogue states and hand-crafted rules have been utilized to rank the
states with regard to the context. However, creating such rules is costly and,
because of that, the rules have limited portability. In our approach, we auto-
matically rank dialogue states using statistical information derived from dialogue
corpora. We show the effectiveness of our approach in dialogue-state-ranking

experiments.

Keywords: discourse understanding, speech understanding, spoken
dialogue systems, evaluation measure, confidence scor-

ing, statistical information
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CHAPTER 1

Introduction

1.1 Background and Motivation

Due to advances in speech recognition and synthesis technologies, spoken dialogue
systems, which communicate with humans using speech, have been increasingly
studied and developed over the past decades. Currently, such systems can per-
form a wide variety of tasks, such as train ticket reservation (Core and Schubert,
1996), flight planning (Walker et al., 2002), delivery of weather information (Glass
and Hazen, 1998; Zue et al., 2000; Nakano et al., 2001), tutoring (Litman and
Silliman, 2004), and call routing (Gorin et al., 1997; Chu-Carroll and Carpen-
ter, 1999). With their performance improving rapidly, they are already seeing
some commercial success (Heisterkamp, 2001; Pieraccini and Lubensky, 2005;
Feng et al., 2005). Such systems make it possible for us to communicate with
machines by speech—our most familiar way of communication—making it possible
for us to accomplish certain tasks intuitively and also with low cognitive load.
They have the potential to greatly change our lifestyle.

Figure 1.1 shows an excerpt from a dialogue conducted between a user and
a state-of-the-art spoken dialogue system in the flight reservation domain. As
illustrated in this example, compared to speech command interfaces, which re-
spond to user’s single utterances to perform simple tasks, such as turning on a
light or switching television channels, spoken dialogue systems have to deal with
rather complex tasks. With tasks becoming increasingly complex with exchanges
requiring more than a few turns, instead of speech understanding, which under-
stands independent user utterances, discourse understanding, which understands



Chapter 1. Introduction

user utterances from the context of a dialogue, is becoming important.

Good discourse understanding would offer many advantages to users in an
interaction. For example, communication would become more efficient because
the user would not need to tell the same thing to the system repeatedly. This
feature can be achieved by keeping track a dialogue history (all previous exchanges
of user and system utterances). By keeping track of dialogue histories, users would
also be able to use referential expressions (e.g., pronouns such as ¢t) or ellipses

(zero pronouns), which occur frequently in human-human communication.

Sometimes, user utterances may be ambiguous. In such cases, the use of
discourse information would be helpful in resolving ambiguities. Suppose that a
user utters a station name in a train ticket reservation domain. If the system
knows that the user has already uttered the destination, it would be possible for
the system to infer that the station name means the place of departure. Similarly,
a system could notice its misunderstanding by checking the conformity of its
understanding to the discourse, preventing possible further miscommunication.
If a system has a plan recognition capability, that is, a collection of predefined
knowledge about how to execute a task, the system would be able to detect the
user’s intention quickly and could generate suitable suggestions (e.g., go to the
bus stop and get on a bus) for task completion (e.g., go to the station).

Research on discourse understanding in spoken dialogue systems has been
conducted mainly in two research fields: speech processing and natural language
processing (NLP) in combination with artificial intelligence (AI). In speech pro-
cessing, several approaches have attempted to incorporate contextual (discourse)
information to improve speech recognition; e.g., to switch speech recognition
grammars depending on dialogue phases. However, they mainly focus on im-
proving speech recognition and do not deal with the main problem of discourse
understanding, which is to understand user utterances with regards to the context

in order to accurately estimate user intentions to complete certain tasks.

In NLP/AI research, much work has been done on discourse understanding
based on plan recognition (Allen and Perrault, 1980; Carberry, 1990). However,
hand-crafted rules are generally used to account for very specific phenomena
in human-human dialogues. Therefore, it is acknowledged that plan-based ap-
proaches do not work sufficiently when there is an unexpected input from the



1.1. Background and Motivation

( Sys:  hello, what city are you leaving from?

User: hartford connecticut (recog: hartford connecticut)
Sys: a flight from hartford. where would you like to go?

User: orlando florida (recog: orlando florida)
Sys: traveling to orlando. on what date would you like to travel

User: october thirty first late morning (recog: october three first late morning)
Sys: traveling late morning. on what date would you like to travel

User: october thirty one (recog: october thirty one)

Sys: traveling on wednesday, october thirty first.

Sys: one moment please ...let’s see ... flights from hartford to orlando ...if you’ll
just hold on, this shouldn’t take too long ...gosh the network has been slow
all day ...i'm glad you called though ...i’m not sure how long this will take
...this has been a long day, but i'm glad you called ... hummmmm. ...this
is taking longer than usual ...i wonder if something is wrong ...i’ll bet the
network is down again!

Sys: okay i have a nonstop on delta airlines departing hartford at ten twenty a. m.
arriving into orlando at one ten p. m. is that ok?

User: yes (recog: yes)
Sys: do you need a hotel in orlando?
User: yes please (recog: yes please)
Sys:  would you like a hotel downtown or near the airport?
User:  airport (recog: airport)
Sys: please specify your preferred hotel chain, for example, best western.
User: marriott (recog: marriott)
Sys: i've made a request for a hotel at the marriott. do you want to rent a car in
orlando?
User: no car (recog: no car)
Sys: do you want a summary of your trip?
User: cancel the hotel (recog: cancel the hotel)
Sys:  would you like me to summarize your trip?
User: yes (recog: yes)
&

J

Figure 1.1: A dialogue between a user and a system in the air traffic information
service domain taken from the corpus of the DARPA Communicator project

(Walker et al., 2002).

shown in parentheses after ‘recog:’.

Speech recognition hypotheses for user utterances are
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user, which cause speech recognition errors (Shinyama et al., 2000; Rich et al.,
2001). Actually, one of the current problems in the NLP/AI approach is how to
apply plan-based approaches to discourse understanding under the assumption
that user utterances contain possible errors.

Although a number of systems are currently capable of discourse understand-
ing in some way or other, discourse understanding has been largely handled in
a heuristic manner because the emphasis in spoken dialogue systems research
has been on the creation of workable systems. However, with current systems
becoming increasingly complex, we are beginning to see the limitation of such
ad hoc approaches. Therefore, the aim of our research is to introduce systematic
methods that can improve discourse understanding in realistic spoken dialogue
systems, making it possible to for the systems to understand error-prone speech
recognition results from the context of a dialogue to recognize user intentions
more robustly. Although one may argue that future improvements in speech
recognition will lead to successful application of NLP/AI approaches for robust
discourse understanding, it has been suggested that speech recognition errors are
unlikely to disappear in the near future (Lippmann, 1997). We therefore believe
there is a strong need for this research.

In this thesis, we deal with task-oriented dialogues. We do not deal with
casual conversations, such as chats, because the topics that the system has to
deal with may be too broad and difficult to process with current NLP techniques.
In task-oriented spoken dialogue systems, it is crucial to obtain accurate user
intentions for task success. For example, in the train ticket reservation domain,
the system has to recognize from what station the user intends to depart and to
what station the user wants to reach before the reservation of any train seats. The
system has to elicit these pieces of information by dialogue. Therefore, this thesis
mainly concerns how to accurately recognize user intentions from the context of

a dialogue.

1.2 Architecture of a Spoken Dialogue System

Figure 1.2 shows the basic architecture of a spoken dialogue system. Although
other architectures, such as those based on the information state model (Larsson
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Utterance Understanding Utterance Generation

Discourse Understanding j4—{ Dialogue Dialogue manager
____________ State . T
Eialogue Act Dialogue Act
........ e S T

Language Understanding Surface Generation
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{ Recognition Result Surface Expression
Speech Recognizer Speech Synthesizer
L) .
User Utterance System Utterance

Figure 1.2: Architecture of a spoken dialogue system.

and Traum, 2000; Traum and Larsson, 2003), the hub-and-spoke model (Goddeau
et al., 1994), or an Open Agent Architecture (OAA) framework (Bos et al., 2003)
can be considered, any architecture will comprise components of similar function-
alities. The components of a spoken dialogue system can be divided into those
for utterance understanding and utterance generation. Utterance understanding
components process incoming user utterances and those for utterance generation
components create system responses.

There are three components for utterance understanding: speech recognition,
language understanding, and discourse understanding. Speech recognition is per-
formed by a speech recognizer that converts speech signals into a text string
(speech recognition result). The speech recognition result is then processed by
the language understanding component to derive a meaning representation, typi-
cally called a dialogue act. Obtaining a dialogue act from speech recognition and
language understanding is often called speech understanding. The discourse un-
derstanding component then uses the dialogue act to update the current context
represented by a dialogue state.

Based on a dialogue state, the dialogue manager decides what to say to the user
in the form of a dialogue act. The surface generation component then creates a
surface expression from the dialogue act. Compared to the dialogue manager, this
component is concerned with how to say the system response. Finally, the speech
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synthesizer generates speech signals from the surface expression and responds to
the user by speech. The process of understanding a user utterance and generating
a system response is repeated until the user completes his/her goal.

When receiving a user utterance, the system works as follows.

1. The speech recognizer receives a user utterance and outputs a speech recog-
nition result, such as an N-best list (a list of N speech recognition hy-
potheses) or a word graph (a network representation of speech recognition

hypotheses with each node in the network representing a word).

2. The language understanding component receives the speech recognition re-
sult. Syntactic and semantic analyses are performed to convert it into a
meaning representation; that is, a dialogue act. A dialogue act typically
comprises a dialogue act type that identifies the main intent of the user’s
utterance with its auxiliary information often encoded as attribute-value

pairs.

For example, in the train ticket reservation domain, when the user says “I'd
like to go to Tokyo”, this utterance would create a dialogue act such as
(refer-destination place=Tokyo) in which refer-destination is the dialogue
act type, and place=Tokyo is the auxiliary information indicating that the
destination place is “Tokyo”.

3. The discourse understanding component receives the dialogue act, refers to
the current dialogue state, and updates the dialogue state. Here, a dialogue
state is a representation of the current context. We describe the action of

the discourse understanding component in more detail in the next section.

4. The dialogue manager refers to the updated dialogue state, decides the next
utterance, and outputs the next content to be spoken as a dialogue act. At
the same time, the dialogue manager updates the dialogue state with its
dialogue act so that the dialogue state can preserve the history of system
utterances. For example, when the system wants to confirm whether the
destination of the user is “Tokyo”, it would create a dialogue act such as
(confirm-destination place="Tokyo).
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5. The surface generation component receives the dialogue act and produces
the surface expression, namely, the next words to be spoken, possibly
augmented with prosodic assignment. For example, “Do you want to go
to Tokyo?” would be generated for (confirm-destination place=Tokyo).
Prosodic assignment may be performed for the speech synthesizers to gen-
erate accented and sometimes emotional speech in the next step.

6. The speech synthesizer receives the surface expression and responds to the
user by speech.

1.3 Discourse Understanding in Spoken Dialogue

Systems

This thesis concerns the discourse understanding component of a spoken dialogue
system. The function of the discourse understanding component is to appropri-
ately update the dialogue state (i.e., the context) using the current dialogue state
and the incoming dialogue act derived from a user utterance so that the system
can make as appropriate a response as possible.

A dialogue state comprises a collection of bits of information concerning the
dialogue. It typically includes the system’s recognition of a user intention (in-
tention recognition result) as well as the history of intention recognition results,
user utterances, and system utterances. Among these, we consider the intention
recognition result to be the most important feature of the dialogue state because
it is the system’s understanding of what the user intends to accomplish on the
basis of all previous exchanges of user and system utterances.

We assume that an intention recognition result can be expressed simply by
a frame expression (Bobrow et al., 1977), which is common in many practical
dialogue systems and sometimes referred to as an electronic form or E-form
(Goddeau et al., 1996). A frame/E-form is a bundle of slots that consist of
attribute-value pairs concerning a certain domain. Therefore, an update of an
intention recognition result means filling, changing, and deleting the slot values
of a frame.

Figure 1.3 shows how the intention recognition results (frames) are updated in
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System’s Frame

User and System

Corresponding

Sequence Utterances Dialogue Acts
place - S1: May | help you? (system-prompt)
date - U1: Tell me the weather  (refer-info-date
info - for tomorrow info=weather
date=tomorrow)
place - S2: What area? (ask-place)

date |tomorrow

info | weather U2: Tokyo (refer-place place=Tokyo)
‘ S3: Tomorrow’s weather (confirm-info-date-place
place | Tokyo in Tokyo? date=Tomorrow info=weather

date | tomorrow
info | weather

place=Tokyo)

U3: Yes (acknowledge)

Figure 1.3: An example of frame updates in a dialogue. (S means a system

utterance and U a user utterance.)

the course of a dialogue in a weather information system. It also shows dialogue
-acts corresponding to the user and system utterances. In this example, the inten-
tion recognition result consists of slots representing place, date, and information
type (general weather, temperature, and probability of precipitation). At first,
the slots contain no values. After several exchanges of utterances, the slots are
updated and the system finally recognizes the correct user intention. Through
this interactive process with the uéer, the intention recognition result gets closer
to the true user intention.

The update of an intention recognition result is typically performed by a
hard-coded process (Filisko, 2002) or by hand-crafted rules (Higashinaka et al.,
2006). Figure 1.4 shows an example of a discourse understanding rule. This rule
is interpreted as follows: “if the type of the user’s dialogue act is refer-place and
the place slot in the frame has not been filled, then fill the place slot with the
place name associated with the dialogue act”. The system generally possesses
many such rules to appropriately update the dialogue state. Although the rule
in Fig. 1.4 is a very simple one, there can be rules that may perform complex
operations, such as filling certain slots with possible slot value candidates in
previous user’s dialogue acts when some slot values are denied by the user, or
choosing not to fill certain slots when there is enough evidence in the dialogue
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if user-dialogue-act.type = ‘‘refer-place’’ and
not filled(place) then
place <- user-dialogue-act.place

end

Figure 1.4: Example of discourse understanding rules

history that the dialogue act in question has an error.

Plans have often been used to represent dialogue states (Allen and Per-
rault, 1980; Carberry, 1990; Litman and Allen, 1990; Chu-Carroll and Carberry,
1998). Traditionally, plan-based discourse understanding methods have been im-
plemented mostly in keyboard-based dialogue systems. Although there have been
some recent attempts to apply them to spoken dialogue systems (Allen et al.,
2001; Rich et al., 2001), considering the current performance of speech recogniz-
ers and the limitations in task domains, we believe frame-based discourse un-
derstanding and dialogue management are sufficient (Chu-Carroll, 2000; Seneff,
2002; Bobrow et al., 1977).

There are also object-oriented approaches for the modeling of dialogue states
(Sparks et al., 1994; Abella and Gorin, 1999). Such approaches model dialogue
states as objects that encapsulate the necessary information and behavior for
achieving sub-tasks in a dialogue. The dialogue progresses by making transitions
among the dialogue states until the task as a whole is complete. As long as the
discourse understanding results can be represented by frames, for example, by
aggregating the objects’ information, we believe our approach can be applied to

these models as well.

1.4 Problems Addressed in This Thesis

In this thesis, we deal with three problems that we consider are important in

improving discourse understanding in spoken dialogue systems.
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1.4.1 Lack of Evaluation Measure for Discourse Under-

standing

In any field in engineering, it is important to have an evaluation measure. An
appropriate evaluation measure enhances the research activity of a field because
various approaches can be uniformly compared in an objective manner, making it
possible to incrementally improve techniques. In the speech recognition research,
the word error rate (WER) is a commonly acknowledged evaluation measure. It
is not too much to say that the existence of the WER has led to the current good
performance of speech recognizers. In addition, the concept error rate (CER) has
been used to evaluate speech understanding.

Although there are such useful measures in speech recognition and speech
understanding, no measure has been established for evaluating discourse under-
standing, which has made it necessary to evaluate it only on the basis of the
system’s total performance. Such evaluations, however, are greatly influenced by
task domains and dialogue strategies. To stimulate research in discourse under-
standing and also to achieve incremental developments in the field, an appropriate

evaluation measure is needed.

1.4.2 Lack of Discourse Information in Confidence Scor-

ing of Intention Recognition Results

Not only do humans have better speech recognition accuracy than speech recog-
nizers, but they also make better use of context to understand speech. One useful
capability of humans is the ability to detect a misunderstanding from the context
of a dialogue, which can prevent possible miscommunication at a later stage. A
system that can accurately detect errors in its intention recognition result would
provide improved discourse understanding because it could automatically correct
erroneous slot values or have the discourse understanding component inform the
dialogue manager that there may be errors in the slot values so that the dialogue
manager can preferentially confirm them to make users correct errors promptly.

Recently, confidence scoring, a technique to assign reliability scores to speech
recognition results, has been applied to detect errors in intention recognition re-
sults and has proved useful for dialogue management (Komatani and Kawahara,

10
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2000; Singh et al., 2002; Dohsaka et al., 2003). In confidence scoring, confidence
models are trained from data comprising various features. In current confidence
scoring of intention recognition results, only the features related to speech recog-
nition and speech understanding are used for the training of confidence models.
Considering that the intention recognition result is a result of discourse under-
standing, the current features may be insufficient and the incorporation of dis-

course information may be necessary.

1.4.3 High Cost of Hand-crafted Rules for Ranking Dia-
logue States

Spoken dialogue systems have to deal with ambiguities arising from multiple
speech recognition hypotheses as well as from natural language. Humans ap-
propriately use context to resolve such ambiguities. Although ambiguity can be
resolved by explicitly asking the user to disambiguate his/her utterances, there
are also cases where ambiguity of a user utterance can be resolved using the user’s
succeeding utterances.

For example, suppose a user says “from Tokyo” and then “to Osaka” in a train
ticket reservation domain. Here, suppose also that “from” in the first utterance
was inaudible because of noise and therefore not recognized by the system. In
this case, the first utterance becomes “Tokyo”, making this utterance ambiguous
because Tokyo could be the place of departure or the destination. This ambiguity
can be resolved if the system can just wait for the next utterance “to Osaka”,
which clearly indicates that the destination is Osaka. After this utterance, the
system can understand that Tokyo is the place of departure. Compared to explic-
itly asking users for disambiguation, this approach could realize a more natural
dialogue because of less system intervention.

Conventionally, such understanding has been achieved by allowing the system
to keep multiple dialogue states as possible interpretations (e.g., Tokyo as the
destination vs. Tokyo as the place of departure) and ranking them using hand-
crafted rules in order to decide the best interpretation after each user utterance.
However, such rules are costly to make and difficult to port across domains. In
addition, this cost can lead to possible inaccuracy. An automatic method for

11
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ranking dialogue states is therefore desired.

1.5 Overview of Our Approaches

1.5.1 Creating an Evaluation Measure for Discourse Un-

derstanding

Discourse understanding is a process of updating a dialogue state. Therefore, the
discourse understanding performance can be evaluated by looking at how accurate
the updated dialogue states are in comparison with their reference dialogue states
that can be annotated later. However, by changing the ways they are compared, a
variety of metrics can be considered as the evaluation measure candidates, which
make it difficult to choose the most suitable one. Since our aim is to improve
discourse understanding in order to improve the system’s total performance, it is
desirable that the improvement measured by any evaluation measure we might
find also means the improvement of the system’s total performance. For this
reason, we believe that the metric that correlates the most with the system’s
total performance is the most suitable metric.

In our approach, to find such a metric, we first enumerate possible discourse-
understanding-related metrics and obtain their correlation against the system’s
total performance through dialogue experiments using human subjects. We pro-
pose using the metric that has the highest correlation as the evaluation measure.

1.5.2 Incorporating Discourse Features into Confidence

Scoring of Intention Recognition Results

We train confidence models to estimate the confidence of slot values in the inten-
tion recognition result. For a slot value to be correct, the speech recognition and
speech understanding results that derived that slot value should be reliable. In
addition, the slot value should be contextually adequate. For example, if a slot
value has been previously denied or modified by the user, that value is likely to
be wrong. On the contrary, if a slot value stays the same over multiple turns,
that value is likely to be correct. Such information should be incorporated in the

12
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confidence model training.

In our approach, we introduce a number of discourse-related features (called
discourse features) that characterize the contextual adequacy of slot values in
terms of Grice’s mazims of cooperativeness (Grice, 1975). Grice’s maxims are
regarded as norms that should be followed in a collaborative dialogue.

By observing how a slot value violates or conforms to the maxims, it may
be possible to represent the contextual adequacy of that slot value. We use the
discourse features together with the features obtained from speech recognition
results to train confidence models that can accurately classify slot values as correct
or incorrect based on both the context and the speech recognition and speech

understanding results.

1.5.3 Ranking Multiple Dialogue States by Corpus Statis-
tics

In a dialogue, a dialogue state is updated by a sequence of dialogue acts by the
user and system. Therefore, we can hypothesize that a dialogue state that has
seen the most likely sequence of dialogue acts and updates is the most probable
dialogue state. If we know how likely dialogue acts and dialogue states succeed one
another, we can utilize such information to automatically rank dialogue states,
disambiguating among possible interpretations to choose the best interpretation
at each point in a dialogue.

To derive such information, we make use of a dialogue corpus annotated with
reference dialogue acts and dialogue states. We derive two kinds of statistical
information from the corpus: (1) the N-gram probability of a dialogue act type
sequence and (2) the occurrence probability of a dialogue state update pattern.
We use these two probabilities to score dialogue states for their automatic ranking,
reducing the cost currently needed for hand-crafted rules.

1.6 Thesis Outline

This thesis comprises five chapters. Chapters 2, 3, and 4 respectively describe
our approaches for creating an evaluation measure for discourse understanding

13
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in spoken dialogue systems, for incorporating discourse features into confidence
scoring of intention recognition results, and for ranking multiple dialogue states by
corpus statistics to resolve the ambiguity in user intentions arising from multiple
speech recognition hypotheses and speech understanding. Chapter 5 concludes

this thesis and mentions future work.

14



CHAPTER 2
Creating an Evaluation Measure for

Discourse Understanding

2.1 Introduction

Unlike simple speech understanding systems that understand a single user ut-
terance and respond to it without taking context into account, spoken dialogue
systems need to deal with multiple exchanges of utterances in the context of di-
alogues. This process is achieved by updating a dialogue state each time a user
utterance is made. A dialogue state is a collection of bits of information that
the system internally stores. Included in that information are the understanding
result of the user utterances up to a certain point of time as well as grounding
information, the user utterance history, and the system utterance history.

There is no well-established measure for evaluating discourse understanding.
As a result, it has been evaluated only on the basis of the system’s total perfor-
mance, such as task completion rate, task completion time and user satisfaction
estimated by questionnaires. However, such evaluations are greatly influenced
by the task domains and dialogue strategies that the systems employ. This fact
makes it difficult to compare various systems’ discourse understanding. A mea-
sure that appropriately evaluates specifically discourse understanding capability
would be useful for further improvement of discourse understanding components.

In evaluating single utterance understanding, which does not include discourse
understanding, the concept error rate (CER) or the keyword error rate (KER) has
been widely used as an evaluation measure (Glass et al., 2000). Using the CER

15
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of discourse understanding results is one possibility. However, it may not be
appropriate for the evaluation of discourse understanding, because it is unclear
whether the CER correlates closely with the system’s performance. A measure
should have high correlation with what it is measuring. Since we seek to maximize
the system’s performance by improving the discourse understanding capability,
the measure has to have high correlation with the system’s total performance.

Our aim is to find such a measure.

As our approach, we enumerate possible discourse-understanding-related met-
rics and obtain their correlation against the system performance through dialogue
experiments using human subjects. The experiments have to be performed in
several task domains utilizing various strategies to create a measure that can
commonly be used across different systems. We can use the metric that has the
highest correlation as the evaluation measure. It is also possible that the com-
bination of some metrics will lead to a higher correlation. For such cases, we
apply regression methods to create a single measure using the metric candidates.
The methodology used here is similar to the one used in PARADISE (Walker
et al., 1997) in that the impacts of various features of dialogues are assesed based
on their correlation with the system’s total performance. Instead of assorted fea-
tures of dialogues, we focus specifically on discourse-related features and use their
correlation to find appropriate evaluation measures for discourse understanding.

Section 2.2 explains the need for an evaluation measure for discourse under-
standing. In Section 2.3, using an example dialogue, we describe why conventional
metrics, such as CER, cannot be used for the evaluation. In Section 2.4, our ap-
proach and various metrics concerning discourse understanding are described in
detail. Then, in Section 2.5, we describe the dialogue experiments we performed
to collect dialogue data using our dialogue systems. In Section 2.6, we show the
correlation between each metric and the system performance and describe our
attempt to create better measures using regression methods followed by detailed
analysis of the obtained models. This chapter concludes with a short summary
and some recommendations.
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2.2 The Need for an Evaluation Measure in Dis-

course Understanding

A qualitative measure for evaluating each component in spoken dialogue systems
would be useful for improving components. Speech recognition and language
understanding modules have been evaluated using the word error rate (WER) and
the CER or KER, respectively. Although they may not be the best evaluation
measures for those components, they are intuitively reasonable and widely used
among researchers and developers. Thanks to these measures, we can compare the
speech recognition and language understanding components of various systems
dealing with various tasks and strategies.

However, no well-established measure for discourse understanding exists, which
makes it necessary to evaluate discourse understanding on the basis of the sys-
tem’s total performance, such as task completion rate, task completion time, and
user satisfaction. Since the system’s total performance varies depending on the
system’s task domains and dialogue strategies, when we compare several different
discourse understanding components, task domains and dialogue strategies have
to be fixed. Experiments have to be redone whenever the settings are changed,
which makes the evaluation cost high.

A measure that can appropriately and specifically evaluate the discourse un-
derstanding capability would be useful for reducing the cost of dialogue experi-
ments and making clear the performance of discourse understanding of various
systems. Therefore, there is a strong need for an evaluation measure for discourse

understanding.

2.3 Problem

What is an appropriate measure for discourse understanding? One candidate is
the CER of a system’s frames. However, this measure may not be suitable because
its degree of correlation with system performance is uncertain. Since we seek to
maximize the system’s performance by improving discourse understanding, the
measure should correlate highly with the system’s total performance. There may
be other measures that have higher correlation, and the straightforward use of
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Reference Frame System’s Frame User and System
Sequence Sequence Utterances
R1] place -- H1| place -- S1: May | help you?
date -- date - U1: Tell me the weather
info - info - for tomorrow
1 ! (To_morrow was
R2 [ place _ H2 [ place . misrecognized as today)
date | tomorrow date | today $2: What area?
info | weather info | weather U2: Tokyo
! 3
R3| place | Tokyo H3| place | Tokyo S3: Today's weather
date |tomorrow date | today in Tokyo?
info | weather info | weather U3: No, tomorrow
| !
R4 | place | Tokyo H4 | place | Tokyo S4: OK...
date |tomorrow date |tomorrow
inffo | weather info | weather

Figure 2.1: An example of frame updates with corresponding reference frames.
(R and H mean a reference frame and a hypothesis frame respectively.)

the CER may lead to inappropriate evaluation.

Figure 2.1 shows an illustrative example of the problem. We call a system’s
frame a hypothesis frame and the correct frame that can be annotated later a
reference frame. As a reference frame, we use the ideal discourse understanding
result that takes all previous system and user utterances into account instead of
using a frame that can be reached from the previous hypothesis frame and the
succeeding user utterance.

In the example, part of the user’s second utterance “tomorrow” is misrecog-
nized as “today”, and the system updated the initial frame (H1) to an incorrect
frame (H2). Even after the user’s next utterance “Tokyo”, the wrong value “to-
day” is still in the date slot (H3). This misunderstood item is later corrected
by the user, who notices the error in the frame because of the incorrect system
confirmation and corrects the value (H4). R1 to R4 show the references for the
corresponding hypothesis frames.

We want to evaluate the system’s frame sequence, which results from discourse

18
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understanding. For systems that do not handle previous utterances, the CER is
suitable for evaluating utterance understanding because the situation is similar
to evaluating a single utterance understanding. However, when we take previous
frames into account, the suitability of the CER becomes unclear. For example,
there are cases where the resulting frame is wrong, but it may have been updated
correctly in part.

Consider three metrics: the slot error rate, the update precision, and the
CER. The slot error rate is the rate of wrong values in a frame. The update
precision shows the ratio of incorrect slots within updated slots. The CER is
the ratio of incorrect slots over the number of filled slots. Our definition of the
CER may seem different from the one commonly used. However, since we focus
on the discourse understanding result (a frame) instead of attribute-value pairs
contained in previous user utterances, the number of substituted slots, deleted
slots, and inserted slots over the number of filled slots can be considered to match
the definition of the CER. They are derived as shown below.

1. Slot error rate )
# of incorrect slots

# of slots

2. Update precision
# of correctly updated slots

# of updated slots

3. CER )
# of incorrect slots

# of filled slots

The value of each metric is calculated for each pair of hypothesis and reference
frames. In the example (Fig. 2.1), the average slot error rate for the hypothesis
frames is (1/3+1/3+0/3)/3 = 0.22, the update precision is (1/2+1/1+1/1)/3 =
0.83, and the CER is (1/2 + 1/3 + 0/3)/3 = 0.28. These values encode the
discourse understanding in some way. The slot error rate seems a reasonable
measure, because a frame is the final result from the discourse understanding
component and forms the basis for the next system utterance. However, notice
that the slot that has an erroneous value “today” is inherited and counted as an

error twice. The update precision, on the other hand, focuses only on the updated
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slots, avoiding the shortcomings of the slot error rate, but the entire frame is not
taken into consideration. The CER is only different from the slot error rate in
that it focuses on the filled slots; it has the same double counting problem.
Currently, it is not clear whether the evaluation should focus on the frames
themselves or the way they are updated in a dialogue, which makes it difficult to
decide the most reasonable metric. Moreover, there may be other metrics that

are more appropriate for the evaluation.

2.4 Approach

As our approach, we enumerate possible metrics concerning frame sequences and
choose those that have good correlation with the system’s performance as eval-
uation measures. We also combine the enumerated metrics to create a single
measure by regression methods. It is likely that such a combined measure will
have higher correlation by taking many aspects of frame values and updates into
account.

Then, we perform dialogue experiments using human subjects and obtain both
the value of each metric and the total performance of a dialogue. After collecting
sufficient dialogue data, we calculate the correlation between the value of each
metric and the total performance of dialogues. We treat the metric that has
the highest correlation as the appropriate evaluation measure. In addition, by
combining the metric values, we create a single measure by regression methods
using all the values of metric candidates as explaining variables and the total
performance as the explained variable.

To find a measure that is commonly applicable independent of task domains
and dialogue strategies, dialogue experiments have to be performed using different
task domains and different dialogue strategies.

2.4.1 Metric Candidates

Besides the slot error rate, update precision, and the CER, we came up with
additional metrics that can be categorized into five groups depending on the
viewpoints. They are all calculable by comparing hypothesis frames and reference
frames. We consider it necessary that the evaluation can be achieved by simple
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calculation, such as by comparing the hypothesis frame with the reference frame,
so that it can be easily applied to various systems by developers and researchers
in the field. The value of each metric in a dialogue is represented by the average
value.

1. Metrics concerning slot values: Metrics comparing the values of every
slot of a hypothesis frame with that of a reference frame. The slot error
rate is one of them. And slot accuracy, insertion error rate, deletion error

rate, and substitution error rate also are considered.

2. Metrics concerning updated slot values: Metrics comparing the values
of only the updated slots. With these metrics, we can avoid the double
counting of inherited errors in slots. Update precision is one of them. The
calculation is performed in two ways. One concerns the correctness of up-
dated slots in a hypothesis frame, the other the correctness of those in the
reference frame. For example, update precision is the ratio of correctly
updated slots in the updated slots, whereas update recall is the ratio of
correctly updated slots over the slots that should be updated.

3. Metrics concerning filled slot values: Sometimes the aim of a task is
not to fill every slot but to fill some of them. To reflect such cases, we pro-
pose metrics that focus only on the filled slots. These metrics are calculated
for a hypothesis frame and a reference frame.

4. CER: The same as the conventional CER. It expresses the correctness of
filled slots. The difference from the metrics concerning the filled slots is
that this metric includes the insertion error. This metric is also calculated

for a hypothesis frame and a reference frame.

5. A metric concerning a frame sequence: If the user intention is exactly
recognized by the system, dialogue management is likely to work effectively,
leading to improvement of total performance. Therefore, we propose a frame
match rate, which is the rate that the hypothesis frame is exactly the same

as the reference frame in all frames in a dialogue.
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Hypothesis Frame Reference Frame
place | Tokyo *—‘:"C-?-c;;;f-:-ti!-/-;i-lle_c_i_} place | Tokyo
date | today [ Substituton | date |tomorrow
info — | Deletion | info | weather
Hypothesis Frame Reference Frame
place Kyoto ~—-:"§t-1bstitutionj place | Tokyo
date today *——L Insertion date —

info - F{_Qgrrectly_}{gge}ﬁt_-} info --

Figure 2.2: Labeling the slot values of a hypothesis frame.

Table 2.1: Labels given to each slot of a hypothesis frame.

Correctly Vacant Ref = Hyp and Ref = Null
Correctly Filled Ref = Hyp and Ref # Null

Insertion Ref = Null and Hyp # Null
Deletion Ref # Null and Hyp = Null
Substitution Ref # Hyp and Ref # Null and Hyp # Null

2.4.2 Labeling

Here, we describe the procedure for deriving the values of metric candidates
explained in the previous section. First, we label each slot of the hypothesis
frame by comparing the corresponding slot in the reference frame. The reference
frame has to be hand-crafted in advance.

The comparison is performed in two ways. One is a simple comparison of each
value of the slots performed to see if the values are the same or different or if the
slots have values at all. From this comparison, each slot of a hypothesis frame is
given one of five labels (Fig. 2.2). Table 2.1 shows the labeling scheme. In the
table, values of a certain slot of a hypothesis frame, a reference frame, and the
previous frame are written as Hyp, Ref, and Prev, respectively. If a slot does
not have a value, it is denoted as Null.
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Previous Hypothesis Frame

place --

date -

info -
place | Tokyo . Correct Update | place | Tokyo
date | today [ Update Substitution {| date | tomorrow
info -- f—| Correctl;_(_[_f_fitj info --
Hypothesis Frame Reference Frame

Previous Hypothesis Frame

place | Tokyo

date today

info --
place | Tokyo [« Correctly Left | place | Tokyo
date today [+ Update Deletion date |tomorrow
info | weather [ Update Insertion ! info -
Hypothesis Frame Reference Frame

Figure 2.3: Labeling the update of a hypothesis frame.
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Table 2.2: Labels given to the update of each slot of a hypothesis frame.

Correctly Left Prev = Ref and Prev = Hyp and Ref = Hyp
Correct Update Prev # Ref and Prev # Hyp and Ref = Hyp
Update Insertion Prev = Ref and Prev # Hyp
Update Deletion Prev # Ref and Prev = Hyp
Update Substitution Prev # Ref and Prev # Hyp and Ref # Hyp

The other comparison is performed for changes from the previous hypothesis
frame; “the difference between the previous hypothesis frame and the current hy-
pothesis frame” is compared with “the difference between the previous hypothesis
frame and the reference frame”. From this comparison, one of five labels is as-
signed to each slot of a hypothesis frame (Fig. 2.3). Table 2.2 shows the labeling

scheme.

2.4.3 List of Metric Candidates

From the ten labels, we derive the values of metric candidates. The derivation
formulae are presented below, where CV, CF, I, D, S, CU, CL, Ul, UD, and US
represent the number of slots labeled Correctly Vacant, Correctly Filled, Inser-
tion, Deletion, Substitution, Correct Update, Correctly Left, Update Insertion,
Update Deletion, and Update Substitution respectively. There are 26 metric
candidates in all.

Metrics concerning slot values: 4. Substitution error rate
1. Slot accuracy
Cv+CF CV +CF . I+ D
CV+CF+I+D+8 +CF+I+D+35
2. Insertion error rate
I
CV+CF+I+D+3S 5. Slot error rate
3. Deletion error rate
D I+D+ S8
CViOF+I+D+S CV+CF+I1+D+S8
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2.4. Approach

Metrics concerning updated slot
values in a hypothesis frame:

6. Update precision

cU
CU+US+UI

7. Correctly remaining rate in hy-

pothesis

CL
CL+UD

8. Update insertion error rate in hy-
pothesis

Ul
CU+US+UI

9. Update deletion error rate in hy-
pothesis

UD
CL+UD

10. Update substitution error rate in

hypothesis

UsS
CU+US+UI

Metrics concerning updated slot

values in a reference frame:

11. Update recall

cU
CU+US+UD

12. Correctly remaining rate in refer-

ence
CL

CL+UI

13. Update insertion error rate in ref-
erence
Ul
CL+UI
14. Update deletion error rate in ref-
erence
UD
CU+US+UD
15. Update substitution error rate in
reference
Us
CU+US+UD

Metrics concerning filled slot val-
ues in a hypothesis frame:

16. Slot accuracy for filled slots in hy-

pothesis

CF
CF+I1+S

17. Insertion error rate for filled slots

in hypothesis

I
CF+1+S

18. Substitution error rate for filled

slots in hypothesis

5
CF+1+8

19. Slot error rate for filled slots in

hypothesis

I+S
CF+1I+S
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Metrics concerning filled slot val- CER:

ues in a reference frame:
24. CER for a hypothesis frame

20. Slot accuracy for filled slots in ref-
erence I+D+S
cF CF+1+S
CF+D+S

21. Deletion error rate for filled slots 95. CER for a reference frame

in reference
D I+D+8
CF+D+ S8 CF+D+S
22. Substitution error rate for filled

slots in reference A metric concerning a frame se-

—Cﬁ quence:
23. Slot error rate for filled slots in  26. Frame match rate
reference :
D+ S # of exactly correct frames
CF+D+8 # of frames

2.4.4 Performance Measure

System performance has been evaluated in many ways, but it is not certain what
really is a valid system performance measure. We chose task completion time

and user satisfaction, whose values are commonly used for system evaluations.

In this research, the aim of a dialogue is to complete a task. Efficiently com-
pleting a task is an important factor in improving system performance. Therefore,
we employ task completion time to represent the performance of a dialogue. We
also employ user satisfaction as determined by questionnaires, a method used by
many researchers, such as (Walker et al., 2000). Although there is always contro-
versy concerning the validity of questionnaires to estimate user satisfaction, no
alternatives have been proposed.
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2.5 Data Collection

2.5.1 Systems

We created three systems to perform the dialogue experiments for data collection.
One is in a weather information service domain (WI), and the other two are in
a meeting room reservation domain (MR-1, MR-2).

WI provides Japan-wide weather information. Users specify a prefecture
name, a city name, a date, and an information type (general weather, tempera-
ture, and precipitation) to obtain the desired information. The system has four
slots for understanding. It has a speech recognition vocabulary of 853. The lan-
guage model is a trigram trained from the randomly generated texts of acceptable
phrases.

MR-1 and MR-2 provide meeting room reservation service. Users specify a
date, a room, and start and end times for the reservation. The systems has four
slots for understanding. Both have a speech recognition vocabulary of 243. The
language model is a trigram trained from the transcription obtained in advance
using the same system. The difference between MR-1 and MR-2 lies in their
discourse understanding components. Both systems create multiple dialogue state
candidates ordered by priority after each user utterance and choose the highest
ranked one as the best dialogue state. When deciding the best dialogue state,
MR-1 preserves lower ranked dialogue states, whereas MR-2 discards them totally
(See (Higashinaka et al., 2003b) for details).

All three systems were developed using the spoken dialogue system toolkit
WIT (Nakano et al., 2000). Their speech recognition engine is Julius (Lee et al.,
2001) used with its attached acoustic model, and the speech synthesis engine is
FinalFluet (Takano et al., 2001). Each system has two switchable dialogue strate-
gies. One is to keep accepting user utterances until it has enough information to
fulfill a task or the user explicitly requests a system response. The other is to

confirm each user utterance.
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2.5.2 Experiment

Using the three systems, we collected dialogue data for analysis. The dialogue

data were collected using naive users in acoustically insulated booths.

Twelve subjects used WI. Each subject was given a task sheet listing what
should be requested. They were instructed to complete the tasks one by one.
We prepared eight task patterns. Together with the two dialogue strategies, each
subject performed 16 dialogues, for a total 192 dialogues collected. Twenty-eight
subjects used MR-1 and MR-2. Using four task patterns, two dialogue strategies,
and two systems, each performed 16 dialogues, and 448 dialogues were collected.

After completing each dialogue, each subject was asked to fill out a question-
naire; the same one used in (Walker et al., 2000). The questionnaire is composed
of nine questions concerning text to speech (TTS) performance, automatic speech
recognition (ASR) performance, task ease, interaction pace, user expertise, sys-
tem response, expected behavior, comparable interface, and future use and is on
a 1-to-7 Likert scale.

We recorded system utterances, start and end times of user utterances, and
dialogue states before and after the user utterance. The user’s voice and system’s
voice were also recorded, and all user utterances were transcribed. Dialogues
in which it took more than three minutes to complete the task were treated as
failures. Task completion rates for WI, MR-1 and MR-2 were 95.8% (185/192),
91.1% (204/224), and 88.4% (198,/224), respectively. The word error rates (WER)
for WR and MR-1+MR-2 were 30.01% and 33.92%, respectively.

We hand-annotated reference frames. To avoid a large hand-labeling effort,
we prepared an annotating tool that processes transcriptions to generate pre-
reference frames, which were later corrected by human labellers. The correction
took several hours for our dialogue data. Then, using the labeling scheme, we
labeled each slot of the corresponding hypothesis frame and obtained all 26 values
of the metrics for each dialogue. Task completion times were normalized using
task patterns and dialogue strategies because task completion time can be greatly
influenced by them. We used the total score of the questionnaire to represent user

satisfaction.
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2.6 Data Analysis

2.6.1 Correlations of the Metric Candidates

Table 2.3 shows the correlation coefficients of the 26 metrics against task com-
pletion time and user satisfaction. These are the results obtained when we used
all the data: WI, MR-1, and MR-2. (Hereafter, we use WI + MR-1 + MR-2 to
express the combined data of the systems.) For analysis, we used only successful
dialogues for which task completion times and user satisfaction data were avail-
able. In WI + MR-1 4+ MR-2, there were 584 samples for task completion time
after removing three 3-¢ outliers, and 587 samples for user satisfaction.

The update recall has relatively high correlation with a correlation coefficient
-0.647 followed by -0.607 of frame match rate and -0.579 of update precision. The
tendency is similar for user satisfaction, although the correlation coefficients are
basically lower. By simple linear regression analysis with ten-fold cross validation,
we found that update precision, update recall, and frame match rate explain
32.8%, 41.32%, and 36.31% of task completion time and 11.89%, 18.81% and
15.73% of user satisfaction respectively.

As a result, we can say that the update recall, frame match rate, and update
precision are strong candidates for evaluation measures, especially the update

recall.

2.6.2 Obtained Regression Models

We used two regression methods to create a single evaluation measure: multiple
linear regression (MLR) and support vector regression (SVR). For the MLR, the
mb’ method (Yong Wang and Ian H. Witten, 1997; Witten and Frank, 1999) was
used for attribute selection instead of the greedy method. SVR is an optimization-
based approach for solving machine learning regression problems based on support
vector machines (Vapnik, 1995; Smola and Scholkopf, 1998; Chang and Lin, 2001).
We used a polynomial kernel expressed as

K(x,y)= (x-y+1)% where d =2 (2.1)
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Table 2.3: Correlation coeflicients (R) of the 26 metrics against task completion

time and user satisfaction.

Task completion time User satisfaction

D DN DN DN N DN DD e e e e e e e e e
ST WO N - O © 0~ O U WwNn - O

© 0N o W

Slot accuracy
Insertion error rate
Deletion error rate
Substitution error rate
Slot error rate

Update precision

Correctly remaining rate in hypothesis
Update insertion error rate in hypothesis
Update deletion error rate in hypothesis
Update substitution error rate in hypothesis
. Update recall
. Correctly remaining rate in reference

. Update insertion error rate in reference
. Update deletion error rate in reference

. Slot error rate for filled slots in reference
. CER for a hypothesis frame

. CER for a reference frame

. Frame match rate

. Update substitution error rate in reference
. Slot accuracy for filled slots in hypothesis
. Insertion error rate for filled slots in hypothesis

. Substitution error rate for filled slots in hypothesis
. Slot error rate for filled slots in hypothesis
. Slot accuracy for filled slots in reference

. Deletion error rate for filled slots in reference

. Substitution error rate for filled slots in reference

-0.554
0.117
0.318
0.450
0.554

-0.579

-0.437
0.326
0.437
0.451

-0.647

-0.182
0.572
0.182
0.386

-0.458
0.127
0.441
0.458

-0.542
0.308
0.452
0.542
0.430
0.404

-0.607

0.336
-0.004
-0.210
-0.294
-0.336
0.358

0.309
-0.179
-0.309
-0.296
0.441

0.099
-0.397
-0.099
-0.247

0.237
-0.007
-0.271
-0.237

0.330
-0.199
-0.263
-0.330
-0.247
-0.214
0.406

30



2.6. Data Analysis

We created regression models for each regression method using task completion
time normalized by the task pattern and the dialogue strategy, and user satisfaction
as the explained variables and the 26 metrics as explaining variables.

Table 2.4 shows squared correlation coefficients (R?) and the root mean square
error (RMSE) for the two regression methods. These are the results of ten-fold
cross validation. When task completion time is the explained variable, most of the
obtained regression models fit comparatively well and show validity as evaluation
measures. For user satisfaction, the fit is not as good. The performance of SVR
is similar to that of MLR.

One may notice that the regression models for MR-1+MR-2 perform better on
both task completion time and user satisfaction than for WI. This is because, in
WI, for certain city names, repeated misrecognition happened, which caused the
system to have slots that have been substituted in the same dialogue a number
of times. Since the metric values are represented by their average values in a
dialogue, there are often cases where the ratio of substitution error is the same,
but the number of times the error occured is not. In such cases, it is difficult for
regression models to achieve high correlation. As evidence, when we examined
the indivisual correlation of each metric with system performance for WI and
MR-1+MR-2, we found that the slot substitution error rate accounts for 11.3%
of user satisfaction for MR-1+MR-2, whereas it accounts for only 0.19% of user
satisfaction for WL

Figure 2.4 shows the distribution of actual and predicted task completion
times for the acquired model using WI + MR-1 + MR-2. The grouping of data,
which appears as a horizontal line just above -1.0 in the vertical axis, means that
dialogues with different actual task completion times were forcefully mapped to
the same task completion times by the regression model since they have identical
discourse understanding characteristics. This is attributable to possible differ-
ences in the duration of user pauses and speech intervals among the subjects and
the limitations of using the average values of the metrics in a dialogue as the

discourse features.

In the case of WI + MR-1 + MR-2, the obtained regression models explain
44 % of the task completion time, and 19.5 % of user satisfaction. In comparison
with the case of a single metric, the regression methods provide a slightly better
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Table 2.4: Squared correlation coefficients (R?) and the root mean square error
(RMSE) (in brackets) for multiple linear regression (MLR) and support vector
regression (SVR).

Task completion time User satisfaction
MLR SVR MLR SVR
WI 0.444 (0.718) 0.318 (0.809) 0.125 (1.514) 0.172 (1.470)
MR-1 0.409 (0.704) 0.445 (0.688) 0.158 (1.220) 0.212 (1.168)
MR-2 0.510 (0.690) 0.506 (0.708) 0.247 (1.114) 0.255 (1.105)
MR-1 + MR-2 0.474 (0.684) 0.483 (0.690) 0.198 (1.167) 0.245 (1.128)
WI + MR-1 + MR-2 0.429 (0.717) 0.440 (0.724) 0.180 (1.284) 0.195 (1.275)

prediction of system performance.

2.6.3 Commonality in Regression Models

To check whether a regression model trained from the data of one domain/system
has commonality with that of another, we calculated R? and RMSE for every
combination of models. Table 2.5 shows the results for the SVR models with
task completion time as the explained variable. Most of the R? values are around
0.4, suggesting that the model of one domain can be safely applied to that of the
other. Since the performance of the model trained from WI + MR-1 + MR-2
shows sufficient performance against other models, this model can be used as a
reasonable discourse evaluation measure. For this reason, hereafter, we only deal
with models trained from WI + MR-1 + MR-2.

Table 2.6 shows the results for SVR models when user satisfaction is used as
the explained variable. The tendency is similar for the MLR models.

2.6.4 Important Factor Analysis of Regression Models

Analyzing the obtained SVR models allows us to list up the possible major met-
rics for the prediction of the explained variables (Hirao et al., 2002). First, the
objective function of SVR is defined as
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Figure 2.4: Distribution of actual and predicted task completion times by the
support vector regression (SVR) model trained from WI + MR-1 + MR-2.

Table 2.5: Commonality between the trained support vector regression (SVR)
models for task completion time. (Squared correlation coefficients (R?) and the
root mean square error (RMSE) in brackets.)

WI

- Test data o MR-1 MR-2 MR-l + MR-2 MB-1 + MR-2
Training data

Wi - 0.268 (0.794) 0.360 (0.792) 0.320 (0.793) 0.387 (0.749)
MR-1 0.342 (1.050) - 0.368 (0.812) 0.436 (0.718) 0.366 (0.837)
MR-2 0.084 (1.349) 0.350 (0.789) — 0.474 (0.702) 0.257 (0.956)
MR-1 + MR-2 0.262 (0.999) 0.504 (0.636) 0.568 (0.647) - 0.391 (0.773)
WI + MR-1 + MR-2 0.495 (0.681) 0.487 (0.648) 0.523 (0.678) 0.503 (0.663) -
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Table 2.6: Commonality between the trained support vector regression (SVR)

models for user satisfaction. (Squared correlation coefficients (R?) and the root

mean square error (RMSE) in brackets.)

WI

= Test data o MR-1 MR-2 MR- 4 MR-2 MR-14 MR-2
Training data
WI — 0.183 (2.407) 0.177 (2.438) 0.185 (2.414) 0.211 (2.122)
MR-1 0.245 (2.502) - 0.247 (1.320) 0.249 (1.309) 0.254 (1.395)
MR-2 0.247 (2.347) 0.262 (1.202) - 0.277 (1.176) 0.283 (1.236)
MR-1+MR-2 0.246 (2.426) 0.253 (1.258) 0.262 (1.250) - 0.267 (1.317)
WI+MR-1+MR-2  0.193 (2.299) 0.187 (1.649) 0.195 (1.625) 0.199 (1.612) -
flx) = Z o K (x;,x)+b

1%, ESVs

i;X,ESVs

w - 9(x)

where SV's is the set of support vectors,
new feature vectors x mapped in the new

Y aid(xi) - b(x) +b

+b (2.2)

and ¢(x) an explicit representation of
feature space by the kernel. In the case

of the 26 dimensions (features) in our original space and using a second-degree

polynomial kernel, the dimensions of the
is written as
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where z;; - - - Z;06 are the values of the 26 metrics of the ith support vector. By

gathering up the weighting factors by the metrics and by the combination of the

metrics, we obtain the following weights:
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Table 2.7: Five dominating weighting factors for the prediction of task completion

time.
1. W/{(Update precision) -0.154
2. W(Update recall) -0.108
3. W(Update precision, Update recall) -0.092
4. W/{(Deletion error rate for updated slots in.reference) 0.084
5. W{(Update precision,Slot accuracy for filled slots in reference) -0.080

I

W(z1)

Z aix?1+\/§ Z Q41

%, ESVs 1;%;ESV's

Wizy) = Z e + V2 Z Q4 Ti26

;x;€ESVs 1;%;€SV's

W(z1,z9) = V2 Z 04Ti1T42

i;%;,€ESVs

W (225, 226) = V2 Z Q;Ti25%i26
ix;€SV's

We calculated all 351 weights (26Cs + 26) from the obtained models. Tables
2.7 and 2.8 show the five dominant metrics or combinations of metrics for each
model with their weights. The higher the weights are, the more significant the
metrics or the combinations of metrics become. From the tables, one can see that
the update precision plays a key role in the prediction of task completion time,
and the update recall is the most important factor for improving user satisfaction.
The frame match rate is also important for user satisfaction.

2.7 Summary

This chapter presented a method for creating an evaluation measure for discourse
understanding in spoken dialogue systems. We enumerated metric candidates
for the evaluation of discourse understanding and calculated their correlation
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* Table 2.8: Five dominating weighting factors for the prediction of user satisfac-

tion.
1. W({(Update recall) 0.144
2. W/{(Update recall, Frame match rate) 0.101
3. W{(Update precision, Update recall) 0.101
4. W {(Frame match rate) 0.100
5. W(Correctly remaining rate in hypothesis, Update recall) 0.086

with the system’s performance through dialogue experiments. We also created a
single evaluation measure combining the metrics by regression methods to create
a better measure. We found that update recall, frame match rate, and update
precision had relatively good correlation with system performance, suggesting
they are appropriate as evaluation measures. Above all, update recall can explain
41.3 % of the task completion time, and 18.8 % of user satisfaction. The use of the
multiple linear regression (MLR) and support vector regression (SVR) methods
revealed that the weighted sum of the metric values can create a measure that
performs slightly better than a single metric. With the obtained regression model,
44 % of the task completion time and 19.5 % of user satisfaction can be explained.
An analysis of the obtained SVR models also revealed that the update recall,
update precision, and frame match rate play important roles in improving system
performance.

Overall, we found that user satisfaction is more difficult to predict than task
completion time. This can be attributable to the fact that we are dealing with
task-oriented dialogues and that there exists a large variety of questionnaire re-
sults among subjects.

To conclude, we suggest using the update recall as an evaluation measure
for discourse understanding in spoken dialogue systems. Update precision can
also be used to support the evaluation. Considering that it is now common
practice to combine the precision and recall metrics into an overall F-measure
(harmonic mean) and that the two metrics are strong candidates for evaluation
measures, the use of the F-measure can also be considered. In fact, we found
that the F-measure has a higher correlation than the update precision and the
update recall alone and explains 43.4% of the task completion time. Therefore, in
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2.7. Summary

cases where the two metrics are available, we recommend the F-measure be used.
We do not encourage the use of the obtained regression models as evaluation
measures because they only offer a slight improvement and because we believe
that the measure should be as simple as possible. With the measure, we can
safely compare discourse understanding components of various spoken dialogue
systems that deal with different task domains and dialogue strategies.

37






CHAPTER 3
Incorporating Discourse Features into
Confidence Scoring of Intention

Recognition Results

3.1 Introduction

For a spoken dialogue system to achieve certain tasks while conversing with users,
the system has to correctly recognize user intentions. Here, we use the term user
intention to express the information that the user has in mind and has to convey
to the system in order to achieve his/her goal, such as extracting some particular
information from the system.

Since users do not always convey their intentions in one utterance and speech
recognition errors might occur, the system and the user normally have to exchange
several utterances before the system finally recognizes the user’s true intention.
In such interactive intention recognition, after each user utterance, the system
updates the intention recognition result, based on which the system performs di-
alogue management; namely, it decides what response it should make. Recently,
confidence scoring, a technique for assigning reliability scores to speech recog-
nition results, has been applied to detect errors in intention recognition results
and has proved useful for dialogue management (Komatani and Kawahara, 2000;
Singh et al., 2002; Dohsaka et al., 2003). If the detection is successful, the system
can safely avoid unnecessary confirmations for reliable slots and ask questions
about unreliable or unfilled ones preferentially.
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In current confidence scoring for intention recognition results, since words/co-
ncepts in user utterances fill the slots, the confidence of words/concepts, which
is typically calculated using various features obtained from speech recognition
results and speech understanding results for single utterances, is used for the
confidence of slot values.

However, this may be inappropriate because slot values are the results of dis-
course understanding, not the results of single utterance understanding. Consider
a case where a slot is filled with a value that has once been denied or corrected
by the user in a dialogue. The confidence of that value is likely to be lower than

can be calculated for the word/concept in the utterance.

This chapter addresses this problem and proposes incorporating discourse
features into the confidence scoring of intention recognition results. In our ap-
proach, we introduce a number of discourse-related features (called discourse fea-
tures) that characterize the contextual adequacy of slot values in terms of Grice’s
maxims of cooperativeness, and use them together along with the features ob-
tained from speech recognition results to train confidence models that classify slot
values as correct or incorrect based on both the context and the speech recogni-
tion/understanding results. Since the features are only available for filled slots,
we only deal with slots that have values.

Although this work does not aim at improving discourse understanding of
spoken dialogue systems directly, we are hoping to obtain useful ideas for im-
proving our speech understanding component through the process of confidence
model training and the analysis of confidence models.

In the next section, we briefly outline the intention recognition process in
spoken dialogue systems. In Section 3.3, we explain the need for the confidence
scoring of intention recognition results. In Section 3.4, we introduce conventional
methods and follow that with a detailed description of our proposed method and
the discourse features in Section 3.5. In Section 3.6, we describe the experiments
performed to verify the proposed method. In the last section, we summarize the
chapter and mention future work.
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3.2 Intention Recognition in Spoken Dialogue

Systems

As described in Section 1.3, the intention recognition results are represented sim-
ply by frame expressions that consist of slot-value pairs (Bobrow et al., 1977,
Goddeau et al., 1996). Intention recognition is performed by the discourse un-
derstanding component of a system by updating the slot values using speech
recognition/understanding results.

In this work, we also assume that words in speech recognition hypotheses or
concepts in language understanding results fill the slots, since filling slots with rel-
evant words/concepts can be considered the most basic way of understanding user
utterances and is the practice in many practical applications. Another assump-
tion we have is that the system responses are generated using words/concepts in
the slots.

To formulate, we model the interaction between the user and the system
as follows: (1) The user sends words/concepts or sometimes commands to the
system to change the slots. Here, commands represent user utterances that do
not contain words/concepts, such as acknowledgments and denials. They have
certain effects on the slots, such as the deletion of slot values. (2) The system
responds to the user using the words/concepts stored in the slots. Then (1) and
(2) are repeated until the user is satisfied with the system response. We believe
that this model is general enough to encapsulate most of the task-oriented spoken
dialogue systems in use today.

Figure 3.1 shows how the intention recognition result is updated in the course
of a dialogue in a weather information system. In the example, “tomorrow” was
misrecognized as “today” by the speech recognizer (Ul), causing the system to
have an incorrect value for the date slot (F2). The misunderstood item was later
corrected by the user (U3), who noticed the error in the intention recognition
result because of the system’s incorrect confirmation request (S3). Through the
interactive process with the user, the intention recognition results get closer to
the correct user intention (F1-F4).

Since the understanding of user utterances and the production of system utter-
ances are both affected by the content of the intention recognition result, correctly
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User and System Utterances

S1: May | help you? S2: What area?  S3: Today's weather
(Tomorrow was misrecognized in Tokyo?
as today)
U1: Tell me the weather U2: Tokyo U3: No, tomorrow

for tomorrow

Intention Recognition Results

place - place -- place | Tokyo place | Tokyo
date -- —» date | today [~ date | today - date |tomorrow
info -- info | weather info | weather info | weather

Figure 3.1: Updating an intention recognition result. (S, U and F indicate a

system utterance, a user utterance, and a frame, respectively.)

recognizing user intentions is crucial to carrying out the desired tasks.

3.3 Need for Confidence Scoring of Intention

Recognition Results

There has been a tremendous amount of research in the field of speech under-
standing in spoken dialogue systems.

To cope with speech recognition errors and ungrammatical utterances in un-
constrained speech, the keyword spotting method (Foote et al., 1997), which
extracts only the words relevant to particular applications, and robust parsing
techniques, such as island-driven parsing and partial parsing, which yield seman-
tically important islands of words rather than a full parse, have been extensively
studied (Corazza et al., 1991; Seneff, 1992; Baggia and Rullent, 1993).

Similarly, statistical classification techniques have been used to detect rele-
vant pieces of words in utterances (Kuhn and Mori, 1995; Huang et al., 2001;
Béchet et al., 2004), and statistical machine translation methods, which regard
the problem of speech understanding as translating an utterance into a set of
concepts, have also been gaining popularity (Macherey et al., 2001). To enhance
classification accuracy, the use of various knowledge sources, such as plan trees
and prosodic information, has also been considered (Abdou and Scordilis, 2001).
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In the realm of discourse understanding, which works on top of speech under-
standing, there is also a growing body of research. Filisko (2002) proposed a con-
text resolution server that specializes in reference resolution and ambiguity res-
olution in speech understanding results. Miyazaki et al. (2005) and Higashinaka
et al. (2003b) both employ a multi-world model, in which multiple discourse un-
derstanding results are maintained as an ordered list to enable discourse-level
ambiguity to be retained and resolved by succeeding utterances. The difference
between the two models is that the former uses hand-crafted rules, and the latter

uses statistical information derived from dialogue corpora for the ranking.

Although much work has been done in speech understanding and discourse un-
derstanding, it is still acknowledged that speech recognition errors are inevitable,
and that speech recognition errors often cause a system to misunderstand the
user’s intention. In addition, ambiguities in natural language also make it diffi-
cult for a systems to correctly understand the user’s true intention. Therefore,
the dialogue manager has to confront the problem of handling unreliable and
ambiguous intention recognition results.

Since the slot values are unreliable, one safe and simple approach for dialogue
management is to confirm every item in the slots until all items in them are ac-
knowledged by the user. However, too many confirmations are likely to make
dialogues tedious, and when the system reduces the number of confirmations, the
system is likely to deliver undesired information based on incorrectly recognized
items. The system needs to find a balance between too many and too few confir-
mations. For this purpose, the system has to be able to detect exactly what item
needs to be confirmed.

In speech recognition research, a technique called confidence scoring has been
increasingly used to detect errors in speech recognition results. For example, it has
been used for utterance verification (Rahim et al., 1997). It also helps transcribers
find erroneous words/phrases in the recognized sentences, which speeds up the
transcription process (Endo et al., 2002). Recently, this technique has also been
applied to detect errors in intention recognition results and has proved useful for
dialogue management.

Komatani and Kawahara (2000) and Dohsaka et al. (2003) used the confidence
of the intention recognition results to adaptively change dialogue strategies, which
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U1 : Tell me the weather for tomorrow.

confidence ¢l c2c3 ¢4 c5 c¢6

place -- --
date today c6
info | weather c4

U2 : Tokyo.

c7

place | Tokyo c7 ‘
date today c6
info | weather c4

U3 : No, Tomorrow.
place | Tokyo c7 o8 o9
date |tomorrow c9 *—"’/
info | weather c4

Figure 3.2: Conventional methods. Word confidences c; . . . cg are associated with
the slots.

enables the system to confirm only the necessary items and avoid unnecessary
confirmations. In this way, the task completion time was considerably reduced.
The confidence of intention recognition results has also been used in order to
better characterize the status of a dialogue state (called a state space) for the
automatic learning of optimal dialogue management policies with reinforcement
learning techniques (Singh et al., 2002).

Since estimating the reliability of the intention recognition results allows the
dialogue manager to have a wider variety of choices as to how to respond to
the user and enables the system to characterize the current state of a dialogue
more accurately, there is a strong need for the confidence scoring of intention

recognition results.

3.4 Conventional Methods

Slots are typically filled with words in speech recognition hypotheses or with con-
cepts in speech understanding results, and the acoustic, linguistic, or sometimes
the semantic reliability of the words or concepts has been used for the confidence
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of the slots. Figure 3.2 shows an example of the confidence scoring of the slots in
Fig. 3.1, illustrating how the confidence of words c; ... cg can be associated with
the slots.

The simplest way to calculate a confidence score is to use the score that the
speech recognizer outputs for words, e.g., the total acoustic and language model
score or the word posterior probability (Wessel et al., 2001). When a slot is filled
by a concept, the total or mean confidence of the words that form that concept
is normally utilized. For example, an utterance “to Tokyo” might form a concept
“arrival-city=Tokyo.” In this case, the confidence for this concept is calculated
taking the summation or the mean of the confidence of words “to” and “Tokyo.”

To obtain more accurate scores especially for concepts, probabilistic modeling
of a sequence of concepts has been proposed. Hacioglu and Ward (2002), using
concept N-grams, proposed constructing a concept graph on top of a word graph
and calculating confidence of concepts in a fashion similar to calculating the word
posterior probability. Lin and Wang (2001) propose a concept-based probabilistic
verification model, which also exploits concept N-grams.

There are also approaches that use confidence models for confidence scoring.
A confidence model is a kind of a classifier that scores or classifies words/concepts
based on training data. Although data collection, feature extraction, and label-
ing procedures have to be performed before the training, the confidence model
approach has proved particularly useful when various types of features, such as

numeric values and symbolic values, have to be integrated for the scoring.

Hazen et al. (2002) integrate two levels of features in speech recognition hy-
potheses to train confidence models for words: word-level features that focus
only on the reliability of the acoustic samples corresponding to the word, and
utterance-level features that concern the appropriateness of the whole utterance
in which the word is found. This integration is based on the assumption that if
the whole utterance is unreliable, the word contained in that utterance is also
likely to be incorrect.

In order to achieve more accurate scoring depending on the context, Pradhan
and Ward (2002) proposed creating confidence models for concepts (or semantic
frames) using previous system prompts in addition to the features obtained from
the speech recognition results. They adopted this particular approach because
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they focus on large vocabulary-based system-guided dialogues within the DARPA
Communicator project (Pellom et al., 2000), in which user utterances are heavily
influenced by previous system prompts.

There is also an approach that utilizes pragmatic analyses to score concepts
uttered by the user (Ammicht et al., 2001). This makes several basic assumptions
about what concepts the user should utter after a system response and uses
the assumptions as rules to score the incoming concepts and rescore already
recognized concepts. For example, when an already recognized concept seems to
have been implicitly confirmed, the confidence of that concept is augmented.

Hirschberg et al. (2004) introduce a number of prosodic features, such as FO,
the length of a pause preceding the turn, and the speaking rate, to detect mis-
recognized user turns in spoken dialogue corpora. Since users tend to change
the way they speak when faced with inappropriate system utterances that orig-
inate from previous misrecognized utterances, they use the prosodic features of
subsequent utterances to detect possible errors in previous user utterances. The
problem they are dealing with is different from ours in that they do not evaluate

user utterances immediately after speech recognition.

3.5 Proposed Method

Previous methods have been quite successful in providing reasonably good esti-
mates of correct/incorrect for intention recognition results. However, we would
like to pose a question: Is it really appropriate to use the confidence of words/con-
cepts for the confidence of intention recognition results?

We argue that it may not be appropriate because the confidence of words/con-
cepts is calculated separately from the context; that is, the intention recognition
result is the system’s understanding result of a discourse, not the result of under-
standing an independent utterance. There may be some cases where hypothesized
words/concepts are not likely to fill the slots, as when the slot values contradict
what has been said in a prior part of a dialogue. Ignoring the fact that intention
recognition results represent the discourse may lead to inaccurate confidence scor-
ing. Therefore, we propose incorporating discourse information into the training
of confidence models.
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To enable discourse information to be used in confidence model training, we
have to find features to represent a slot value from the discourse point of view.
We hypothesize that there is a principle that a valid discourse should satisfy and
that any indication of violation of or conformity to this principle can be used to
score a slot value in a discourse. We employ, as such a principle, Grice’s maxims
of cooperativeness (Grice, 1975). Grice’s maxims are described as norms that
should be followed in a collaborative conversation. Grice proposed four maxims,
namely, maxims of Quantity, Quality, Relation, and Manner. Figure 3.3 shows
the description of the maxims from (Grice, 1975). We created twelve discourse
features, each one of them indicating possible violation of or conformity to the
maxims. The derivation of the features are described in Section 3.5.1 in detail.
Although there may be other principles or models for discourse, such as discourse
plans (Allen et al., 2001; Rich et al., 2001), such high-level discourse principles
may not be necessary when considering the speech recognition errors. Therefore,

we only consider Grice’s maxims in this work.

Along with the discourse features, we also use acoustic and language model
features of the words/concepts filling the slots because they have been proven
useful in the literature. Having defined the features, we take the following steps
in confidence model training: We (1) collect slot value samples through dia-
logue experiments with human users, (2) extract the discourse features and the
acoustic and language model features for slot values and annotate them as cor-
rect /incorrect, and (3) train confidence models for slot values using the collected
data.

As a confidence model training technique, we adopt one of the existing tech-
niques (Hazen et al., 2002). For evaluation, we compare the performance of the
obtained confidence models with that of the baseline models. The baseline here
means models that only use acoustic and language models for the confidence
model training. We also compare our models, for reference, with a method that
only uses the posterior probability of words that the speech recognizer outputs,
since posterior probability is widely used in the community for its simplicity.

Although the use of previous system prompts can be seen as incorporating
discourse information into confidence scoring (Pradhan and Ward, 2002), our ap-
proach is different in that we deal with the discourse understanding result, not the
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result of single utterance understanding, and in that our discourse features are
represented by numeric values, not symbolic conditions for classifying user utter-
ances. In addition, compared to the tasks in the Communicator project (Pellom
et al., 2000), we focus on relatively smaller tasks with less system initiative and
handle restricted utterances mainly consisting of user requests. Therefore, the
use of previous system prompts is not expected to greatly improve confidence
scoring in our case. However, if we had to handle a wider variety of utterances,
our approach could be used together with the work of Pradhan and Ward (2002).

We also see (Ammicht et al., 2001) as an attempt to incorporate discourse
information into the confidence scoring. However, they are also not particularly
focusing on discourse understanding results but concepts in single utterances
and their approach uses heuristic rules for the scoring, directly relating certain
discourse phenomena with fixed effects, whereas our approach aims at finding
useful features to express discourse information so that the features can be related

to confidence scores by confidence model training based on training data.

3.5.1 Discourse Features

Here, we describe how we derive our discourse features. In all, we came up with
12 discourse features: one, seven, and four features in relation to the maxim of
quantity, quality, and manner, respectively. Since we consider that the maxim
of relation is automatically abided by in task-oriented dialogues—for example, in
the weather information domain, the user and the system would not talk about

booking flights or train tickets—we only focused on the remaining three maxims.

The discourse features are conceived following our assumption about the inter-
action between the user and the system; namely, the user sends words/concepts
or sometimes commands to the system in order to change the slots, and the sys-
tem responds to the user using the words/concepts stored in the slots. We argue
that as long as the system follows this assumption, our features can be safely
extracted. We also assume that the user’s true intention does not change during
the dialogue. In what follows, we describe in detail each feature related to the

maxims.
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1. Maxim of Quantity:

(a) Make your contribution as informative as is required (for the cur-

rent purposes of the exchange).

(b) Do not make your contribution more informative than is required.

[\]

. Maxim of Quality:

(a) Do not say what you believe to be false.

(b) Do not say that for which you lack adequate evidence.
3. Maxim of Relation:

(a) Be relevant.
4. Maxim of Manner:

(a) Avoid obscurity of expression.
(

)

b) Avoid ambiguity.

(c) Be brief (avoid unnecessary prolixity).
)

(d) Be orderly.

Figure 3.3: Grice’s maxims of cooperativeness (Grice, 1975).
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3.5.1.1 Features Related to the Maxim of Quantity

The maxim of quantity suggests that one has to make one’s contribution to the
conversation as informative as necessary. The mention of a slot value that is the
same as the one appearing in the previous system’s confirmation request may

not, therefore, be desirable. For example, the exchange

System : “Are you interested in the weather in Tokyo?”
User : “The weather in Tokyo”

corresponds to a case violating the maxim of quantity. Although the sequence
may be a re-confirmation of the system’s confirmation request, in terms of the
maxim of quantity it is better for the user to provide more information about
his/her intentions. Taking this into account, we conceived the following discourse
feature D1:

(D1) Same keyword pair count: Throughout the dialogue, count the number
of times the system confirms the current slot value and the user mentions
the same value in the next utterance. We use this count as the feature. A
large value of this feature would mean that there have been a lot of un-
informative interactions about a particular slot value, suggesting that the

value may be wrong.

3.5.1.2 Features Related to the Maxim of Quality

The maxim of quality states that one should not say what one believes to be
false. This can be interpreted as: the content of all the user utterances should be
consistent. Therefore, any contradiction or inappropriateness among the system’s
recognized user intentions can be used as an indicator of a violation of the maxim
of quality.

To describe how the intention recognition results (slot values) are recognized
in the course of a single dialogue, we first introduce the idea of the slot value
sequence, which represents the transition of values of a particular slot. For exam-
ple, {null — null — Tokyo — Tokyo} is a slot value sequence for the place slot in
F4 in Fig. 3.1. Here, the last value Tokyo is the current value whose confidence
we aim to estimate, and null means that the slot does not have a value. Ideally,
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if the user is following the maxim, the slot value sequence should consist of just

one single value. By characterizing the slot value sequence from different points

of views, we conceived the following seven discourse features (D2 through D8):

(D2)

(D4)

Slot purity: In the slot value sequence, count the number of times the
current value is found and divide that count by the number of non-null
values in the sequence. We use this ratio as the feature. For example, when
the value of the place slot changes { Tokyo — Osaka — Kyoto — Osaka},
then the current value Osaka is found in two of the four values, making the
slot purity 1/2. This feature encodes the user’s consistency about a certain
value. Therefore, a large value of this feature may suggest that the slot

value is correct.

Top slot purity: In the slot value sequence, for all the values that appear,
count the number of times each value appears, find the highest count, and
divide that count by the number of non-null values in the sequence. We use
this ratio as the feature. When the value for the place slot changes { Tokyo
— Osaka — Kyoto — Osaka}, Tokyo, Osaka, and Kyoto are assigned the
values of 1/4, 1/2 (2/4) and 1/4, respectively. The maximum value is
Osaka’s 1/2; therefore, the top slot purity is 1/2. This feature represents
the slot purity of the dominating slot value in the sequence if there is any.
If the top slot purity of a slot value is greater than its slot purity, it may
be likely that the slot value is wrong.

Slot variety: The number of different values that appear in the slot value
sequence. For { Tokyo — Osaka — Kyoto — Osaka}, there are three values
Tokyo, Osaka, and Kyoto; therefore, the slot variety is 3. This feature en-
codes the user’s inconsistency, and a large value of this feature may suggest
that the slot value is wrong.

Deny count: The number of times the current value has been deleted.
For example, consider the sequence { Tokyo — null — Kyoto — Tokyo}.
The current value Tokyo is once denied (set to null) by the user (later set to
Kyoto). Therefore, the value is 1. If a certain value is correct, a cooperative
user would not delete that value. A large value of this feature may suggest

that the slot value is wrong.
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(D6)

(D7)

(D8)

Overwrite count: The number of times the current value has been over-
written by other values. For example, consider the sequence {Tokyo —
Osaka — Kyoto — Tokyo}. The current value Tokyo is overwritten once
by Osaka. Therefore, the value is 1. If a certain value is correct, a cooper-
ative user would not overwrite/replace that value. Therefore, a large value

of this feature may suggest that the slot value is wrong.

Continue count: Starting backwards from the current value, count the
number of times the current value is found in the slot value sequence succes-
swwely. We use this count as the feature. For example, consider the sequence
{null — Tokyo — Tokyo — Tokyo}. Before the current value Tokyo, there
are two Tokyo values. Therefore, the value is 2. Since the slot values have
to be successively the same to yield a large value, this feature encodes the
user’s possible strong consistency about a certain value. Therefore, a large

value of this feature may strongly suggest that the slot value is correct.

Different value count: Starting backwards from the current value, count
the number of times the current value is not found in the slot value sequence
successively. We use this count as the feature. For example, consider the
sequence { Tokyo — Osaka — Kyoto — Tokyo}. There are two non-Tokyo
values before the current value Tokyo. Therefore, the value is 2. This
feature functions exactly opposite to the continue count (D7), as it encodes
the user’s possible strong inconsistency. A large value of this feature may
suggest that the slot value is wrong.

3.5.1.3 Features Related to the Maxim of Manner

The maxim of manner states that one should avoid unnecessary prolixity as

well as ambiguity. Therefore, if there are a large number of same/different

words/concepts corresponding to a slot value appearing in user or system ut-

terances, it may be an indication that the slot value is wrong. Note that these

features focus on the user’s and system’s raw utterances or dialogue acts with

concepts, not the slot value sequence and that these features encode what the

system has observed within a dialogue rather than what the system has under-

stood. Taking this into account, we enumerated the following four features (D9
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through D12):

(D9)

(D10)

(D11)

(D12)

Same keyword count in user utterances: The number of times a con-
cept corresponding to the current value appears in the previous user utter-
ances. For example, when the current value is Tokyo, we count the number
of times the word “Tokyo” or the concept “place=Tokyo” appears in the

user utterance history.

Different keyword count in user utterances: The number of times
concepts not corresponding to the current value appear in the previous
user utterances. For example, when the current value is Tokyo, we count
the number of times non-Tokyo place names appear in the user utterance

history.

Same keyword count in system utterances: The number of times a
concept corresponding to the current value appears in the previous system
utterances. For example, when the current value is Tokyo, we count the
number of times the word “Tokyo” or the concept “place=Tokyo” appears
in the system utterance history.

Different keyword count in system utterances: The number of times
concepts not corresponding to the current value appear in the previous
system utterances. For example, when the current value is Tokyo, we count
the number of times non-Tokyo place names appear in the system utterance

history.

3.6 Experiment

3.6.1 System

We prepared a telephone-based spoken dialogue system in the weather infor-

mation service domain. The system provides Japan-wide weather information.

Users specify a prefecture name or a city name, a date, and an information type

(weather, temperature, and precipitation) to obtain the desired information.
The speech recognition engine is Julius (Lee et al., 2001) with its attached

acoustic model, and the speech synthesis engine is FinalFluet (Takano et al.,
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2001). The system has a vocabulary of 1,652 words. The language model is
a trigram trained from transcriptions obtained from our previous dialogue data

collection in the same domain (Higashinaka et al., 2003a).

The system uses the 1-best speech recognition hypothesis for language un-
derstanding. We realized our understanding grammar as a weighted finite state
transducer (WFST) in a manner similar to (Potamianos and Kuo, 2000). We
first prepared a set of transcribed utterances labeled with dialogue acts and con-
cepts. An utterance is assumed to have a single dialogue act with zero or more
concepts. Then, we converted the utterances into a WFST. An utterance corre-
sponds to a path, which has one dialogue act and related concepts on its path.
The whole grammar is a union of such paths. The resulting WFST maps a se-
quence of words into a scored list of dialogue acts augmented with concepts. For
example, the user utterance “Tell me the weather for tomorrow” would derive
“refer-info-date” as a dialogue act with “info=weather” and “date=tomorrow”
as its concepts. Compared to keyword spotting, this can be seen as imposing lex-
ical constraints using surrounding words. The scoring for the WFST was tuned
to derive as few dialogue acts and as many concepts as possible from an utter-
ance. Since an utterance may contain several dialogue acts, we made an epsilon
transition from the end of the path to the start, enabling the recursion of the

dialogue acts. There are 47 dialogue acts in our grammar.

The system maintains three slots for the intention recognition result; namely,
the place slot, the date slot, and the information type slot. The intention recogni-
tion results are updated by the discourse understanding rules, which update the
intention recognition results using the incoming dialogue acts and concepts. The
system also holds a grounding flag for each slot to indicate if the value of a slot
has been acknowledged by the user. For example, when the system confirms by
asking “Are you interested in the weather in Tokyo?” and the user says “Yes,”
then the grounding flags for the information type slot and the place slot are set
to true. We call the slots that have been acknowledged by the user the grounded
slots.

For discourse understanding, we prepared 47 discourse understanding rules.
Each rule is responsible for the processing of a particular dialogue act and its re-
lated concepts. For example, in the case of the dialogue act “refer-info-date” with
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concepts “info=weather” and “date=tomorrow,” a rule corresponding to “refer-
info-date” is invoked, which allocates the concepts to the appropriate slots. Cur-
rently, our crude rules put every concept they encounter into the associated slots
without consulting the dialogue history. Since only a single value is permitted to

fill a slot, previous slot-fillers are always overwritten by the new ones.

There are other rules that deal with dialogue acts that do not have associated
concepts, such as acknowledgments and denials. In these cases, corresponding
rules are fired to set grounding flags to particular slots or erase particular values
from them. Currently, all slots which are associated with the concepts included
in the previous system confirmation request are grounded or erased by the suc-
ceeding acknowledgment or denial by the user. The system also has several rules
that erase the values of particular slots. For example, the user utterance “the
place is wrong” yields a dialogue act “erase-place,” which erases the value of the
place slot. Our grammar allows two slots to be deleted at a time. Users cannot
reject some values while simultaneously accepting others. The rules also handle
closing remarks such as “good-bye” and the restart commands that initialize all

values of the slots.

For response generation, the dialogue manager first determines whether or not
the system should utter a back-channel (e.g., “uh-huh”). If the user’s previous
dialogue act is not of a type explicitly requesting a response from the system, and
no more than one slot is filled, the system assumes that the user has not completed
his/her request and utters a back-channel. If the system decides not to utter a
back-channel, it then checks how many slots have been filled and grounded.

If the system finds slots that are filled but ungrounded, the system confirms
these slots in one utterance. For example, when slots for place and information
type have been filled with “Tokyo” and “weather” and have not been grounded,
the system would utter “Are you interested in the weather in Tokyo?” Similarly,
if there is only one slot that is filled and ungrounded, it only confirms that one
value. An example of confirmation requests would be “Did you say Tokyo?” The

system does not use an implicit confirmation strategy.

If all the slots have been filled and grounded, the system sends a query to
the weather database, retrieves the weather information, formulates it into a

sentence, and utters it to the user. The current version of our system erases and
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resets all the slots upon delivering the weather information. If none of the above
conditions match, which is the case when the user explicitly requests a response
with no slots filled or two or fewer slots grounded, the system asks the user to fill
the missing slots one at a time in the order of place, information type, and date.
An example of the system’s utterances is “Tell me the area you are interested
in.” All the responses are generated by templates. There are 17 templates in all,
including the ones for greetings and back-channels. The templates have forms
such as “Did you say [place=X]?” and “Are you interested in the [info=X] in
[place=Y]?” where X and Y are taken from slot values.

3.6.2 Data Collection

Eighteen subjects used the system over the telephone over a period of six days;
three subjects per day. Each subject was given a task sheet listing the information
to be requested. Each task demanded the user to ask about just one combination
of a place, an information type, and a date. Therefore, if the user succeeds
in the task, each dialogue in our collected data should contain one delivery of
weather information from the system at the end of the dialogue. The subjects
were instructed to complete the tasks one-by-one. Each subject engaged in 16
dialogues, for a total of 288 dialogues collected. Dialogues that took more than
three minutes were aborted and regarded as failures. We separated the data into
six groupings corresponding to the data for the six experiment dates.

The overall word error rate (WER) was 40.16%. The task completion rate
was 95.83% (276/288). Figure 3.4 illustrates the number of turns required to
complete the tasks in each grouping. Three is the minimum number of turns
necessary to complete the tasks (a user’s request, an acknowledgment of the
system’s confirmation, and a closing remark), and five out of six groupings had
three as their mode value. Overall, the median number of turns is four, and the
mode value is three.

The WER may seem high, but considering the nature of human-computer
dialogues in which bad speech recognition prolongs dialogues, it is reasonable.
We recorded the system and user utterances and the intention recognition results
after each user utterance. All user utterances were transcribed.

We briefly ran an analysis of the slot samples we collected and found that most
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of the errors were caused by speech recognition errors. This is because neither
the speech understanding component nor discourse understanding component
could override slot choices provided by the speech recognizer’s 1-best hypothesis.
In addition, user utterances contained very little ambiguity needing resolution
through language understanding and discourse understanding. For example, the
system did not have to choose between place names for arrivals and departures
as in the ATIS domain. Other than speech recognition errors, we noticed a small
number of cases (15 cases) where our grammar could not output any parse for

the input.

3.6.3 Data Screening

Before training confidence models, we screened the data. Since we do not deal
with slots that do not have values, we discarded the data for such slots. Then, we
removed the data for slots that had a single value in the slot value sequence. The
data removed here are of two types: (1) data for slots that had just been filled
and (2) data for slots having the same value consecutively all along the dialogue.

The data corresponding to type (1) were removed because we consider that
there is little discourse information available for these slot values. The data
corresponding to type (2) were removed because we consider it difficult to dif-
ferentiate (a) the cases in which values do not change because of repeated mis-
recognitions from (b) those in which the recognizer keeps recognizing the correct
values. This is because during the data collection, users frequently repeated the
same keywords/phrases for emphases and implicit confirmations. For such data,
we recommend using non-discourse features as in conventional methods.

In addition, we did not use the data of grounded slots, since it is natural to
consider that slots that have been grounded are basically correct.

There were 4812 slot value samples in all, and after screening, 777 samples
remained (362 positive samples and 415 negative samples).

Table 3.1 shows the breakdown of the slot value samples for each grouping,
where null, single, grounded, and single & grounded denote the number of vacant
slots, slots having a single value in the slot value sequence, the grounded slots,
slots that have a single value in the slot value sequence and are grounded at
the same time, respectively. Here, error indicates that the samples were not
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Figure 3.4: The number of turns required to complete the tasks in each grouping.
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Table 3.1: Breakdown of the slot value samples for each grouping.

slots | null | single | grounded | single & | error | selected as
grounded training
sample
grouping-1 || 864 267 278 41 - 131 2 145
grouping-2 || 927 | 215 327 33 107 0 245
grouping-3 || 759 246 281 28 133 0 71
grouping-4 || 831 262 247 39 158 0 125
grouping-5 || 696 236 213 29 124 0 94
grouping-6 {| 735 245 248 32 113 0 97
Total 4,812 | 1,471 | 1,594 202 766 2 777

used because acoustic and language model features could not be retrieved for
them because of defects in the recorded speech files. The numbers are mutually

exclusive in the table.

3.6.4 Feature Extraction and Labeling

We extracted the acoustic and language model features and discourse features for
all 777 slot value samples. As the acoustic and language model features, we used
the same features that Hazen et al. used in (Hazen et al., 2002) (called word-
level features) with some modifications. Modifications had to be made because
of the differences in speech recognizers. In addition, since the utterance score
in word-level features (W14) is derived from various features of whole utterances
(utterance-level features), we combined the word-level features and the utterance-
level features to create a single feature vector instead of using the utterance score,
making the total number of our acoustic and language model features 27. We
used 10-best speech recognition results for extracting the features.

Tables 3.2 and 3.3 show the acoustic and language model features we used
with marks showing where the modifications were made. The label (not available)

1Frame purity is conceptually the same as the N-best purity, with the focus on phonemes
instead of words.
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Table 3.2: List of word-level features. Labels (not available), (not used), and
(new) indicate the modifications we made to the features used in (Hazen et al.,
2002).

(W1) | Mean acoustic score
(W2) | Mean acoustic likelihood score (not available)
(W3) | Minimum acoustic score
(W4) | Maximum acoustic score (new)
(W5) | Acoustic score standard deviation
(W6) | Mean difference from maximum score
(W7) | Minimum difference from maximum score {new)
(W8) | Maximum difference from maximum score (new)
(W9) | Standard deviation of difference from maximum score
(W10) | Mean catch-all score (not available)
(W11) | Number of acoustic observations
(W12) | N-best purity
(W13) | Number of N-best (not used)
(W14) | Utterance score (not used) (utterance level features were
used instead)
(W15) | Mean frame purity*{new)
(W16) | Minimum frame purity (new)
(W17) | Maximum frame purity (new)
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Table 3.3: List of utterance-level features. Labels (not available), (not used), and
(new) indicate the modifications we made to the features used in (Hazen et al.,
2002).

(U1) | Top-choice total score
(U2) | Top-choice average score
(U3) | Top-choice total N-gram score
(U4) | Top-choice average N-gram score
(U5) | Top-choice total acoustic score
(U6) | Top-choice average acoustic score
(UT) | Total score drop
(U8) | Acoustic score drop
(U9) | Lexical score drop
(U10) | Top-choice average N-best purity
(U11) | Top-choice high N-best purity
(U12) | Average N-best purity
(U13) | High N-best purity
(U14) | Number of N-best hypotheses (not used)
(U15) | Top-choice number of words
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means that the feature was used in (Hazen et al., 2002), but not available for
our speech recognizers, whereas (new) indicates that the feature was available,
allowing us to incorporate it to our list of features. The label (not used) indicates
that the feature was available, but not used as one of our features. The {not used)
is only given to the number of N-best (W13 and U14) that always had a fixed
value of ten in our setting. For a detailed description of the features, see (Hazen
et al., 2002).

As the discourse features, we used all the discourse features except D6. The
feature D6 was excluded by a process of backward-elimination using the F-
measure as a criterion. We used the same experimental procedure as described
in Section 3.6.7 to find features that are not contributing to the classification
performance. (Refer to Section 3.6.6 for the derivation of the F-measure.) The
exclusion of D6 may be attributable to the inter-dependency among the features.
High correlation among features is likely to hinder the training of confidence
models, making it difficult to allocate appropriate weights to them.

We first hand-labeled the reference intention recognition results after each user
utterance using the transcriptions, and then automatically labeled slot values as

correct or incorrect. This process took several hours for our data.

3.6.5 Confidence Model Training

We trained six confidence models for intention recognition results, taking every
five of the six groupings as training data and making the remaining grouping the
test data for the evaluation. For comparison, we also created, in the same way,
six confidence models that only use the acoustic and language model features for
training. Hereafter, we call the models trained by acoustic and language model
features the conventional models, and the models trained by the acoustic and
language model features plus the discourse features the proposed models.

We adopted the confidence model training method from Hazen et al. (2002).
The method produces probabilistic confidence scores as log-likelihood ratios of
posterior probabilities, using a weighted linear combination of the confidence
feature vectors. The multi-dimensional feature vector f is reduced to the raw
score r by a linear combination with a projection vector p such that
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r:ﬁTf (3.1)

We trained the projection vector p'in the same manner as Hazen et al. (2002),
i.e., by initializing p'using a Fisher linear discriminant analysis and then updating
each element of 7 using a hill-climbing algorithm (Powell, 1964) to minimize the
classification errors in the training data.

Using r, probabilistic confidence score c¢ is calculated as follows:

p(r|correct) P(correct) )_ ’ (3.2)

=1
€= 08 ( p(r|incorrect) P(incorrect)

where P(correct) and P(incorrect) are a priori probabilities of correct and
incorrect samples in the training data, and p(r|correct) and (r|incorrect) are
posterior probabilities for r for correct and incorrect samples, which were modeled
with Gaussian density functions in this experiment. The ¢ is a decision threshold.

Although we employed the simple linear projection model, it may also be
possible to use other classification techniques, such as non-linear support vector
machines and multi-layered perceptrons. However, since this work is particularly
focused on discourse features and their effect on confidence scoring, we leave
investigating the use of different classifiers as future work.

3.6.6 Evaluation

Table 3.4 shows the F-measure (harmonic mean of the precision and recall) for the
conventional and proposed models when each grouping was used as the test data.
The result for the method that uses posterior probability of words corresponding
to concepts filling the slots is also shown for reference.

The posterior probability was calculated on the N-best list in a similar manner
to the N-best posterior probability (Wessel et al., 2001). We used 10 for N, and
the scaling factor a was set to 0.03, which was found to be the best in our pilot
test with 982 utterances. The utterances here were those randomly selected from
the collected data. The decision threshold used for each grouping was determined
to achieve minimum classification errors within the training data. Although we
acknowledge that increasing N improves the calculation of the posterior probabil-
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Table 3.4: F-measure for the method that uses posterior probability, the conven-

tional and proposed models.

Test data F-measure
posterior prob. conv. prop.
grouping-1 0.711 0.809 0.803
grouping-2 0.706 0.670 0.821
grouping-3 0.704 0.645 0.689
grouping-4 0.617 0.726 0.800
grouping-5 0.747 0.753 0.833
grouping-6 0.590 0.600 0.709
total 0.685 0.710 0.791

ity (Wessel et al., 2001), we considered 10 to be reasonable considering the fact
that the calculation has to be performed in real-time in spoken dialogue systems.

The precision, recall, and F-measure are calculated as follows:

.. # of slots correctly classified as correct
P = 3.3
recision # of slots classified as correct (3:3)

Recall — # of slots correctly classified as correct (3.4)
ceat = # of correct slots )

2 X 11 x isi
Fomeasure — reca. pr'eC.ISIOn (3.5)
recall + precision

It is clear from Table 3.4 that the proposed models perform better than the
conventional models overall. The method that uses posterior probability is the
worst performing method among the three.

Figure 3.5 shows the FAR-FRR curves for the three methods. The figure
clearly illustrates their difference in classification performance.

The FAR and FRR are calculated as follows:

FAR — # of slots incorrectly classified as correct (3.6)
N # of incorrect slots )
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Figure 3.5: False acceptance rate (FAR)-false rejection rate (FRR) curves, and
for the method that uses posterior probability, the conventional and proposed

models.

FRR — # of slots incorrectly classified as incorrect (3.7)
N # of correct slots )

The FAR is the rate at which the model incorrectly classifies negative sam-
ples as positives, and the FRR the rate at which the model incorrectly classifies
positives as negatives.

Table 3.5 shows the matrix of counts of correct and incorrect items for the
conventional and proposed models. Among all the samples, there were 83 that
only the proposed models classified correctly, and 37 that only the conventional
models classified correctly. From a statistical test [McNemar’s test (Gillick and
Cox, 1989)], it was found that the two models have a statistically significant
difference in terms of classification performance (p = 3.99 - 107°), which verifies
the effectiveness of the discourse features.
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Table 3.5: Matrix of counts of correct and incorrect items for the conventional

(conv.) and proposed (prop.) models.

prop. correct

prop. incorrect

conv. correct

550

37

conv. incorrect

83

107

Table 3.6: F-measure for models each trained without D6 and one of the remain-

ing discourse features.

Confidence models F-measure | Drop in F-measure
prop. (All w/o D6) 0.791 0.000
w/o D6, D1 0.707 0.084
w/o D6, D2 0.756 0.035
w/o D6, D3 0.776 0.015
w/o D6, D4 0.750 0.041
w/o D6, D5 0.754 0.036
w/o D6, D7 0.751 0.040
w/o D6, D8 0.763 0.027
w/o D6, D9 0.758 0.032
w/o D6, D10 0.771 0.019
w/o D6, D11 0.765 0.025
w/o D6, D12 0.778 0.013

3.6.7 Impact of the Discourse Features

We investigated how each of the discourse features affects the classification results.
Table 3.6 shows the F-measure for the models, each of which was trained without
D6 and one of the remaining discourse features.

The row indexed by prop. (All w/o D6) represents the proposed models
and the third column (Drop in F-measure) shows the drop of the F-measure from
the proposed models. From the table, one can see that the same keyword pair
count (D1) has a relatively large drop value, indicating that it may be more
important than other features. On the other hand, the top slot purity (D3) and
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Table 3.7: Weights assigned to each of the discourse features in the six obtained

confidence models. Averages and standard deviations of the weights are shown

in the last column.

[ H model-1 | model-2 ‘ model-3 I model-4 | model-5 | model-6 l avg. (sd.) l

D1 -2.212 -2.525 -1.711 -1.879 -2.074 -1.659 | -2.010 (0.3286)

D2 11.802 5.966 4.809 4.040 5.436 8.130 | 6.697 (2.8591)
)
)

D3 0.145 0.025 | -2.304| -2.362| -1.415| -0.844|-1.126 (1.0971
D4 0.139| -0.267| -0.258 | -0.425| -0.265| -0.020 |-0.183 (0.2043
D5 -0.290 0.060 0.500 | -0.449 0.500 0.540 | 0.143 (0.4377)
D7 0.589 0.120 0.055 | -0.117 0.051 0.254 | 0.159 (0.2428)
D8 0.414 0.262 0.275 0.255 0.243 0.227 | 0.279 (0.0680)
D9 1.266 1.032 1.126 0.899 1.046 1.030 | 1.066 (0.1219)
D10 -0.156 | -0.060 | -0.111| -0.143| -0.479 | -0.028 |-0.163 (0.1622)
D11 -0.083 | -0.113| -0.107| -0.028| -0.076 | -0.462 |-0.145 (0.1581)
D12 -0.018 0.103 | -0.021 0.028 0.020 0.033 | 0.024 (0.0448)

the different keyword count in system utterances (D12) have small drop values,
indicating their possible small contribution to the classification performance.
Our finding that the same key pair count (D1) is important may suggest
that Grice’s maxim of quantity may be more useful than the others in terms
of detecting errors in a dialogue. When we look at the weights of D1 in the
confidence models, we find that the values are negative; that is, the larger the
same keyword pair count, the lower the confidence. The small drop values of the
top slot purity (D3) and the different keyword count in system utterance (D12)
suggest that however many times different values occupy slot value sequences or
system utterances, the confidence of slot values may not necessarily be affected.
Table 3.7 shows the weights assigned to each of the discourse features in the six
obtained confidence models.? Notice that some of the features, such as D1 and D8,
have very steady values for their weights compared to other features, suggesting
that they play similar roles across all models. Large standard deviations in the
weights of some of the features suggest that their effect on confidence scoring is

2Model-1 to model-6 are the models trained with all data except grouping-1 to grouping-6,

respectively.
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Figure 3.6: False acceptance rate (FAR)—false rejection rate (FRR) curves for the
proposed and conventional models and for the models that do not use D1, D3,
and D12 as discourse features.

likely to vary depending on the training data.

Weights that are larger than others do not necessarily reflect their importance
of their associated features because of the ranges that each feature could take.
For example, since the slot purity takes a value between 0 and 1, even with a
very large weight, the overall effect of this feature will be limited.

Figure 3.6 shows the FAR-FRR curves for the models without D1, D3, and
D12 along with those for the proposed models and the conventional models. It
can be seen clearly that the models without D1 are close to the curve for the
conventional models, and the models without D3 and D12 are almost on the
curve for the proposed models.

3.6.8 Analysis of Successful Cases

We analyzed the successful 83 cases and found that there are mainly three pat-
terns when our method succeeds:
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1. Slots that have a small slot purity and a large slot variety were
successfully classified as incorrect. We found 22 samples matching
this pattern. This pattern suggests the rather obvious fact that if there
are many different values in the slot value sequence, the slot value becomes
dubious, indicating inconsistency in user utterances.

2. Slots that have a large slot purity and a small slot variety were
successfully classified as correct. We found 28 samples matching this
pattern. This pattern can be seen as the counterpart of the first pattern:
the user’s being consistent about a certain value adds confidence to that

value.

By looking into the dialogue data, we noticed that dialogues in which this
successful pattern was found contained the following interaction: (1) the
user fills a slot relatively easily with X, (2) the slot is accidentally filled
by some other value Y, and (3) the user fills the slot again with X. The
conventional method was likely to find X incorrect, whereas the proposed
method was likely to take X as correct. In a way, our method is using X’s
reliable past to boost X’s confidence, overcoming the possible low acoustic
and linguistic score of X.

3. Slots that have a small slot purity, a large slot variety, and a large
same keyword count were successfully classified as correct. We
found 22 samples matching this pattern. This can be seen as a special
case of the first pattern, where samples the first pattern may classify as
incorrect are rescued. Here, the same keyword count is acting as a booster

of the confidence.

The pattern was found in dialogues where the following type of user ut-
terances was frequently observed: “X’s weather Y,” where X and Y are
both associated with the same slot and X is correct and Y is wrong (mis-
recognition). An example would be “Tokyo’s weather Kyoto,” which cor-
responds to two dialogue acts and concepts: “refer-place-info place=Tokyo
info=weather” and “refer-place place=Kyoto.”

Since our discourse understanding component handles dialogue acts sequen-
tially, after this kind of utterance, the slot value can only be Y, which makes
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X’s slot purity very small. The same keyword count complements this small
slot purity, suggesting X’s potentially large slot purity.

There are 11 other samples that we could not categorize into patterns, partly
because they were classified correctly by a combination of the patterns and partly
because the weights for particular features were sometimes in an opposite polarity
depending on the training data. Although we found two samples where the same
keyword pair count was seemingly acting as a strong indicator of incorrectness, we
did not categorize them as a pattern for the lack of samples. It is surprising that
the importance of the same keyword pair count was not evident in the successful
samples considering the drop in the F-measure when we did not use the feature.

Investigating this issue remains as future work.

3.7 Summary and Future Work

We proposed a confidence scoring method for intention recognition results in
spoken dialogue systems. Our method utilizes both discourse-related features
and the acoustic and language model features of the speech recognition results
to train confidence models for slot values. Experimental results show that the
proposed method significantly improves the confidence scoring, indicating the
effectiveness of the discourse features.

The results also indicate the usefulness of using Grice’s maxims of cooperative-
ness to detect errors in spoken dialogue interactions. In addition, the analysis of
the successful cases have revealed that the confidence model training process was
capturing useful patterns to detect errors in the slot values, making the patterns
possible decision rules.

As future work, firstly, we plan to perform experiments using different sys-
tems in order to verify our approach in different settings, including domains and
dialogue strategies. Secondly, we would like to explore other discourse features
since the discourse features presented in this work may not sufficiently charac-
terize the slot values. For example, we are planning to incorporate features that
represent relationships and constraints among the slots because slot values tend
to have dependencies in certain situations. The use of other classification tech-
niques for confidence model training, including non-linear classification methods,
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should also be considered in this connection.

Thirdly, we would like to evaluate our method using workable dialogue sys-
tems. In this work, we performed an off-line evaluation, which is based on the
assumption that a corpus collected with a certain system is similar to one col-
lected by the improved version of the system. However, in the case of interactive
systems, this is not necessarily the case. Therefore, to fully verify the proposed
method, an on-line (interactive) evaluation is necessary.

Finally, since Grice’s maxims have been found useful for the confidence scoring
of intention recognition results, we would also like to investigate the possibility
of using Grice’s maxims for improving the understanding component in spoken
dialogue systems.

Although future work remains, the results of our experiments suggest that
our approach is promising. As a final remark, we point out that the discourse
features we introduced can be easily obtained as long as the system follows our
assumptions about spoken dialogue systems, which facilitates application of our

method to other systems.
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CHAPTER 4 |
Ranking Multiple Dialogue States by
Corpus Statistics to Improve

Discourse Understanding

4.1 Introduction

In spoken dialogue systems, since a speech recognizer usually outputs multiple
speech recognition hypotheses and the syntactic and semantic analysis normally
produces multiple parses, the discourse understanding component of a system
typically receives multiple dialogue acts to update a dialogue state. Many sys-
tems use the best dialogue act candidate from the best parse of the best speech
recognition hypothesis to update the dialogue state. However, this could lead
to inaccuracy because the dialogue act is selected independently of the current
dialogue state.

Recent work considers all the combinations of dialogue acts and the current
dialogue state to create multiple dialogue states to be ranked with regard to the
context so that the best dialogue state can be selected (Wutiwiwatchai and Furui,
2004). In addition, since it is sometimes difficult to decide on a single dialogue
state due to ambiguity in user utterances, an approach to keep multiple dialogue
states and resolve the ambiguity using succeeding user utterances has also been
proposed (Nakano et al., 1999; Miyazaki et al., 2005). In this way, the correct
dialogue state, which was not incidentally selected as the best interpretation in
the previous turn, could survive until the next turn. Although this approach
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has proven to improve discourse understanding accuracy (Miyazaki et al., 2005),
the approach requires hand-crafted rules to accurately rank the dialogue states,
which is costly and difficult to maintain and port to other domains. An automatic
method would make the development of spoken dialogue systems scalable.

This chapter proposes automatically ranking multiple dialogue states using
statistical information derived from the corpora of dialogues conducted between
a system and users. We hypothesize that a dialogue state that has seen the most
likely sequence of dialogue acts and updates is the most probable dialogue state
and use the sequential probability of dialogue act types and dialogue state updates
to rank dialogue states. Although there are approaches that aim to automatically
rank several conflicting understanding candidates within a dialogue state (Bohus
and Rudnicky, 2006; Bohus, 2007), our approach is different in that we rank
dialogue states which represent the system’s interpretations of a whole dialogue.

In the next section, we describe the discourse understanding process using
multiple dialogue states in spoken dialogue systems. In Section 4.3, we describe
previous work, and in Section 4.4, we explain our approach in detail. In Section
4.5, we describe the experiments we performed to verify our approach in the train
ticket reservation and weather information service domains. In the last section,

we summarize the chapter and mention future work.

4.2 Discourse Understanding Using Multiple Di-

alogue States

Figure 4.1 shows how the architecture in Figure 1.2 changes when a spoken dia-
logue system uses multiple dialogue states for discourse understanding.

In this architecture, the multiple dialogue acts that can be derived for an
utterance due to ambiguity in speech understanding are received by the discourse
understanding component to update its multiple dialogue states. The multiple
dialogue states are ranked according to their priority with regards to the context.
In utterance generation, the dialogue manager can choose to use only the highest
ranked dialogue state or take into account several highly ranked dialogue states
to generate its responses, such as ‘A or B’ type confirmation requests when there
are some competing dialogue states.
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Figure 4.1: Architecture of a spoken dialogue system that utilizes multiple dia-

logue states for discourse understanding.

This chapter concerns a spoken dialogue system that uses multiple dialogue
states for discourse understanding and focuses on the method of ranking the
multiple dialogue states. Here, the objective of discourse understanding is to
obtain the best ranking of the dialogue states, not to output a single dialogue
state. Compared to a system that uses only a single dialogue state, holding
multiple dialogue states makes it possible for the system to resolve the ambiguity
of previous user utterances with succeeding ones.

Figure 4.2 illustrates a piece of dialogue in the train ticket reservation domain
in which the user says “From Tokyo” (Ul) and “From” in the utterance is in-
audible and not recognized by the system. This utterance creates two dialogue
acts; namely (refer-origin place=Tokyo) (filling the origin slot with “Tokyo”) and
(refer-dest place=Tokyo) (filling the destination slot with “Tokyo”). As a result,
two dialogue states (DS1 and DS2) are created from DS0. In the figure, we only
show the intention recognition result (frame) of a dialogue state for conciseness
(See Figs. 4.8 and 4.10 for a more detailed illustration of a dialogue state).

Suppose that, after the system’s back-channel (S2), the user says “To Kyoto”
(U2) which corresponds to a dialogue act (refer-dest place=Tokyo). This act
creates two new dialogue states (DS3 and DS4) from DS1 and DS2, respectively.
A system with a single dialogue state may choose DS2 as the best dialogue state
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User and System Utterances

S1: May | help you? U1: From Tokyo S2: Uh-huh U2: To Kyoto  83: From Tokyo to
t Kyoto?
[ ‘From’ was inaudible

DA from U1: (refer-origin place=Tokyo) DA from U2: (refer-dest place=Tokyo)

Intention Recognition Result DS1 origin | Tokyo DS3 origin Tokyo
DSO0 dest. - dest. Kyoto
origin -
dest. -

origin - origin -~
DS2| dest. | Tokyo DS4 | dest. | Kyoto

DA from U1: (refer-dest place=Tokyo) DA from U2: (refer-dest place=Tokyo)

Figure 4.2: Example of discourse understanding using multiple dialogue states.
(S, U, DA, and DS stand for a system utterance, a user utterance, a dialogue act,
and a dialogue state, respectively.)

and discard DS1, making it impossible for the system to reach DS3 after the
user’s next utterance U2. By having both DS1 and DS2, the system can wait for
the next user utterance to decide which dialogue state (DS1 or DS2) was actually
true after Ul. In this example, the system successfully chooses DS3 as the best
dialogue state and makes an appropriate confirmation request (S3).

Figure 4.3 shows another example, in which the speech recognition result
outputs two hypotheses (“To Tokyo” and “To Kyoto”) for the user utterance
“To Kyoto” (U1). These hypotheses create two dialogue acts that result in two
dialogue states (DS1 and DS2) from DS0. Suppose that the system chooses DS1
as the best dialogue state and generates a confirmation request (S2), which is
denied by the user (U2). By having multiple dialogue states, the system can
reconsider that DS2 was actually correct and make an appropriate confirmation
request “Did you say Kyoto?” (S3) on the basis of the correct dialogue state
(DS4). Note that the value of the destination slot in DS4 (Kyoto) is preserved
from DS3 because the exchange of utterances “To Tokyo” (S2) and “No” (U2)
does not negate the fact that the destination is Kyoto.

In both examples, the ambiguity of a user utterance, originating from parsing
and speech recognition, is preserved in the form of multiple dialogue states and
then correctly disambiguated by correctly ranking the dialogue states using the
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User and System Utterances
S1: Tell me the destination U1: To Kyoto S2: To Tokyo? U2:No S3: Did you say
1 , to Kyoto?

Recog: 1. To Tokyo, 2. To KyotT‘

DA from U1: (refer-dest place=Tokyo) DA from U2: (deny)

Intention Recognition Result DS1 origin | Osaka DS3 origin | Osaka
DSO dest. | Tokyo | dest. -
origin | Osaka
dest. -
origin | Osaka origin | Osaka
Ds2 | dest. Kyoto DS4V dest. Kyoto

DA from U1: (refer-dest place=Kyoto) DA from U2: (deny)

Figure 4.3: Example of discourse understanding using multiple dialogue states.

succeeding utterances, making it possible for the system to obtain the user’s cor-
rect intention more accurately and efficiently. Although holding multiple dialogue
states has such advantages, the problem is how to achieve appropriate ranking of
the dialogue states.

4.3 Previous Work

In previous work, Nakano et al. (1999) proposed holding multiple dialogue states
to deal with utterances that convey meaning over several speech intervals and
the inability to determine the understanding result at each interval end. Multi-
ple dialogue states are used to represent the ambiguity of whether the user has
completed his/her utterance as well as the ambiguity arising from the existence
of the multiple applicable interpretation rules. Dialogue states are scored based
on which interpretation rules have been applied and the scoring is based on a
system developer’s intuition. Miyazaki et al. (2005) augmented Nakano et al’s
method to deal with n-best recognition hypotheses and reported improvement in
discourse understanding accuracy. However, hand-crafted rules are also used in
ranking dialogue states.

The reliance on hand-crafted rules to rank multiple dialogue states is prob-
lematic because, when the number of dialogue states becomes large, it becomes
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difficult to design rules to obtain reasonable ranking results. Although only a
small number of dialogue states are considered in the examples in Section 4.2,
in a more realistic setting, the system has to consider the much larger number
of dialogue states that can be created from N-best recognition hypotheses with
N typically larger than one or two. Since the number of dialogue states grows
exponentially as the dialogue progresses, the ranking by hand can easily become
intractable. Another problem is that creating rules requires expertise in dialogue

system development, which hinders rapid development of systems.

In a theoretical work on spoken dialogue processing, Williams and Young
(2007) proposed having a probability distribution over dialogue states (user in-
tentions) in order to model the understanding process of a spoken dialogue system
as a partially observable Markov decision process (POMDP) and to learn the best
policy for a dialogue manager by reinforcement learning using dialogue simula-
tions. Here, the updating of the distribution is similar to ranking multiple dia-
logue states. Although they offer a good framework to estimate the distribution
over dialogue states from various evidences and observations in a dialogue, their
current use of contextual information is limited to the previous user and system
dialogue act types; e.g., they do not consider N-grams of dialogue act types as in
our approach. Since our aim is to find out what kind of discourse-level informa-
tion is useful in ranking dialogue states, we believe our work is complementary
to theirs.

There is also a body of work that aims to automatically estimate the confi-
dence of slot values (Pradhan and Ward, 2002; Hazen et al., 2002; Higashinaka
et al., 2006). However, these studies do not consider keeping multiple slot value
candidates. One exception is Bohus (2007), who propose keeping multiple slot
value candidates and ranking them using a confidence scoring function that takes
into account various features of a dialogue, including speech recognition confi-
dence scores for the words/concepts filling the slots, as well as discourse-level
information such as whether the confirmation request regarding the slot value
has been implicitly or explicitly confirmed by the user. However, the method
does not focus on ranking multiple dialogue states and the features they use are
specifically designed to deal with slot values. We emphasize that ranking slot
values and ranking dialogue states are fundamentally different in that a dialogue
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state represents the system’s interpretation of what has happened so far in a
dialogue, making the task of ranking multiple dialogue states similar to ranking
possible worlds, which is in close connection with the multi-world model (Nagao,
1989) applied to processing a written discourse. This work aims to apply a similar
model to understanding a spoken dialogue.

In the context of plan-based utterance understanding (Allen and Perrault,
1980; Carberry, 1990), when there is ambiguity in the understanding result of
a user utterance, an interpretation best suited to the estimated plan should be
selected. In addition, the system must choose the most plausible plans from mul-
tiple possible candidates. Although we do not adopt plan-based representation of
dialogue states, this problem is close to what we are dealing with. However, no
systematic ways to score the candidates for disambiguation have been proposed.

4.4 Approach

We propose automatically ranking multiple dialogue states using statistical in-
formation that can be derived from dialogue corpora. Since a dialogue state is
a result of (a) a sequence of dialogue acts by the user and system and (b) the
updates by them, we hypothesize that a dialogue state that has seen the most
likely sequence of dialogue acts and updates is the most probable dialogue state.
For this purpose, we derive two kinds of statistical information from a corpus: (1)
the N-gram probability of a dialogue act type sequence and (2) the occurrence
probability of a dialogue state update pattern. We use these two probabilities to
assign scores to the dialogue states for ranking.

Figure 4.4 shows an example of a dialogue corpus that we need in order to
extract the statistical information. The corpus contains speech recognition results
for each user utterance, dialogue acts for each user and system utterances, and the
transition of dialogue states. In the example, the sequence from hyp-DS1 to hyp-
DS4 (‘hyp’ stands for hypothesis) indicates the transition of the system’s intention
recognition result when the dialogue took place. The corpus also contains correct
dialogue acts and dialogue states (‘ref’ stands for reference) that can be labeled
later by an annotator. Here, a correct dialogue state means the dialogue state
that a human overhearing the conversation would think the system should have
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User and System Utterances

DA: (ask-dest) I DA: (confirm-dest place=Tokyo) ] DA: (ask-dest)
/

S1: Teli me the destination U1: To Kyoto S2: To Tokyo? U2: No S83: Tell me the destination
\

/
Kyoto is misrecognized as Tokyo *hyp-DA: (deny)
+hyp-DA: (refer-dest place=Tokyo) sref-DA: (deny)

rref-DA: (refer-dest place=Kyoto)

Sequence of intention recognition
results of the system

hyp-DS0 hyp-DS1 hyp-DS2 hyp-DS3

origin -- origin | Osaka origin | Osaka origin | Osaka
dest. - dest. -- dest. | Tokyo | dest. -~

Correct sequence of intention recognition results

labeled iater

ref-DS0O ref-DS1 ref-DS2 ref-DS3

origin - | origin | Osaka { origin | Osaka | origin { Osaka
dest. - | dest. -- dest. Kyoto | dest. Kyoto

Figure 4.4: Example of a dialogue corpus.
possessed.

From such a corpus, we can obtain sequences of ref-DAs and ref-DSs, which
can be used to calculate probabilities (1) and (2). If a dialogue act type sequence
such as refer-origin refer-dest is a probable one, DS3 would be chosen over DS4
in Fig. 4.2, and if a dialogue state update pattern such as from ref-DS2 to ref-DS3
is found likely to occur, the system would be able to correctly choose DS4 as the
best dialogue state after U2 in Fig. 4.3.

4.4.1 Statistical Information
4.4.1.1 N-gram Probability of a Dialogue Act Type Sequence

We employ the N-gram probability for the probability of a dialogue act type se-
quence. Here, a dialogue act type sequence means a sequence of dialogue act
types of both user and system utterances. N-gram probability of dialogue act
types has been used to statistically estimate the next dialogue act type in disam-
biguating speech understanding results (Nagata and Morimoto, 1994; Reithinger
and Maier, 1995). It has also been used in finding problematic dialogues in a
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Whether slots asked previously by the system are changed.
Whether slots being confirmed are changed.

Whether slots already confirmed (grounded) are changed.
Whether slots that do not have values are filled.

Whether slots that have values are overwritten.

When 5 is true, whether slot values do not change as a result.

NS e N

Whether the system’s previous utterance is an open prompt.

Figure 4.5: Seven binary attributes to classify a dialogue state update.

tutoring domain by detecting an unlikely sequence (Forbes-Riley and Litman,
2005). Using the same idea, we collect dialogue act type sequences from the
dialogue corpus and create an N-gram language model to calculate the N-gram
probability.

4.4.1.2 Occurrence Probability of a Dialogue State Update Pattern

We use the occurrence probability of a dialogue state update pattern for the
probability of a dialogue state update. The simple bigram of dialogue states
would not be sufficient due to the complexity of the data that a dialogue state
possesses, which can cause data sparseness problems.

We first classify the ways that a dialogue state is updated into 96 classes char-
acterized by seven binary attributes (Fig. 4.5), and then compute the occurrence
probability of each class in a corpus. Note that the number of classes is not 128
(27) because attribute 6 is dependent on attribute 5. In the classification, an
update after an open prompt is treated separately by having attribute 7, because
such a prompt would lead to an unrestricted user utterance, leading to its own
update pattern. Contrary to the N-gram probability of dialogue act types that
represents a brief flow of a dialogue, the probability of a dialogue state update
represents a more detailed flow of a dialogue, focusing mainly on the intention

recognition result.
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4.4.2 Scoring of Dialogue States Using the Statistical In-

formation

Using the two probabilities, we define the score of a dialogue state Si1; as

SH—I = St +a- Sact + )6 * Sngram + - Supdate (41)

where S; is the score of a dialogue state just before the update (initially set
to zero), s, the score of a dialogue act, Spgram the score concerning the N-
gram probability of a dialogue act type sequence, Sypdate the score concerning the
occurrence probability of a dialogue state update pattern, and «, 3, and ~ are the
weighting factors. The dialogue act score (84 ) is introduced to prioritize dialogue
states updated by dialogue acts derived from reliable speech recognition and
parsing results. For su., speech recognition confidence or linguistic and acoustic
scores of speech recognition results from which the dialogue act originates can be

used.

Using Eq. 4.1, m x [ new dialogue states created from [ dialogue acts and m
dialogue states are scored and ranked. Since the number of dialogue states grows
exponentially, we consider that the maximum number of dialogue states has to be
set in order to drop low-score dialogue states and thereby perform the operation
in real time. This dropping process can be considered as a beam search in view
of the entire discourse process; thus, we name the maximum number of dialogue
states the dialogue state beam width.

4.5 Experiment

We performed experiments to verify our approach. We first collected dialogue
data using two systems in different domains and annotated the dialogues with
reference dialogue acts and dialogue states so as to extract the statistical in-
formation. We then evaluated the usefulness of the statistical information by
performing a dialogue-state-ranking experiment.
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4.5.1 Systems
4.5.1.1 Train Ticket Reservation Domain

We prepared a Japanese spoken dialogue system in the train ticket reservation
domain (hereafter the train domain). Using the system, users reserve a train seat
by specifying a place of departure, destination, train type, train number, and
date. The system works on the phone. The speech recognition engine is Julius
(Lee et al., 2001) with its attached acoustic model trained for telephony, and the
speech synthesis engine is FinalFluet (Takano et al., 2001). The system has a
vocabulary of 193 words. For the language model, we used a trigram trained
from randomly generated texts of acceptable phrases.

The system uses the 1-best speech recognition hypothesis for language un-
derstanding. We realized our understanding grammar as a weighted finite state
transducer (WFST) in a manner similar to (Potamianos and Kuo, 2000). We first
defined sequences of words and concepts that derive dialogue acts in a manner
similar to SPEECHBUILDER (Glass and Weinstein, 2001), and from them com-
piled a WFST that maps a sequence of words into a scored list of dialogue acts
augmented with concepts. For example, we define a sequence “I would like to go
to Tokyo’ as one corresponding to a dialogue act type refer-dest. Here, ‘Tokyo’
is marked as a place concept. When the system parses the same sentence, the
WEFST outputs a dialogue act refer-dest together with “place=Tokyo” as its con-
cept. The scoring for the WFST was tuned to derive as few dialogue acts and as
many concepts as possible from an input. The output order of the dialogue acts
with the same score depends on how they are found in the search process. The
top ranked dialogue act is passed on to the discourse understanding component
to update the dialogue state. There are 12 dialogue acts in our grammar.

The system simply uses a single dialogue state for discourse understanding be-
cause the aim of this system is to collect dialogue data to extract the statistical
information. The dialogue state has five slots for the intention recognition result:
origin, destination, train type, train number, and date. The intention recognition
result is updated by manually created discourse understanding rules. We have
15 rules for this domain. For example, there is a rule to process a dialogue act
refer-dest which fills the destination slot with the place name in the dialogue act.
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Currently, our crude rules put every concept they encounter into the associated
slots without consulting the dialogue history. Since only a single value is permit-
ted to fill a slot, previous slot-fillers are always overwritten by the new ones. For
each slot, the system also holds a grounding flag that indicates if the value of a
slot has been acknowledged by the user.

For response generation, the dialogue manager first determines whether or not
the system should utter a back-channel (e.g., “uh-huh”). Note that, in Japanese
spoken dialogue, back-channels are very frequently observed. If the user’s previ-
ous dialogue act is not of a type explicitly requesting a response from the system
or a filler and no more than three slots are filled, the system assumes that the
user has not completed his/her request and utters a back-channel. If the system
decides not to utter a back-channel, it then checks how many slots have been
filled and grounded. If the system finds slots that are filled but ungrounded, the
system confirms these slots in one utterance. Similarly, if there is only one slot
that is filled and ungrounded, it only confirms that one value. The system does
not use an implicit confirmation strategy. If all the slots have been filled and
grounded, the system tells the user that it has completed the reservation.

If none of the above conditions hold, which is the case when the user explicitly
requests a response with no slots filled or three or fewer slots grounded, the system
asks the user to fill the missing slots one at a time in the order of the place of
departure, destination, date, train type, and train number. All the responses are
generated by templates. There are 19 templates in all, including the ones for
greetings and back-channels. The templates have forms such as “Do you want
to go to [destination=X] from [origin=Y]?”, where X and Y are taken from the
destination slot and origin slot, respectively.

4.5.1.2 Weather Information Service Domain

Another system was developed in the same way in the weather information service
domain (hereafter the weather domain). The system is capable of delivering
Japan-wide weather information from a weather database updated regularly. The
system has a vocabulary of 839 words, covering most principal cities and all
prefectures in Japan. The system uses the 1-best speech recognition hypothesis
for language understanding. It uses a WFST constructed from 15 dialogue act
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definitions for parsing. The system has a single dialogue state and the intention
recognition result has three slots: place, date, and information type (general
weather, probability of precipitation, and warning). The dialogue state is updated
by 14 discourse understanding rules. The system uses the same back-channeling
and confirmation strategies as the train domain. The system has 17 templates

for utterance generation.

4.5.2 Data Collection

Using the two systems, we collected dialogue data using human subjects. We
recruited 15 subjects (9 males and 6 females), and each subject performed 16
dialogues (8 dialogues per system) by calling the systems on the phone. On the
basis of scenarios that we prepared in advance, they were instructed to reserve
certain train seats or to retrieve weather information. In the train domain, the
subjects reserved a single seat in a single session, whereas weather information
for multiple places and dates were sought in the weather domain in a single
session because some scenarios instructed them to compare the general weather
or temperature of several places. Note that the weather system cannot deliver
weather information for multiple places or dates at the same time. They must be
separately elicited.

We collected 120 dialogues for each domain. We recorded all speech recogni-
tion results (10-best hypotheses, although the systems used only 1-best hypothe-
ses in the data collection), dialogue acts (parsing results of the 10-best speech
recognition hypotheses), system’s utterances, start and end times of user’s ut-
terances, and dialogue states before and after the user utterance. The user’s
voice and the system’s voice were also recorded. We transcribed all user utter-
ances. There are 1,815 and 2,090 utterances in the train and weather domains,
respectively.

Dialogues that took more than three minutes were regarded as failures. The
task completion rates were 88.33% (106/120) and 78.33% (94/120) in the train
and weather domains, respectively. Compared to the train domain, the task
success of the weather domain was lower, perhaps because of the complexity
of the assignments. The word error rates (WERs) were 42.08% and 48.06% in
the train and weather domains, respectively. The speech recognition accuracy
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was rather low, probably because the input was telephone speech, the language
models were not created from transcriptions of real user utterances but from ar-
tificially generated ones, and there were many phonologically similar place names
in the lexicons especially in the weather domain. However, considering the rea-
sonable task success rates and that misrecognition triggers further misrecognition
in human-computer dialogues, we consider this speech recognition performance
to be tolerable.

4.5.3 Annotating Reference Dialogue Acts and Dialogue
States

On the basis of the transcriptions, reference dialogue acts were annotated by
hand for each user utterance in the collected dialogue data. For annotation; we
used the dialogue act set defined for the data collection systems. Sometimes,
there were utterances that were difficult to annotate using the dialogue act set.
In such cases, the most appropriate dialogue act with regards to the domain
was used for annotation. For an utterance “I would like to go to Yokohama in
Kanagawa prefecture” in the train domain, since there is no dialogue act that
includes an elaboration of a place “in Kanagawa prefecture”, we annotated it
with (refer-dest place=Yokohama), which is appropriate in terms of this domain.
If none of the predefined dialogue acts could be annotated for an utterance (e.g.,
an out-of-domain utterance), filler was assigned.

Using the reference dialogue acts, we automatically annotated the reference
dialogue states. We made each system used in the data collection update its
dialogue state by the reference dialogue acts as input. We recorded the dialogue
states after the processing of each reference dialogue act as reference dialogue
states. Note that the discourse understanding rules of the systems were designed
to correctly update a dialogue state as long as the input is a correct dialogue act.
We call the collected dialogue data with these annotations the corpus.
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Table 4.1: Examples of dialogue act type sequences and their per word trigram
probabilities in the train ticket reservation domain.

Dialogue Act Type Sequence per word trigram probability
refer-origin back-channel refer-origin-dest 0.140
refer-origin back-channel refer-origin 0.195
refer-origin back-channel refer-date ' 0.114
refer-origin back-channel refer-dest 0.303
refer-origin back-channel refer-train 0.114
refer-origin request confirm-origin 0.176
refer-origin confirm-origin-dest filler 0.131
refer-origin confirm-origin-dest acknowledge 0.131
refer-origin confirm-origin-dest refer-origin-dest 0.131
refer-dest back-channel refer-dest 0.062

4.5.4 Deriving Statistical Information
4.5.4.1 Trigram Probability of a Dialogue Act Type Sequence

From the sequences of reference dialogue acts in the corpus, we created an N-gram
language model of dialogue act types for each domain using the CMU-Cambridge
Toolkit (Clarkson and Rosenfeld, 1997). We chose three as N (trigram) and used
Good-Turing discounting.

Table 4.1 shows examples of dialogue act type sequences and their per word
trigram probabilities in the train domain calculated using the trigram language
model. Here, per word trigram probability means the average probability of all
trigrams in a sequence. The trigram probabilities of the first two tokens are
represented by their unigram and bigram probabilities. It can be seen from
the table that the sequence refer-origin back-channel refer-dest is much more
probable, with the probability of 0.303, than refer-dest back-channel refer-dest,
with 0.062. It seems very unlikely that a user would mention the destination
again after the system’s back-channel, which would prioritize DS3 over DS4 in
Fig. 4.2.

Table 4.2 shows examples of dialogue act type sequences and their per word tri-

87



Chapter 4. Ranking Multiple Dialogue States by Corpus Statistics

Table 4.2: Examples of dialogue act type sequences and their per word trigram
probabilities in the weather information service domain.

Dialogue Act Type Sequence per word trigram probability
confirm-place acknowledge tell-info 0.378
confirm-place acknowledge request 0.120
confirm-place refer-city back-channel 0.106
confirm-place refer-city confirm-place 0.335
confirm-place refer-info request 0.255
confirm-place refer-pref request 0.096
confirm-place refer-pref confirm-place 0.180
confirm-place refer-date refer-pref 0.255
confirm-place deny back-channel 0.145
confirm-place deny refer-city 0.114
confirm-place deny ask-place 0.243
confirm-place deny refer-pref _ 0.117

gram probabilities in the weather domain. It can be seen from the table that after
the system’s confirmation of a place, the user is likely to acknowledge the confir-
mation request followed by the system’s delivery of weather information (confirm-
place acknowledge tell-info). The sequence confirm-place refer-city confirm-place,
in which the user corrects the system by referring to a city name followed by the
system’s next confirmation request, seems equally likely.

4.5.4.2 Occurrence Probability of a Dialogue State Update Pattern

From all consecutive pairs of reference dialogue states in the collected data, we
obtained the occurrence probability of each dialogue state update pattern using
the classification scheme in Fig. 4.5.

Table 4.3 shows all the patterns in the corpus in the train domain. The seven
binary values in the table indicate the conformity to attributes 1-7 from left to
right. The patterns are ordered by the magnitude of occurrence probability. The
pattern in bold font indicates that it is not observed in the weather domain (See
Table 4.4 for comparison).
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Table 4.3: The 18 dialogue state update patterns and their occurrence probabil-
ities in the train ticket reservation domain. See Fig. 4.5 for the details of the
binary attributes. Attributes 1-7 are ordered from left to right.

# Pat. | Attributes (1-7) | Prob || # Pat. | Attributes (1-7) | Prob

1 0000110 {0.3218 10 0001110 |0.0050
0000000 {0.2964 11 0100110 |0.0044
0001000 |0.1256 12 00006001 {0.0017
0001001 10.0645 13 0101110 |0.0017
0010000 |0.0623 14 0100100 10.0011
0100000 |0.0474 15 1001110 0.0011
1001000 [0.0452 16 0110100 {0.0006
0101000 [0.0138 17 0010100 |0.0006
0110000 [0.0066 18 0001100 |0.0006

© 00~ O Gt W N

Out of 96 possible patterns, we observed 18 patterns. It can be seen from the
table that there are two dominating patterns: one in which the slot values are
overwritten to the same values, and another in which there is no change to the
slot values. This leads us to believe that the transition from DS2 to DS4 would
be more probable than DS1 to DS3 in Fig. 4.3 because the former corresponds to
pattern 2 with the probability of 0.2964 (no change in the slots) and the latter
matches pattern 6 with the probability of 0.0623 (deleting the value of a slot being
confirmed). It is intuitive that no change in the slots was very likely because,
considering the transition of reference dialogue states, once the true intention of
the user has been recognized, slot values should not change as long as the intention
of the user is consistent, which is the case in our scenario-based dialogues.

Table 4.4 shows the update patterns found in the corpus of the weather do-
main. We found 23 patterns in all. Overall, the tendency of the observed patterns
and their probabilities are similar to that in the train domain. The patterns that
are unique in this domain are mostly the ones that conform to attribute 5; i.e.,
whether slots that have values are overwritten. As mentioned, the user’s intention
is not supposed to change during a dialogue; however, since the subjects often
had to seek information for multiple places/dates in the scenarios of this domain,
they sometimes changed their intentions in the middle of a dialogue largely for
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Table 4.4: The 23 dialogue state update patterns and their occurrence probabil-

ities in the weather information service domain.

# Pat. | Attributes (1-7) | Prob || # Pat. | Attributes (1-7) | Prob
1 0000110 |0.3096 13 0000001 |0.0072
2 0000000 {0.2962 14 0110000 {0.0062
3 0001000 }0.08%0 15 0100100 |0.0053
4 0100000 10.0766 16 0000100 |0.0038
5 0001001 |0.0679 17 1001110 ]0.0033
6 0001110 [0.0244 18 1000100 {0.0019
7 0100110 }0.0244 19 0001100 |0.0014
8 0010000 10.0239 20 1010000 {0.0010
9 0101000 0.0230 21 0010100 10.0010
10 1001000 {0.0134 22 0110110 {0.0005
11 0101110 |0.0124 23 0011000 |0.0005
12 0010110 [0.0081

the purpose of avoiding repeated misrecognition.

4.5.5 Evaluation
4.5.5.1 Offline Discourse Understanding

We propose evaluating our approach by offline discourse understanding, in which
we make the discourse understanding component that we want to evaluate process
sequences of user and system utterances as they are recorded in the corpus. The
discourse understanding performance is evaluated by the ranking accuracy of the
dialogue states that the component outputs after each user utterance. Although
we naturally believe that an online evaluation, in which dialogue experiments are
performed by human subjects using a system based on our approach, is preferable,
considering that a dialogue state is a system’s interpretation of what has happened
in a dialogue, we consider it reasonable to evaluate discourse understanding by
how accurately the system makes sense of a recorded sequence of user and system
utterances.
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Suppose that the corpus has a dialogue as illustrated in Fig. 4.2. In offline
discourse understanding, the initial dialogue state (DS0) is updated by the system
prompt (S1). Then, the user utterance Ul is taken from the corpus to update
the dialogue state using the dialogue acts for Ul. Here, the dialogue acts can be
those recorded in the corpus, re-parsing results of the recorded speech recognition
hypotheses, or those newly created by re-understanding the utterance from the
recorded voice. If the system derives m dialogue acts for the utterance, the
system would create m dialogue states (List-1). After the m dialogue states are
updated by the system’s back-channeling act (S2), n dialogue acts for U2 update
the dialogue states to create m x n dialogue states (List-2). Finally, we evaluate
the ranking accuracy of List-1 and List-2.

Although offline discourse understanding does not require human subjects, it
can still be computationally expensive when the number of utterances to process
is large because all utterances in the corpus have to be sequentially processed to
create the lists of dialogue states. Even if the dialogue state beam width is set
to 100, when the system uses 10-best speech recognition hypotheses for language
understanding, as many as 1,000 dialogue states can be created at a time. This
computational cost especially hinders experiments with varying parameters. Our
idea for coping with this shortcoming is to prepare in advance lists of possible
dialogue states after each user utterance using a default set of parameters and
just re-rank the stored lists of dialogue states when we need to evaluate with
different parameters. The lists of dialogue states would be different when other
sets of parameters are employed because of the accumulative nature of the score
of a dialogue state (cf. Eq. 4.1). However, such lists would still be useful for
comparing the performance of different discourse understanding methods because
we can evaluate them by their relative ranking performance; i.e., the method that
ranks dialogue states in the most suitable order can be considered to be better
than others.

We prepared lists of dialogue states after each user utterance in the corpus.
We modified the discourse understanding components of the systems used in the
data collection to handle multiple dialogue states and made them sequentially
understand the utterances in the corpus. Here, the utterances mean the dialogue
acts as they are stored in the corpus. A user utterance is represented by the
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dialogue acts for the 10-best speech recognition hypotheses.

For the ranking of dialogue states, we used Eq. 4.1 with the weighting factors
a =1, 06 =0, and v = 0, which means that the ranking was purely based
on the score of dialogue acts. For s,, we used the common logarithm of the
posterior probability of a speech recognition hypothesis from which the dialogue
act originates. The posterior probability is estimated from acoustic and language
model scores as described in (Bouwman et al., 1999). We stored the top-100
dialogue states after each utterance. In the train domain, we have 1,815 lists of
dialogue states corresponding to the number of the utterances. In the weather

domain, we have 2,090 such lists.

4.5.5.2 Ranking Experiment

We re-ranked each list of the stored dialogue states using Eq. 4.1 with different
sets of weighting factors («, 3, and 7). We assumed that the weighting factors
take either 1 or 0 in this experiment because we wanted to investigate how the use
of the statistical information affects discourse understanding, We do not consider
the case where all the weighting factors are 0 because the ranking is impossible.

For s,», we use the common logarithm of the posterior probability of the
speech recognition hypothesis for a dialogue act. For spgrqm, we use the common
logarithm of the per word trigram probability for the dialogue act type sequence
corresponding to the current user utterance, the previous system utterance, and
the user’s previous utterance. Since an utterances may correspond to multiple
dialogue acts, the sequence would include three or more dialogue act types. For
example, an utterance “No, I'd like to go to Tokyo” would correspond to (deny)
and (refer-dest place=Tokyo). For Sypgare, We use the common logarithm of the

occurrence probability of the dialogue state update pattern.

4.5.5.3 Evaluation Criteria

Mean Reciprocal Rank (MRR) The MRR is a metric for evaluating rank-
ing performance. It is the inverse of the rank of the first correct answer in an
answer candidate list. This metric is commonly used in information retrieval and
question answering systems research, where the ranking of the answer candidates
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is important. Since we also evaluate ranking, we consider it an appropriate mea-
sure. To calculate the MRR, we only focus on the lists where there is a correct
dialogue state because we are interested in whether a correct dialogue state can

be ranked higher using the statistical information.

Slot Accuracy Even though good ranking would mean better discourse under- ’
standing, it is also desirable that the slot values of the top ranked dialogue state
be accurate. Therefore, we calculate the slot accuracy of the top ranked dialogue
states. The slot accuracy is calculated by dividing the number of correctly filled

slots over the number of slots.

Concept Error Rate (CER) We also calculate the CER of the slot values of
the top ranked dialogue states because the CER is commonly used in speech un-
derstanding research. The CER is calculated by dividing the number of incorrect
slots by the number of filled slots. Although Higashinaka et al. (2004) proposed
creating a measure for discourse understanding by finding a measure that cor-
relates closely with the performance of a dialogue system, the measure assumes
that the system holds a single dialogue state. The best measure they propose
is based on the precision of the update of a dialogue state (called update preci-
sion), which is difficult to calculate when a system has multiple dialogue states
because it is not clear whether the sequence of dialogue states with a different
understanding history can be used to calculate the update precision. We leave
it our future work to find an appropriate measure for discourse understanding
based on multiple dialogue states.

4.5.5.4 Results

For evaluation, we split the corpus into five sets and performed a five-fold cross
validation, extracting the statistical information from four sets and evaluating
with the remaining set in a round-robin fashion. For the calculation of the MRR,
we used 850 and 878 lists that contained correct dialogue states in the train
and weather domains, respectively. We found a large number of dialogue state
lists that did not contain correct dialogue states because of many speech recog-
nition failures. For example, if all the speech recognition hypotheses contain
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Table 4.5: Evaluation results for each combination of the weighting factors in the
train ticket reservation (TRAIN) and weather information service (WEATHER)
domains.

Weights TRAIN WEATHER

a B v MRR ACC CER MRR ACC CER

1 0 010676 0.769 0.405 0.748 0.686 0.508

0 0 11 0.678**0.767 0.393 0.769** | 0.695* | 0.495*

0 1 0} 0.738**|0.787* |0.362* 0.693 0.689 0.441%*

0 1 1] 0.734**|0.789* |0.350** || 0.735% |0.692* | 0.451**
1 0 1] 0.691**|0.767 0.393 0.771** | 0.695 0.495

1 1 0} 0.747%% | 0.791** | 0.359** || 0.722 0.697 0.433**
1 1 1} 0.745%% | 0.792*%* | 0.344** || 0.750** | 0.697** | 0.446**

** Statistical significance (p<0.01) over baseline (o =1, f =0, v =0)
* Statistical significance (p<0.05) over baseline (o =1, § =0, v = 0)

words/concepts that would fill the slots in a wrong way, all resulting dialogue
states would be incorrect. For the slot accuracy and the CER, we used all top
ranked dialogue states in the whole lists of dialogue states.

Table 4.5 shows the evaluation results for the combinations of the weighting
factors in the train and weather domains. Here, the baseline is the one that
solely relies on the speech recognition confidence (o =1, 8 =0, v = 0). For the
statistical comparison of the MRRs, we performed a sign test that compares the
number of times a combination of weighting factors ranks the correct dialogue
state higher than the baseline. For the slot accuracy and the CER, we calculated
the mean of the slot accuracy and the CER for each dialogue and compared the
number of dialogues that had the better mean of the slot accuracy or the CER.

It can be seen from the table that when we use the statistical information
together with the speech recognition confidence (a = 1, 8 = 1, v = 1), we achieve
the best performance with all evaluation criteria significantly better than the
baseline in both domains, showing the effectiveness of using both the probability
of a dialogue act type sequence and the dialogue state update pattern. In other
combinations of weighting factors, the effects of the statistical information seems
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to be limited, making improvements in some of the evaluation criteria with the
exception of [@ = 1, 8 =1, v = 0] in the train domain, which shows comparable

performance to [a =1, =1, v =1].

Overall, the train domain benefited more from the use of the statistical infor-
mation. We consider this is due to the ambiguity of dialogue acts that resides
in the train domain; i.e., utterances with bare place names would yield multiple
dialogue acts referring to places of departure and destinations. On the other
hand, the ambiguity of utterances solely come from the multiple speech recogni-
tion hypotheses in the weather domain. This is demonstrated by the fact that
the use of the trigram probability of a dialogue act type sequence (8 = 1) does
not affect the results as much as the probability of a dialogue state update pat-
tern does (7 = 1) in the weather domain; that is, there seems to be less need to
disambiguate dialogue acts. In some cases, understanding based on only the sta-
tistical information (o = 0) is better than relying only on the speech recognition
confidence, probably due to numerous speech recognition errors.

4.5.5.5 Impact of the Dialogue State Beam Width

We calculated the MRR by placing a limit on the maximum number of dialogue
states to hold (dialogue state beam width). For example, when we set the dialogue
state beam width to N, only the dialogue states within the top-N are considered in
the re-ranking process. By changing the dialogue state beam width, it is possible
to examine how the number of dialogue states could affect ranking accuracy.

Figure 4.6 shows the performance changes in the MRR with different dialogue
state beam widths. We used a =1, # =1, and v = 1 as the weighting factors. It
can be seen that as the system holds more dialogue states, the MRR improves.
However, the improvement begins to saturate when the dialogue state beam width
is around 10, indicating that this could be the sufficient number of dialogue states.
This result re-confirms that having multiple dialogue states can actually improve
discourse understanding and that the system with multiple dialogue states could
work in real time because the number of dialogue states to hold could be as few
as 10, which does not impose a computational problem.
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0.78 — | |
TRAIN —+—

0.77 | WEATHER - |

0.76 | ]

MRR

0.7 L 1 1 1 !
1 3 5 10 20 50 100

Dialogue state beam width

Figure 4.6: Performance changes in the Mean Reciprocal Rank (MRR) with
different dialogue state beam widths in the train ticket reservation (TRAIN) and
weather information service (WEATHER) domains. The x-axis is on the log

scale.

96



4.5. Experiment

4.5.5.6 Analysis of Successful Cases and Failures

We examined the instances of the ranking results to see what improvement had
been made by the statistical information and whether further improvement can
be made.

Figures 4.7 and 4.8 show a case where the statistical information is success-
fully exploited. In this piece of dialogue, the user said “Hikari hyaku niji kyi
g6 (Hikari express number 129)”, whose best speech recognition hypothesis was
“Hikari nihyaku niji kyd g6 (Hikari express number 229)”. After this utterance,
the correct dialogue state which was updated using the third speech recognition
hypothesis “Hikari express number 129” was ranked second in the dialogue state
list. The top dialogue state was the one updated with the best speech recog-
nition hypothesis. Then, the next system utterance “Hikari nihyau niji kyi go
desune? (Did you say Hikari express number 2297)” and the next user utterance
“Chigaimasu (No)” were processed to update the dialogue states. As a result,
the dialogue state that was updated from the second-ranked dialogue state came
to the top. This is achieved by the high probability of the dialogue act type
sequence and the dialogue state update pattern, showing that the understanding
example in Fig. 4.3 actually took place.

Figures 4.9 and 4.10 show a typical case where the statistical information has
an adverse effect. In this piece of dialogue, the user asked for the probability of
precipitation in Aomori prefecture. Since the speech recognition for this utter-
ance was good, the best dialogue state that solely relies on the speech recognition
confidence is correct. However, when we use the statistical information, the best
dialogue state is the one updated with the third speech recognition hypothesis.
This happened because the previous user utterance referred to a city and the
third hypothesis also refers to a city, which boosted the probability of a dialogue
act type sequence. We found a number of such cases where the correct speech
recognition does not yield the best dialogue state because of some dialogue act
sequences that are unlikely but do happen in actual dialogue. In many cases
of failure, the contextual information is too strong and hinders straightforward
understanding of the correct speech recognition results. We suspect that opti-
mizing or dynamically changing «, 3, and v would lead to better ranking, but

this remains future work.
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User and System Utterances:

4 N
Ul Hai (Yes)
S1 Dono ressha desuka? (Which train type?)
U2 Hikari hyaku nijii kyli g6 (Hikari express number 129)
S2 Hikari nihyaku niji kyG go desune?
(Did you say Hikari express number 2297)
U3 Chigaimasu (No)
N J

Speech recognition Hypotheses for U2:

1. Hikari nihyaku niji kyd gé (Hikari eXpress number 229)

[recognition confidence: 0.1091]

2. Chigau hyaku nijd kyi g6 (No, number 129)

[recognition confidence: 0.1072)

3. Hikari hyaku nijd kyd go (Hikari express number 129)

[recognition confidence: 0.1067]

Figure 4.7: A typical case where the statistical information is successfully ex-
ploited. See also Fig. 4.8 for how dialogue states are updated in this piece of dia-
logue. Recognition confidence means the posterior probability of a speech recog-

nition hypothesis estimated from acoustic and language model scores (Bouwman
et al., 1999).
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<The 2nd-ranked dialogue state after U2 (a =1, 8=1,v = 1)>:

Dialogue State ID: 3400 (Parent Dialogue State ID: 1900)

Accumulated Score: -13.185 ( Score: -2.741 ]
Dialogue Act History: Sect 1 -0.972 Spgram : -1.393 Sipaie : -0.376

[(acknowledge)] — [(ask-type)] = [(refer-type type=Hikari)(refer-number number=129)]

Previous Frame: grounded Current Frame: grounded
origin | Shin-Kobe | yes origin | Shin-Kobe | yes
dest. | Okayama | yes dest. | Okayama | yes
date (17) yes date (17) yes
type -- no type Hikari no

number 129 no number 129 no
<The top-ranked dialogue state after U3 (a=1,8=1,v=1)>

Dialogue State ID: 4292 (Parent Dialogue State ID: 3400)

Accumulated Score: -15.08 ( Score: -1.895 )
Dialogue Act History: Sect :-0.890 Spgram : -0.526 Sypdare : -0.479

[(refer-type type=Hikari)(refer-number number=129)]
— [(confirm-type-number type=Hikari number=229)] — [(deny)]

Current Frame: grounded

Previous Frame: grounded
origin | Shin-Kobe | yes origin | Shin-Kobe | yes
dest. | Okayama | yes dest. | Okayama | yes
date (17) yes date (17) yes
type Hikari no type Hikari no

number 129 no number 129 no

Figure 4.8: The 2nd-ranked dialogue state after U2 and the top-ranked dialogue
state after U3 in the piece of dialogue shown in Fig. 4.7.
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User Utterance:

Aomori-ken no kosui kakuritsu wo oshiete kudasai
(please tell me the probability of precipitation in Aomori prefecture)

Speech recognition Hypotheses:

1. Aomori-ken no késui kakuritsu oshiete kudasai
(Please tell me the probability of precipitation Aomori prefecture)
[recognition confidence: 0.1031]

2. Aomori-ken no késui kakuritsu wo oshiete kudasai
(Please tell me the probability of precipitation in Aomori prefecture)
[recognition confidence: 0.1012]

3. Aomori-shi no késui kakuritsu oshiete kudasai
(Please tell me the probability of precipitation Aomori city)
[recognition confidence: 0.1003]

Figure 4.9: A typical case where the statistical information has an adverse effect
because of strong contextual constraints. See also Fig. 4.10 for how dialogue
states are updated in this piece of dialogue.
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<The top-ranked dialogue state (o =1, =0, v =0)>:

Dialogue State ID: 262 (Parent Dialogue State ID: 32)
Accumulated Score: -2.852 [ Score: -0.987

Dialogue Act History: [Sac, :-0.987 Sgram : -2.745 S ypiate : -0.745]
[(refer-city place=Chitose city)(refer-city place=Habikino city)] = [(Back-channel)]

— [(refer-pref place=Aomori pref.)(refer-info type=precipitation)(request)]

Previous Frame: grounded Current Frame: grounded
place | Habikino City| no place |Aomoripref.| no
info -- no info | precipitation{ no
date -- no date -- no

<The top-ranked dialogue state (a =1, 8=1,y=1)>:

Dialogue State ID: 422 (Parent Dialogue State I1D: 32)

Accumulated Score: -12.668 [Score: -4.40% s ]
Dialogue Act History: Sacl : ‘0.999 ngram . ‘2745 update . '0658
[(refer-city place=Chitose city)(refer-city place=Habikino city)] = [(Back-channel)]

~— [(refer-pref place=Aomori city)(refer-info type=precipitation)(request)]

Previous Frame: grounded Current Frame: grounded
place | Habikino city | no place | Aomoricity | no
info - no info | precipitation| no
date ~- no date -- no

Figure 4.10: The top-ranked dialogue states with two different parameter sets;
namely, [@=1,8=0,v=0] and [@ =1, 8 = 1, v = 1] after the user utterance
shown in Fig. 4.9. Aomori city was incorrectly preferred to Aomori prefecture to
fill the place slot because the user’s previous utterance was recognized to have a

city name due to speech recognition errors.
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4.6 Summary and Future Work

We proposed a new discourse understanding method that ranks multiple dialogue
states using statistical information obtained from dialogue corpora. The method
uses the trigram probability of dialogue act types and the probability of dialogue
state update pattern in addition to the speech recognition confidence of a dialogue
act to score a dialogue state. Experimental results in the train ticket reservation
domain and the weather information service domain show that our approach can
significantly improve the ranking of the dialogue states. We also confirmed that
it is effective to hold multiple dialogue states for discourse understanding and
that the sufficient number of dialogue states to hold could be as few as 10.
There still remain several issues that we need to explore. These include the
use of statistical information other than the probability of a dialogue act type
sequence and the probability of a dialogue state update pattern, the optimization
of the weighting factors (a, 3, and +), and more experiments in larger domains. It
should also be noted that the experiment we performed was an offline evaluation.
An online evaluation would be desirable for a more accurate evaluation. Despite

these issues, the present results show that our approach is promising.
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Conclusions and Future Directions

In our research, we seek to improve discourse understanding in spoken dialogue
systems so that systems and users can interact more naturally using speech. Dis-
course understanding refers to a system’s ability to understand user utterances
based on the context of a dialogue. Until now, discourse understanding has been
performed in a heuristic manner because the primary importance has been place
on developing workable systems. However, as systems become increasingly com-
plex, systematic methods are needed if we are to achieve continuous progress in
the field and also reduce the cost of system development. This thesis proposed
three such methods/approaches to tackle three problems in discourse understand-
ing in spoken dialogue systems. In what follows, we summarize the contributions

of this thesis and mention future work.

5.1 Summary of Contributions

5.1.1 Establishment of an Evaluation Measure for Dis-

course Understanding

We successfully created suitable evaluation measures for discourse understanding
in spoken dialogue systems. We enumerated possible metric candidates for the
evaluation of discourse understanding and calculated their correlation with the
system’s performance through dialogue experiments. As a result, the update re-
call, frame match rate, and update precision were shown to have relatively good

correlation with system performance, suggesting they are appropriate as evalua-
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tion measures. We also found that the F-measure, which is the harmonic mean
of update recall and update precision, is also a good measure. By using these
measures, we can now safely compare discourse understanding components of var-
ious systems and thereby advance discourse understanding research. Although
we have not yet put the evaluation measures we created into practice, we plan to

use the measures to evaluate our prospective systems.

5.1.2 Improvement in Confidence Scoring of Intention Re-

cognition Results Using Discourse Information

We successfully showed that discourse information is useful for improving confi-
dence scoring of intention recognition results. Although confidence scoring itself
does not directly improve discourse understanding performance, accurate confi-
dence scoring would make it possible for the discourse understanding component
to automatically reject erroneous slot values and also to ground certain slot values
without explicit confirmations requested by the dialogue manager, which would
result in better discourse understanding performance.

In our approach, we used Grice’s maxims of cooperativeness, which are the
norms that should be followed in a collaborative conversation, to derive discourse
features for slot values. We utilize these discourse features together with the
acoustic and language model features of the speech recognition results to train
confidence models for slot values. Experimental results showed that the proposed
method significantly improves the confidence scoring, indicating the effectiveness
of the discourse features.

5.1.3 Automatic Disambiguation of User Intentions Using
Corpus Statistics

We successfully showed that the statistical information that can be derived from
dialogue corpora are useful for disambiguating possible interpretations of user
intentions. Due to the multiple speech recognition hypotheses created by speech
recognizers and the ambiguity in natural language, a spoken dialogue system has
to choose the best interpretation from multiple possible interpretations. This
corresponds to ranking multiple dialogue states. Previously, the ranking has
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been performed by hand-crafted rules, which are expensive to make and require
expertise in system development.

We assumed that the best dialogue state is the one that has seen the most
likely sequence of dialogue acts and dialogue state updates, and derived an N-
gram language model of dialogue act types and the transition probability of dia-
logue state updates from dialogue corpora. We used these two kinds of statistical
information to score dialogue states for ranking. Experimental results showed
that the statistical information can improve the ranking performance. Although
the ranking performance achieved by our approach may not be superior to that
achieved by carefully created hand-crafted rules, our approach offers a promis-
ing first step for automatically disambiguating user intentions in spoken dialogue
systems.

5.2 Future Directions

5.2.1 Incorporating Confidence Scoring into Ranking Di-

alogue States

Although the purposes may be different (error detection vs. disambiguation), it
is noticeable that the work of confidence scoring of intention recognition results
described in Chapter 3 and that of ranking multiple dialogue states described
in Chapter 4 bear similarity because they both evaluate the plausibility of the
system’s understanding results. Therefore, it may be possible to use the confi-
dence scores of intention recognition results for the ranking of dialogue states and
also to use the corpus statistics for the confidence scoring of intention recognition
results.

However, we need to take into account several differences in the two ap-
proaches before such integration can take place. First of all, the former focuses
on intention recognition results (slot values) and the latter on dialogue states.
Although an intention recognition result forms an important part of a dialogue
state, a dialogue state contains many other pieces of information, such as the -
history of user and system utterances. Therefore, it may not be possible to rep-
resent a dialogue state with the small number of features used for the confidence
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scoring of intention recognition results. Similarly, considering the complexity of
values that a dialogue state may take, we may need a large amount of data if we
want to train confidence models for dialogue states because of the data sparseness
problems.

Another difference lies in the criteria that we used for scoring. For the con-
fidence scoring of intention recognition results, Grice’s maxims, which provide
intuitive principles in a cooperative dialogue, are used. On the other hand, cor-
pus statistics are used for the scoring of dialogue states. Since Grice’s maxims
offer a fixed criterion based on a theory in pragmatics and corpus statistics derive
criteria empirically from data, the former can be regarded as taking a top-down
approach and the latter as taking a bottom-up one. Although Grice’s maxims and
corpus statistics can be naively integrated, since they are derived from different
perspectives, it would be necessary to examine their characteristics, similarities,
and differences as a first step. In addition, the understanding models are different
in the two approaches. The system is assumed to have a single dialogue state in
Chapter 3, whereas multiple dialogue states are assumed in Chapter 4. It is not
clear whether the features based on Grice’s maxims can be derived successfully
for multiple dialogue states. It is likely that sequences of slot values may differ
greatly in the two approaches.

Taking these differences into account, we should investigate possible ways to
integrate the two approaches for further improvement.

5.2.2 Handling Other Discourse Phenomena

The primary emphasis of this thesis is on understanding error-prone user utter-
ances using discourse information. Such understanding capability is essential for
workable systems because, according to (Lippmann, 1997; Mori, 2007), speech
recognition errors are unlikely to be eliminated in the near future and can easily
become a bottleneck for other processes in spoken dialogue systems. We believe
more work has to be done to reduce understanding errors caused by misrecogni-
tion.

In addition to being able to understand utterances containing speech recogni-
tion errors, spoken dialogue systems are expected to possess other discourse un-
derstanding capabilities. One is the capability is to perform anaphora/reference
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resolution. Successfully understanding anaphoric expressions, such as it, he, or
she, would facilitate users in stating their requests in a concise and efficient man-
ner, improving the usability of speech interfaces. Functions to handle ellipsis
(omitting a part of a sequence) and zero anaphora (gaps in sentences that have
an anaphoric function) would also be important for similar reasons. Although
there is a body of research on reference resolution (Lappin and Leass, 1994; Iida
et al., 2007; Isozaki and Hirao, 2003), the methods mainly focus on written dis-
course and are therefore unlikely to be directly applied to speech due to differences
between texts and speech. In current spoken dialogue systems, reference resolu-
tion is done by hard-crafted rules (Filisko, 2002). However, as studies of text
processing indicate (op den Akker et al., 2002), the accuracy can be limited. A
systematic method is desired for improvement.

In discourse processing, it is important to find relationships between elements
in a discourse. For example, in text processing, finding a relationship between
sentences/paragraphs has been found useful in many NLP tasks, such as auto-
matic summarization (Dang, 2006) and question answering (Dang et al., 2007).
Rhetorical Structure Theory (RST) (Mann and Thompson, 1988) is often used
for representing a discourse structure, and automatic detection of RST relations
has been widely studied (Marcu and Echihabi, 2002; Soricut and Marcu, 2003).

In spoken dialogue processing, much work has been done on finding relation-
ships between utterances, which corresponds to assigning dialogue act type tags
to utterances. For example, in the switchboard corpus (Godfrey et al., 1992),
utterances are tagged with a SWBD-DAMSL tag-set, which defines an utter-
ance’s relation to its previous one (Jurafsky et al., 1997). Recent spoken dialogue
systems perform automatic dialogue act type detection to improve speech under-
standing (Nagata and Morimoto, 1994; Reithinger and Maier, 1995). In fact, our
approach is one example of such detection in that it utilizes dialogue act type
N-grams for ranking multiple dialogue states (see Chapter 4). However, due to
difficulty in modeling discourse structures of spoken dialogue and defining dia-
logue acts, application of dialogue act type detection has been limited to a small
portion of a discourse (at most a few utterances), and dialogue act types con-
sidered are mostly domain specific. With further studies, we will probably see
the development of spoken dialogue systems that can fully understand the entire
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structure of a discourse.

In this thesis, we did not cover plan recognition (Allen and Perrault, 1980;
Carberry, 1990), which is essential for accurately recognizing user intentions. Cur-
rently, there are no well-established techniques for performing plan recognition
under uncertain input. Recent reports have proposed statistically performing
plan recognition in spoken dialogue systems (Allen et al., 2007). We will keep
abreast of these studies and investigate ways ourselves for realizing robust plan
recognition for spoken dialogue systems.

5.2.3 Towards More Conversational Spoken Dialogue Sys-

tems

This thesis focused on task-oriented spoken dialogue systems, and the tasks han-
dled are limited to relatively small domains, such as meeting room reservation
and weather information services. However, it would be desirable for systems to
be able to handle a wide variety of domains simultaneously so that users would
not need to select systems depending on their needs. Several attempts have been
made to enable systems to handle multiple domains (Ikeda et al., 2007). However,
it is still an emerging field. Since topics vary in human-human interaction, an
ability to cope with multiple domains would make current systems more conver-
sational and easier to interact with.

In addition, there is a good body of research in the field of question answering;
that is, to answer questions in natural language by extracting relevant pieces of
texts from text archives (Dang et al., 2007). Since many types of questions, from
factoid questions that ask for named-entities, such as proper nouns to numerical
expressions, to non-factoid ones that ask for reasons and procedures, can be
answered with current techniques (Isozaki, 2005; Higashinaka and Isozaki, 2008),
incorporating question answering capability into dialogue systems would allow
systems to cover a wide variety of topics and could offer a promising direction
towards more conversational systems. To date, there have been several systems
equipped with a question answering functionality (Cincarek et al., 2007; Misu
and Kawahara, 2007; van Schooten et al., 2007).

Spoken dialogue systems could serve many other purposes than just task ac-
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complishment. For example, they are good media for social interaction, such as
casual conversation or chats (Eggins and Slade, 1997). Realizing such interaction
could make systems important partners in our daily lives, enabling exchanges of
not just information but also emotion. We believe studies in psychology and so-
ciology would play key roles in realizing systems that enable such an interaction.
Recently, the field of persuasive computing is emerging (Fogg, 2003), in which
machines are regarded as means to influence people’s attitudes. Although little
work has been done on the effects of dialogue systems on people’s attitudes, we
consider it would become one of the most important issues in the future.
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