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ABSTRACT
This paper proposes hybrid dialogue control of both trigram and 
POMDP dialogue controls by extending our proposed method that
uses two approaches: automatically acquiring POMDP structures
and rewards for target dialogues through Dynamic Bayesian 
Networks (DBNs) with a large amount of dialogue data and
reflecting action predictive probabilities into the POMDP 
structures. In this extension, we modify the action predictive 
probabilities to treat trigram dialogue controls. Experimental 
results show that the proposed method can treat a trigram dialogue 
control with robustness for erroneous conditions and can 
simultaneously maximize trigram probability and the dialogue 
evaluations obtained from users. 
Index Terms—Stochastic processes, Stochastic 
approximation, Cooperative systems, Stochastic automata,
Intelligent robots

1. INTRODUCTION
Our research goal is to automatically acquire a conversation
system’s action control strategy for spoken dialogues. Here, we 
assume that the dialogue structure is unknown. Under this situation, 
the system must create and establish action control strategies based 
on a large amount of data for system-to-human or human-to-human 
communications. Several statistical models have been proposed for 
treating this situation [1-6]. POMDPs play an effective role in 
making decisions about selecting the most statistically reliable and 
available actions by observing speech with uncertainty. Dialogue 
controls using POMDPs exist for buying train tickets [7-8], for 
weather information dialogues [9], for digital subscriber line 
troubleshooting dialogues [10], and for the action control of robots 
by human speech and gestures [11]. Since these systems are based 
on task-oriented dialogue control and we know how the system 
should work, setting rewards and calculating transition 
probabilities are easy. However, if we do not know how the system 
should work, as in person-to-person communication, we have to 
estimate this with a large amount of data. The problem is how to 
create the POMDP structure from such a large amount of data. 
Although Fujita solved this problem with dynamic Bayesian 
networks (DBNs) to model a POMDP structure with a great deal of 
data, their task was simple and task-oriented [12]. 

Our proposed method automatically obtains the emission and 
observation probabilities of hidden states with a dynamic Bayesian 
network (DBN) based on expectation-maximization (EM) from a 
large amount of data [13]. Then it sets rewards for the POMDPs
and performs value iteration to train a policy. In addition, our
method introduces extra hidden states that match actions with one-
to-one correspondence and sets the POMDP rewards to maximize 
the predictive probabilities of the hidden states using value 

iteration. With this procedure, dialogue control can generate an 
action sequence by reflecting the statistical characteristics of the 
training data. The proposed method is a hybrid method of an 
ordinary POMDP-based method and a probability-based method. 
Although Henderson has proposed a hybrid method of a 
reinforcement training method and a probability-based method [14],
it only treats MDP conditions not POMDP conditions.

Dialogue action controllers using trigram models have also 
been proposed [15-16]. They select the action that maximizes the 
predictive probabilities for future action and observation sequences. 
Although the frameworks of POMDPs and trigrams seem similar, 
no studies have combined the two methods. In this paper, we 
extend our method so that it can cope with trigram dialogue 
statistics. Since one of the merits of POMDPs is input error 
robustness, we investigate our method in terms of this point. Our 
method is compared with the dialogue controllers using trigram 
models with actual dialogue data. In addition, we investigate 
whether our system can simultaneously maximize trigram 
probability and dialogue evaluation measurement obtained from 
users.

A general POMDP is presented in Section 2, our dialogue 
control using a POMDP and trigram models using our POMDPs 
are described in Section 3 and 4, the dialogue data used in this 
paper are shown in Section 5, and the evaluations of our action 
control algorithm are provided in Section 6. Finally, a discussion, 
future work, and a conclusion are given. 

2. PARTIALLY OBSERVABLE MARKOV DECISION 
PROCESS

A POMDP is defined as {S O A T Z R , and 
0
}b . S is a 

set of states described by Ss . O is set of observations o
described by Oo . A is a set of actions a described by 

Aa . T is a set of state transition probabilities from s to s ,
given a , Pr( )s s a . Z is a set of emission probabilities of o at 
state s , given a , Pr( )o s a . R is a set of expected rewards 
when the system performs action a at state s , ( )r s a .. The 
basic structure employed is shown in Fig. 1. The rhomboids show 
the fixed values, the dotted circles show the hidden variables, the 
solid circles show the observed variables, and the solid squares 
show the system actions.

In POMDPs, since states can’t be directly observed, as in 
HMMs, we can only discuss their distribution. Here, suppose that
the distribution of states 1( )tb s is known. Using the transition 
and emission probabilities, the distribution update is performed by

1( ) Pr( ) Pr( ) ( )t t
s

b s o s a s s a b s (1)

where is a factor so that the distribution summation is one. 
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Fig. 1 POMDP structure

If the initial value of b is set as 0b , can be obtained iteratively 
using a recursive equation. With this distribution, the average 
discounted reward at time t, which is the objective function, can be 
obtained as 

0
( ) ( ) ,t tt

s
V E b s r s a (2)

where is a discount factor. POMDP obtains the optimal policy, 
which is a function from ( )tb s to action a , by maximizing the 
average discounted reward in respect to . In infinite time, the 
optimal value function tends to reach the equilibrium point in an 
iterative manner called the value iteration [17-19]. Although this 
value iteration obtains the optimal policy, it is time consuming. 
PBVI is comprised of one approximate solution technique [20-21]. 

3. HYBRID DIALOGUE CONTROL USING POMDPS
We previously proposed hybrid dialogue control of ordinary 
POMDP-based and probability-based dialogue controls. This 
section briefly explains this dialogue control.

3.1 Dialogue control goal

Our dialogue control assumes two conditions. One is that the 
statistics of the data are unknown and have to be estimated with 
training data. The other is that the data contain a set of dialogues 
we would like the system to achieve. Using them, we hope to 
achieve two purposes: having the system perform the target action 
sequences, and having the system perform the action sequences 
that reflect the data’s statistical characteristics. We proposed a 
hybrid dialogue control [13] obtained from four methods to resolve 
the above issues: 
(1) Automatically acquiring POMDP parameters
(2) Obtaining rewards that generate target dialogues
(3) Reflecting action predictive probabilities into POMDP 

structures
(4) Obtaining rewards for hybrid dialogue control and its policy

For (1) we use the DBN structure described in 3.2. For (2) 
and (3), we use two rewards: 1r and 2r . In 3.3 and 3.4 we 
describe these rewards settings. 

3.2 Automatically acquiring POMDP parameters and 
obtaining a policy for target dialogues

We proposed the POMDP training procedure shown in Fig. 2 [13].
POMDPs are required for training the transition probabilities, the 
emission probabilities, and the rewards described in the previous
section. Ordinary dialogue systems assume that the probabilities 
and the rewards are given. In this paper, these parameters are
automatically trained from the data. The corresponding DBN (Fig. 
3) is used to train the probabilities in the POMDP. The DBN 
structure is constructed and trained by the EM algorithm and
converted into the POMDP structure. After this, POMDP rewards 
are obtained. Finally, value iterations are performed to obtain a 
policy:

Fig. 2 Flow of training POMDP parameters and policy

3. 3 Obtaining rewards that generate target dialogues 

The probabilities used in a POMDP can be obtained from the DBN 
structure. However the problem of calculating the rewards remains; 
this can be solved as follows. After the dialogue, the user evaluates 
whether the dialogue satisfied the given questionnaires by looking 
at its sequence. For example, our questionnaires asked whether the 
dialogue has closeness (familiarity). Based on this result, the user 
scores it. These scores are converted into rewards using variable 

.

Fig. 3 DBN structure corresponding to POMDP

The following processes were used to make rewards and a
POMDP for the target dialogue data: 
(1) The positive evaluation score is set to the target data as variable 

.
(2) A DBN is trained. d is also treated as a random variable. 
(3) The DBN is converted to a POMDP, where we convert d

d

d
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values and d ’s probabilities into POMDP fixed rewards by
1

1
0

( ) Pr( )
d

r s a d d s a (3)

(4) We set the reward into the POMDP structure. 

If a state generates target dialogue data at a higher probability, the 
state should obtain higher rewards. 

Fig. 4 DBN that reflects action predictive probabilities in 
action control

Fig. 5 POMDO that reflects action predictive probabilities 
in action control 

3.4 Reflecting action predictive probabilities in POMDP structures

In dialogue control, naturalness is critical. We assume that if the 
system generates actions based on the statistics of the data, the 
actions are natural. To reflect action predictive probabilities, we 
introduce extra hidden DBN and POMDP states to those in Figs. 1
and 3 as ( )o as s s (Figs. 4 and 5). os is identical as the 
previous state in Figs. 1 and 3. as is introduced for estimating the 
predictive probability of action a and for selecting a to 
maximize the predictive probability. This selection is performed by 
following the reward settings. This method is an extension of the 
one described in the previous section. Due to increased parameters, 
the following probability approximations are used (Fig. 4):
Pr( ) Pr( ) Pr( ),a a o o os s a s s s s a s and (4)

(5)

With these approximations, ( )
t

b s can be written as

( ) ( )

Pr( ) Pr( ) Pr( ) Pr( ) ( ),
t t

a o a t o a
s

o a

o a o o

b s b

o s s s s s s a a s b s s

s s

(6)
Note that although the original formulation described in [13] 
ignores factor Pr( )aa s , it is important because after the policy 
selects an action, it is fixed; it is no longer probabilistic. In this 
paper, we apply this information to the hidden states for actions. 

The corresponding objective function can be written as 

0
( ) (( ) )

t t o a o a tV E b s s r s s a
s

(7)

We introduce rewards into (7) so that if ( )t ab s is high, the
POMDP may obtain a higher reward. If aa s ,we set 
Pr( ) 1aa s in the DBN (Fig. 4) so that as corresponds one-on-
one with a . Based on this, if t aa s is given, we obtain 

1 1 1Pr( … )t t ta o a a o

1 1 1Pr( ) Pr( … )
a

a at t t
s

a o a a os s (8)

1 1 1 1Pr( … ) ( )a t t t t as o a o a o b s (9)
where

1 1 1 1( ) Pr( … ) ( )
o

t a a t t t t
s

b s s o a o a o b s (10)

These are for propagating the predictive probabilities of the actions 
into the probabilities of hidden states ( ( )t ab s ). Our objective here 
is to select ta so that the probability of ta is maximized when 

1 1 1 1… t t to a o a o are given. The rewards must be set to 
satisfy this result because they must be set by maximizing (10). To 
do this, we set 2 ( ( ) ) 1ar s s a when as a , where * is 
arbitrary os . Otherwise, 2 ( ( ) ) 0ar s s a .

3.5 Obtaining rewards for hybrid dialogue control and its 
policy

To obtain final rewards for hybrid dialogue control we replace r
in (7) into 1 2r r as 

1 2( ) (( ) ) (( ) );o ar s a r s a w r s a (11)
we obtain new objective function tV with the POMDP structure 
shown in Fig. 5 and modify reward definition described in (3)
using * so that we can handle extra hidden states as . The POMDP
policy is then trained by value iteration. Using this formulation, the 
POMDP can select the action that simultaneously gives higher 
predictive probability of the action and obeys the target dialogue 
sequence.

4. EXTENTION TO TRIGRAM DIALOGUE MODEL
In this section we describe how to model trigram dialogue control 
in POMDPs.

Pr( ) Pr( )oo s a o s

1r
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4.1 General trigram model for action control

From past research [14-15], this formulation

1 1 1
,

arg Pr(max{ | , ) Pr( | , )}
t tt

t t t t t t t
a oa

a o o a a a o (12)

is used for estimating the next action; here suppose that to is a
category. We can modify this formulation. Assuming  that current 

to is directly observed, we obtain

1arg max{Pr( | , )}.
t

t t t t
a

a a a o (13)

Considering one-step future predictive probabilities and using 
summation with respect to to instead of maximization, we obtain 

1

1

1
,

1 1 1

arg[

Pr(

max {Pr( | , )

| , ) Pr( | , )}].
t tt

t

t t t t
a aa

t t t t t t
o

a

o

a a o

o a a a o
(14)

In this paper, we target this formulation. 

4.2 Treating trigram dialogue model in POMDP

Here we set oo s . If oo s , we set Pr( ) 1oo s in the 

DBN (Fig. 4) so that os corresponds one-on-one with o . Based 

on this, if t oso and
t oa s is given, we obtain

Pr( ) Pr( ) Pr( )

Pr( ) Pr( ),
ao o a os s a s s a s s s

o o a a a o
. (15)

This is the same formulation as the trigram predictive probability 
calculation process in one interaction described in the previous 
section. Using this formulation with 1(( ) ) 0or s a , we obtain a
target function that sums up the future trigram statistics for actions. 
The difference with the target function of the trigram model is that 
our model calculates the summation of the probabilities with 
appropriate future action decisions, and the trigram model 
calculates the best path with short future candidates. In addition, 
we introduce into the state update equation (6). This 
part is also different.

4.3 Treating uncertain input

One merit of POMDP is treating the uncertainty of such input as 
speech recognition and dialogue type recognition results. To treat 
such uncertain data, we set recognition accuracy to Pr( )oo s .
Using this formulation, o is the observed symbol with recognition 
error, and os is the true value of o .

5. DIALOGUE DATA
We used text dialogue data to evaluate our methods [22]. In this
dialogue, the user and system discuss likes and dislikes about 
animals (fireflies in this case), disclosing preferences and agreeing 
with each other. An example dialogue is shown in Fig. 6.

S1 Hello. (GREETING)
U1 Hello. (GREETING)
S2 Let’s talk about what kind of animals and insects we like.

(OPEN-DIALOGUE)
U2 Do you like insects? (Q-DISC-P)
S3 Do you like insects? (Q-DISC-P)
U3 I like fireflies. (DISC-P)
S4 You like fireflies. (REPEAT)
U4 I like fireflies because they glow. (DISC-P-R)
S5 I also like them very much. (DISC-AGREE-P)
U5 Why do you like them? (Q-DISR-R)
S6 I like them too. (DISC-AGREE-P)
They are fleeting. (DISC-R)
U6 I like them because they are beautiful. (DISC-P-R)
S7 I see. (ACK), 

I understand. (EMP)
I also think they are beautiful. (DISC-AGREE-R)
Can you tell me more about why you like fireflies?

(Q-DISC-R-OTHER)
U7 I like them because they glow at night. (DISC-P-R)

Fig. 6 Dialogue excerpt from our experiment.
S stands for system utterance, and U for user utterance. 
Dialogue acts corresponding to utterances are shown in 
parentheses. 

We defined 29 dialogue acts, which were used for action and 
observation labels. We list their major 22 dialogue acts below.

Self-disclosure: DISC-P, DISC-R, DISC-P-R, DISC-R-OTHER,
and RES. DISC-P is used to disclose proposition P. A proposition 
is either like (X,Y) or dislike (X,Y), meaning that conversational 
participant X likes animal Y or vice versa. DISC-R discloses 
reason R for some aforementioned proposition P. DISC-P-R
simultaneously discloses P and R, and DISC-R-OTHER discloses 
R in addition to the already mentioned reasons (e.g., “another 
reason is that. . . ”). We consider RES, which is a response to a 
yes-no question (i.e., Q-DISC-P), to be self-disclosure.

Agreement: DISC-AGREE-P, DISC-AGREE-R, EMP, and 
REPEAT. DISC-AGREE-P and DISC-AGREE-R show agreement 
to the propositions or reasons mentioned by the partner. EMP 
denotes an explicit empathic action (e.g., “I understand”), and 
REPEAT means the repetition of the partner’s previous self-
disclosure to show understanding.

Disagreement: DISC-DISAGREE-P and DISC-DISAGREER. 
They show disagreement to the propositions or reasons mentioned 
by the partner; e.g., saying “I don’t like cats” to a partner who has 
already disclosed that he/she likes cats.

Dialogue-control: GREETING, GOODBYE, OPENDIALOGUE, 
and Q-OPEN-DIALOGUE and CLOSE-DIALOGUE as dialogue-
initiating/ending acts. SHIFT-TOPIC introduces a new topic 
(animal) into the dialogue. 

Question: Four questioning acts, Q-DISC-P, Q-DISC-POPEN (an 
open question such as “how about cats?”), Q-DISCR, and Q-DISC-
R-OTHER, ask for propositions or reasons from the partner.

Acknowledgment: ACK acknowledges the partner’s utterance 
using back-channels.

Pr( )aa s

327



In the actual dialogues, participants expressed several utterances 
during the same turn. POMDPs and trigram models, however,
cannot handle multiple utterances. To avoid this situation, we 
insert label “eps” between the utterances of the same participant. 
After each dialogue, an annotator (not a participant) filled out a 
questionnaire (five-point Likert scale) that asked for subjective 
evaluations of the dialogue. The questionnaires asked about 
closeness. 

To simulate the input errors for checking the robustness of 
the methods, we used errors from the following dialogue act 
recognition. User utterances were first separated into word tokens 
using a Japanese morphological analyzer and converted into 
dialogue acts by understanding the grammar realized as a weighted 
finite state transducer (WFST) in a manner similar to [23]. We 
defined the sequences of words that formed dialogue acts and from 
them compiled a WFST that maps a sequence of words into a 
scored list of dialogue acts augmented with attribute-value pairs. In 
all, our grammar has a vocabulary of 2,276 words, including 1,005 
adjectives taken from the evaluative expression dictionary [24].

We annotated the user utterances with correct dialogue acts. 
A single annotator (not one of the authors) annotated each dialogue. 
The system’s dialogue act recognition accuracy (excluding DISC-
OTHER and OTHER) was 50%.

6. EXPERIMENTAL RESULTS
We evaluated our system under both error free and error conditions.

6.1 Experimental setting

We used 90 dialogue sequences for training the trigrams and the 
DBNs. The average turn length in a dialogue sequence was 38 
turns. The trigrams and the DBNs were trained separately. We 
confirmed that both sets of statistics are completely identical. We 
didn’t use a smoothing technique for estimating both sets of 
statistics to focus on the basic performances of both methods. The 
user actions were simulated by randomly selecting them based on 
the trigram statistics obtained from the training data. Using 
conventional models and the proposed methods, 1000 simulated 
dialogues were generated for evaluation.

6.2 Evaluation measure

We prepared two measures to evaluate the methods. One is the 
average trigram probability of the generated actions defined by

1 1

1

( | , )
1

i i i
t t tN

t

ii

P a a o

E
N L

, (16)

where N is the number of dialogues, iL , is the length of 
each one, and 1 1( | , )i i i

t t tP a a o is the training data trigram 
probability of 1

i
ta given 1,i i

t ta o . This measure checks 
how well the generated actions maximize the training data 
statistics. The other is the average user evaluation scores 
defined by

2

( , )
1

i

d a o

E
N L

t tN
t

i
, (17)

where ( , )d a o is the average user evaluation score for the 
observation and action pairs. Although user evaluations are 
affected by the dialogue histories, we assumed that the user 
evaluations for a system are strongly affected by the actions 
responding to the last user observation.

6.3 Experimental result under error free condition (without 
introducing closeness rewards)

We prepared the following three conventional methods:
(1) Random

Action is randomly generated by the following equation:

1( | , )t t t ta P a a o . (18)
(2) Trigram-0

Action is selected by the current trigram model such as

1arg max{ ( | , )}
t

t t t t
a

a P a a o . (19)

(3) Trigram-1
Action is selected by a one-step future trigram model such as

1

1

1
,

1 1 1

arg

(

[ max { ( | , )

| , ) ( | , )}].
t tt

t

t t t t
a aa

t t t t t t
o

a

P o

P a a o

o a P a a o
(20)

We prepared the following two proposed methods:
(4) POMDP ( 0.0 )
Although this is almost the same as Trigram-0, the parameters are 
automatically trained by value iteration.
(5) POMDP ( 0.7 )
Using this setting, POMDPs consider more future probabilities 
than Trigram-1.

Table 1 shows the 1E evaluation result for the conventional 
and proposed methods. Trigram-1 outperforms Trigram-0. This 
means that future information is important. The performances of 
the proposed methods are almost the same as those of the trigram 
methods. Since POMDPs can reduce the calculation time, they can 
be used instead of the trigram methods. POMDP’s result with 

0.0 is worse because POMDPs use point-based value 
iteration, which is not an exact value iteration but an 
approximation.

Table 1 Experimental result for error free condition

Random Trigram-0 Trigram-1
POMDP

( 0.0 )
POMDP

( 0.7 )

1E 0.380 0.462 0.466 0.460 0.467

6.4 Experimental result under an erroneous condition 
(without closeness rewards)

To simulate the erroneous condition, we used the confusion matrix 
obtained by the data collection process described in Section 4. In 
this condition, POMDPs outperform the trigram methods (Table 2). 
This is reasonable since POMDPs know the error statistics and can 
adapt to the error. 
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Table 2 Experimental result for noisy condition

Random Trigram-0 Trigram-1
POMDP

( 0.0 )
POMDP

( 0.7 )

1E 0.329 0.433 0.429 0.439 0.440

6.5 Experimental result under an erroneous condition 
(adding closeness rewards)

Our POMDP models generated actions that obtained higher 
evaluation scores. In this experiment, we generated closeness 
rewards using Eq. (3) and set w in Eq. (11) to 10.0. Table 3 shows 
the result of 1E and 2E . POMDPs increased the 2E values without 
significant degradation of 1E

Table 3 Experimental result for erroneous condition (adding 
closeness rewards)

Random Trigram-0 Trigram-1

POMDP
0.0

+closeness 
rewards

POMDP
( 0.7 )
+closeness 

rewards

1E 0.329 0.433 0.429 0.436 0.428

2E 2.66 2.65 2.66 2.75 2.76

7. CONCLUSIONS
We extended our POMDP models so that they treat trigram 
dialogue control models and investigated POMDP robustness for 
erroneous conditions using trigram dialogue control. Our 
experimental results confirmed that our method also 
simultaneously maximized trigram probability and the closeness 
obtained from user evaluations. These results confirm that our 
proposed POMDP frameworks can be used for a variety of 
dialogue control strategies.
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