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1 Introduction

Spoken dialogue systems are expected to usher in new possibilities in human-
computer interactions in the near future. For a spoken dialogue system to
achieve certain tasks while conversing with users, the system has to correctly
recognize user intentions. Here, we use the term user intention to express the
information that the user has in mind and has to convey to the system in
order to achieve his/her goal, such as extracting some particular information
from the system.

Since users do not always convey their intentions in one utterance and speech
recognition errors might occur, the system and the user normally have to ex-
change several utterances before the system finally recognizes the user’s true
intention. This paper addresses this interactive intention recognition process,
focusing on the types of tasks in which intention recognition results are rep-
resented by frames or slot-value pairs (Bobrow et al., 1977; Goddeau et al.,
1996). We assume that the slots are filled with words or concepts, sometimes
referred to as slot-fillers, in user utterances, which is common in frame-based
applications.

In such interactive intention recognition, after each user utterance, the system
updates the intention recognition result, based on which the system performs
dialogue management; namely, it decides what response it should make. Re-
cently, confidence scoring, a technique for assigning reliability scores to speech
recognition results, has been applied to detect errors in intention recogni-
tion results and has proved useful for dialogue management (Komatani and
Kawahara, 2000; Singh et al., 2002; Dohsaka et al., 2003). If the detection is
successful, the system can safely avoid unnecessary confirmations for reliable
slots and ask questions about unreliable or unfilled ones preferentially.

In current confidence scoring for intention recognition results, since words/conc-
epts in user utterances fill the slots, the confidence of words/concepts, which
is typically calculated using various features obtained from speech recognition
results and speech understanding results for single utterances, is used for the
confidence of slot values. However, this may be inappropriate because slot
values are the results of discourse understanding, not the results of single ut-
terance understanding. Consider a case where a slot is filled with a value that
has once been denied or corrected by the user in a dialogue. The confidence
of that value is likely to be lower than can be calculated for the word/concept
in the utterance.

This paper addresses this problem and proposes incorporating discourse fea-
tures into the confidence scoring of intention recognition results. In our ap-
proach, we introduce a number of discourse-related features (called discourse
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Fig. 1. Architecture of a spoken dialogue system.

features) that characterize the contextual adequacy of slot values in terms of
Grice’s maxims of cooperativeness, and use them together along with the fea-
tures obtained from speech recognition results to train confidence models that
classify slot values as correct or incorrect based on both the context and the
speech recognition/understanding results. Since the features are only available
for filled slots, we only deal with slots that have values in this paper.

Although this work does not aim at improving discourse understanding of
spoken dialogue systems directly, we are hoping to obtain useful ideas for
improving our speech understanding component through the process of confi-
dence model training and the analysis of confidence models.

In the next section, we briefly outline the intention recognition process in spo-
ken dialogue systems. In Section 3, we explain the need for the confidence
scoring of intention recognition results. In Section 4, we introduce conven-
tional methods and follow that with a detailed description of our proposed
method and the discourse features in Section 5. In Section 6, we describe the
experiments performed to verify the proposed method. In the last section, we
summarize the paper and mention future work.

2 Intention recognition in spoken dialogue systems

The basic architecture of a spoken dialogue system is illustrated in Figure 1.
When receiving a user utterance, the system behaves as follows.

(1) The speech recognizer receives a user utterance and outputs a speech
recognition result, such as an N-best list and a word graph.
(2) The language understanding component receives the speech recognition



result. Syntactic and semantic analyses are performed to convert it into
a meaning representation, often called a semantic frame or sometimes a
logical form. A semantic frame is typically composed of a dialogue act that
identifies the main intent of the user’s utterance, augmented with nec-
essary ancillary information often encoded as attribute-value pairs (also
called concepts), or encoded by using a predicate calculus terminology in
the case of logical forms. Speech recognition and language understanding
are collectively referred to as speech understanding in this paper.

(3) The discourse understanding component receives the semantic frame,
refers to the current dialogue state, and updates the dialogue state. A
dialogue state is a collection of bits of information that the system in-
ternally stores, which includes the intention recognition result, the user
utterance history, the system utterance history, and so forth. The inten-
tion recognition result is updated to suit the user’s true intention, taking
all the previous exchanges of utterances into account. The semantic frame
corresponding to the user utterance is added to the user utterance history
at the same time.

(4) The dialogue manager refers to the updated dialogue state, decides the
next utterance, and outputs the next content to be delivered as a semantic
frame. The dialogue state is updated at the same time so that it contains
the content of system utterances.

(5) The surface generation component receives the semantic frame and pro-
duces the surface expression, namely, the next words to be spoken.

(6) The speech synthesizer receives the next words to be spoken and responds
to the user by speech.

This paper concerns the intention recognition result in the dialogue state. The
intention recognition result is considered to be the most important feature
of the dialogue state because it reflects all previous exchanges of utterances
between the user and the system.

In this paper, we assume that the intention recognition results are represented
simply by frame expressions that consist of slot-value pairs (Bobrow et al.,
1977; Goddeau et al., 1996), and that words in speech recognition hypotheses
or concepts in language understanding results fill the slots, since filling slots
with relevant words/concepts can be considered the most basic way of under-
standing user utterances and is the practice in many practical applications.

Plan-based systems use plan trees or logical forms to represent the user in-
tention (Allen et al., 2001; Rich et al., 2001). However, considering the com-
plexity of tasks that are currently used in applicable systems and the per-
formance of speech recognizers, frame-based intention recognition is sufficient
(Chu-Carroll, 2000; Seneff, 2002).
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Fig. 2. Updating an intention recognition result. (S, U and F indicate a system
utterance, a user utterance, and a frame, respectively.)

We also assume that the system responses are generated using words/concepts
in the slots. To formulate, we model the interaction between the user and the
system as follows: (1) The user sends words/concepts or sometimes commands
to the system to change the slots. Here, commands represent user utterances
that do not contain words/concepts, such as acknowledgments and denials.
They have certain effects on the slots, such as the deletion of slot values.
(2) The system responds to the user using the words/concepts stored in the
slots. Then (1) and (2) are repeated until the user is satisfied with the system
response. We believe that this model is general enough to encapsulate most
of the task-oriented spoken dialogue systems in use today.

Figure 2 shows how the intention recognition result is updated in the course of
a dialogue in a weather information system. In the example, “tomorrow” was
misrecognized as “today” by the speech recognizer (Ul), causing the system
to have an incorrect value for the date slot (F2). The misunderstood item
was later corrected by the user (U3), who noticed the error in the intention
recognition result because of the system’s incorrect confirmation request (S3).
Through the interactive process with the user, the intention recognition results
get closer to the correct user intention (F1-F4).

Since the understanding of user utterances and the production of system ut-
terances are both affected by the content of the intention recognition result,
correctly recognizing user intentions is crucial to carrying out the desired tasks.



3 Need for confidence scoring of intention recognition results

There has been a tremendous amount of research in the field of speech under-
standing in spoken dialogue systems. To cope with speech recognition errors
and ungrammatical utterances in unconstrained speech, the keyword spotting
method (Foote et al., 1997), which extracts only the words relevant to partic-
ular applications, and robust parsing techniques, such as island-driven parsing
and partial parsing, which yield semantically important islands of words rather
than a full parse, have been extensively studied (Corazza et al., 1991; Seneff,
1992; Baggia and Rullent, 1993).

Similarly, statistical classification techniques have been used to detect rele-
vant pieces of words in utterances (Kuhn and Mori, 1995; Huang et al., 2001;
Béchet et al., 2004), and statistical machine translation methods, which re-
gard the problem of speech understanding as translating an utterance into a
set of concepts, have also been gaining popularity (Macherey et al., 2001).
To enhance classification accuracy, the use of various knowledge sources, such
as plan trees and prosodic information, has also been considered (Abdou and
Scordilis, 2001).

In the realm of discourse understanding, which works on top of speech un-
derstanding, there is also a growing body of research. Filisko (2002) proposed
a context resolution server that specializes in reference resolution and ambi-
guity resolution in speech understanding results. Miyazaki et al. (to appear)
and Higashinaka et al. (2003b) both employ a multi-world model, in which
multiple discourse understanding results are maintained as an ordered list to
enable discourse-level ambiguity to be retained and resolved by succeeding
utterances. The difference between the two models is that the former uses
hand-crafted rules, and the latter uses statistical information derived from
dialogue corpora for the ranking.

Although much work has been done in speech understanding and discourse
understanding, it is still acknowledged that speech recognition errors are in-
evitable, and that speech recognition errors often cause a system to misunder-
stand the user’s intention. In addition, ambiguities in natural language also
make it difficult for a systems to correctly understand the user’s true inten-
tion. Therefore, the dialogue manager has to confront the problem of handling
unreliable and ambiguous intention recognition results.

Since the slot values are unreliable, one safe and simple approach for dialogue
management is to confirm every item in the slots until all items in them are
acknowledged by the user. However, too many confirmations are likely to make
dialogues tedious, and when the system reduces the number of confirmations,
the system is likely to deliver undesired information based on incorrectly rec-



ognized items. The system needs to find a balance between too many and
too few confirmations. For this purpose, the system has to be able to detect
exactly what item needs to be confirmed.

In speech recognition research, a technique called confidence scoring has been
increasingly used to detect errors in speech recognition results. For example,
it has been used for utterance verification (Rahim et al., 1997). It also helps
transcribers find erroneous words/phrases in the recognized sentences, which
speeds up the transcription process (Endo et al., 2002). Recently, this tech-
nique has also been applied to detect errors in intention recognition results
and has proved useful for dialogue management.

Komatani and Kawahara (2000) and Dohsaka et al. (2003) used the confidence
of the intention recognition results to adaptively change dialogue strategies,
which enables the system to confirm only the necessary items and avoid unnec-
essary confirmations. In this way, the task completion time was considerably
reduced. The confidence of intention recognition results has also been used
in order to better characterize the status of a dialogue state (called a state
space) for the automatic learning of optimal dialogue management policies
with reinforcement learning techniques (Singh et al., 2002).

Since estimating the reliability of the intention recognition results allows the
dialogue manager to have a wider variety of choices as to how to respond to
the user and enables the system to characterize the current state of a dialogue
more accurately, there is a strong need for the confidence scoring of intention
recognition results.

4 Conventional methods

Slots are typically filled with words in speech recognition hypotheses or with
concepts in speech understanding results, and the acoustic, linguistic, or some-
times the semantic reliability of the words or concepts has been used for the
confidence of the slots. Figure 3 shows an example of the confidence scoring
of the slots in Fig. 2, illustrating how the confidence of words ¢; ...c9 can be
associated with the slots.

The simplest way to calculate a confidence score is to use the score that the
speech recognizer outputs for words, e.g., the total acoustic and language
model score or the word posterior probability (Wessel et al., 2001). When a
slot is filled by a concept, the total or mean confidence of the words that
form that concept is normally utilized. For example, an utterance “to Tokyo”
might form a concept “arrival-city=Tokyo.” In this case, the confidence for
this concept is calculated taking the summation or the mean of the confidence
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Fig. 3. Conventional methods. Word confidences ¢y ...cq are associated with the
slots.

of words “to” and “Tokyo.”

To obtain more accurate scores especially for concepts, probabilistic modeling
of a sequence of concepts has been proposed. Hacioglu and Ward (2002), using
concept N-grams, proposed constructing a concept graph on top of a word
graph and calculating confidence of concepts in a fashion similar to calculating
the word posterior probability. Lin and Wang (2001) propose a concept-based
probabilistic verification model, which also exploits concept N-grams.

There are also approaches that use confidence models for confidence scoring. A
confidence model is a kind of a classifier that scores or classifies words/concepts
based on training data. Although data collection, feature extraction, and la-
beling procedures have to be performed before the training, the confidence
model approach has proved particularly useful when various types of features,
such as numeric values and symbolic values, have to be integrated for the
scoring.

Hazen et al. (2002) integrate two levels of features in speech recognition hy-
potheses to train confidence models for words: word-level features that focus
only on the reliability of the acoustic samples corresponding to the word, and
utterance-level features that concern the appropriateness of the whole utter-
ance in which the word is found. This integration is based on the assumption
that if the whole utterance is unreliable, the word contained in that utterance
is also likely to be incorrect.

In order to achieve more accurate scoring depending on the context, Prad-
han and Ward (2002) proposed creating confidence models for concepts (or
semantic frames) using previous system prompts in addition to the features



obtained from the speech recognition results. They adopted this particular ap-
proach because they focus on large vocabulary-based system-guided dialogues
within the DARPA Communicator project (Pellom et al., 2000), in which user
utterances are heavily influenced by previous system prompts.

There is also an approach that utilizes pragmatic analyses to score concepts
uttered by the user (Ammicht et al., 2001). This makes several basic assump-
tions about what concepts the user should utter after a system response and
uses the assumptions as rules to score the incoming concepts and rescore al-
ready recognized concepts. For example, when an already recognized concept
seems to have been implicitly confirmed, the confidence of that concept is
augmented.

Hirschberg et al. (2004) introduce a number of prosodic features, such as FO,
the length of a pause preceding the turn, and the speaking rate, to detect mis-
recognized user turns in spoken dialogue corpora. Since users tend to change
the way they speak when faced with inappropriate system utterances that orig-
inate from previous misrecognized utterances, they use the prosodic features
of subsequent utterances to detect possible errors in previous user utterances.
The problem they are dealing with is different from ours in that they do not
evaluate user utterances immediately after speech recognition.

5 Proposed method

Previous methods have been quite successful in providing reasonably good
estimates of correct/incorrect for intention recognition results. However, we
would like to pose a question: Is it really appropriate to use the confidence of
words/concepts for the confidence of intention recognition results?

We argue that it may not be appropriate because the confidence of words/conc-
epts is calculated separately from the context; that is, the intention recognition
result is the system’s understanding result of a discourse, not the result of
understanding an independent utterance. There may be some cases where
hypothesized words/concepts are not likely to fill the slots, as when the slot
values contradict what has been said in a prior part of a dialogue. Ignoring
the fact that intention recognition results represent the discourse may lead to
inaccurate confidence scoring. Therefore, we propose incorporating discourse
information into the training of confidence models.

To enable discourse information to be used in confidence model training, we
have to find features to represent a slot value from the discourse point of view.
We hypothesize that there is a principle that a valid discourse should satisfy
and that any indication of violation of or conformity to this principle can be



used to score a slot value in a discourse. We employ, as such a principle, Grice’s
maxims of cooperativeness (Grice, 1975). Grice’s maxims are described as
norms that should be followed in a collaborative conversation. Grice proposed
four maxims, namely, maxims of Quantity, Quality, Relation, and Manner.
Figure 4 shows the description of the maxims from (Grice, 1975). We created
twelve discourse features, each one of them indicating possible violation of
or conformity to the maxims. The derivation of the features are described
in Section 5.1 in detail. Although there may be other principles or models
for discourse, such as discourse plans (Allen et al., 2001; Rich et al., 2001),
such high-level discourse principles may not be necessary when considering
the speech recognition errors. Therefore, we only consider Grice’s maxims in
this paper.

Along with the discourse features, we also use acoustic and language model
features of the words/concepts filling the slots because they have been proven
useful in the literature. Having defined the features, we take the following
steps in confidence model training: We (1) collect slot value samples through
dialogue experiments with human users, (2) extract the discourse features and
the acoustic and language model features for slot values and annotate them
as correct/incorrect, and (3) train confidence models for slot values using the
collected data.

As a confidence model training technique, we adopt one of the existing tech-
niques (Hazen et al., 2002). For evaluation, we compare the performance of
the obtained confidence models with that of the baseline models. The base-
line here means models that only use acoustic and language models for the
confidence model training. We also compare our models, for reference, with a
method that only uses the posterior probability of words that the speech rec-
ognizer outputs, since posterior probability is widely used in the community
for its simplicity.

Although the use of previous system prompts can be seen as incorporating
discourse information into confidence scoring (Pradhan and Ward, 2002), our
approach is different in that we deal with the discourse understanding result,
not the result of single utterance understanding, and in that our discourse fea-
tures are represented by numeric values, not symbolic conditions for classify-
ing user utterances. In addition, compared to the tasks in the Communicator
project (Pellom et al., 2000), we focus on relatively smaller tasks with less
system initiative and handle restricted utterances mainly consisting of user
requests. Therefore, the use of previous system prompts is not expected to
greatly improve confidence scoring in our case. However, if we had to handle
a wider variety of utterances, our approach could be used together with the
work of Pradhan and Ward (2002).

We also see (Ammicht et al., 2001) as an attempt to incorporate discourse
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(1) Maxim of Quantity:
(a) Make your contribution as informative as is required (for the
current purposes of the exchange).
(b) Do not make your contribution more informative than is required.
(2) Maxim of Quality:
(a) Do not say what you believe to be false.
(b) Do not say that for which you lack adequate evidence.
(3) Maxim of Relation:
(a) Be relevant.
(4) Maxim of Manner:
(a) Avoid obscurity of expression.
(b) Avoid ambiguity.
(¢) Be brief (avoid unnecessary prolixity).
(d) Be orderly.

Fig. 4. Grice’s maxims of cooperativeness (Grice, 1975).

information into the confidence scoring. However, they are also not particularly
focusing on discourse understanding results but concepts in single utterances
and their approach uses heuristic rules for the scoring, directly relating certain
discourse phenomena with fixed effects, whereas our approach aims at finding
useful features to express discourse information so that the features can be
related to confidence scores by confidence model training based on training
data.

5.1 Discourse features

Here, we describe how we derive our discourse features. In all, we came up with
12 discourse features: one, seven, and four features in relation to the maxim of
quantity, quality, and manner, respectively. Since we consider that the maxim
of relation is automatically abided by in task-oriented dialogues—for example,
in the weather information domain, the user and the system would not talk
about booking flights or train tickets—we only focused on the remaining three
maxims.

The discourse features are conceived following our assumption about the inter-
action between the user and the system; namely, the user sends words/concepts
or sometimes commands to the system in order to change the slots, and the
system responds to the user using the words/concepts stored in the slots. We
argue that as long as the system follows this assumption, our features can
be safely extracted. We also assume that the user’s true intention does not
change during the dialogue. In what follows, we describe in detail each feature
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related to the maxims.

5.1.1 Features related to the maxim of quantity

The maxim of quantity suggests that one has to make one’s contribution to
the conversation as informative as necessary. The mention of a slot value that
is the same as the one appearing in the previous system’s confirmation request
may not, therefore, be desirable. For example, the exchange

System :  “Are you interested in the weather in Tokyo?”

User :  “The weather in Tokyo”

corresponds to a case violating the maxim of quantity. Although the sequence
may be a re-confirmation of the system’s confirmation request, in terms of
the maxim of quantity it is better for the user to provide more information
about his/her intentions. Taking this into account, we conceived the following
discourse feature D1:

(D1) Same keyword pair count: Throughout the dialogue, count the num-
ber of times the system confirms the current slot value and the user
mentions the same value in the next utterance. We use this count as the
feature. A large value of this feature would mean that there have been a
lot of un-informative interactions about a particular slot value, suggesting
that the value may be wrong.

5.1.2  Features related to the maxim of quality

The maxim of quality states that one should not say what one believes to be
false. This can be interpreted as: the content of all the user utterances should
be consistent. Therefore, any contradiction or inappropriateness among the
system’s recognized user intentions can be used as an indicator of a violation
of the maxim of quality.

To describe how the intention recognition results (slot values) are recognized
in the course of a single dialogue, we first introduce the idea of the slot value
sequence, which represents the transition of values of a particular slot. For
example, {null — null — Tokyo — Tokyo} is a slot value sequence for the
place slot in F4 in Fig. 2. Here, the last value Tokyo is the current value whose
confidence we aim to estimate, and null means that the slot does not have a
value. Ideally, if the user is following the maxim, the slot value sequence should
consist of just one single value. By characterizing the slot value sequence from
different points of views, we conceived the following seven discourse features
(D2 through D8):

12



(D2)

(D3)

(D4)

(D6)

(D7)

(D8)

Slot purity: In the slot value sequence, count the number of times the
current value is found and divide that count by the number of non-null
values in the sequence. We use this ratio as the feature. For example,
when the value of the place slot changes { Tokyo — Osaka — Kyoto —
Osaka}, then the current value Osaka is found in two of the four values,
making the slot purity 1/2. This feature encodes the user’s consistency
about a certain value. Therefore, a large value of this feature may suggest
that the slot value is correct.

Top slot purity: In the slot value sequence, for all the values that
appear, count the number of times each value appears, find the highest
count, and divide that count by the number of non-null values in the
sequence. We use this ratio as the feature. When the value for the place
slot changes { Tokyo — Osaka — Kyoto — Osaka}, Tokyo, Osaka, and
Kyoto are assigned the values of 1/4, 1/2 (2/4) and 1/4, respectively.
The maximum value is Osaka’s 1/2; therefore, the top slot purity is 1/2.
This feature represents the slot purity of the dominating slot value in the
sequence if there is any. If the top slot purity of a slot value is greater
than its slot purity, it may be likely that the slot value is wrong.

Slot variety: The number of different values that appear in the slot
value sequence. For {Tokyo — Osaka — Kyoto — Osaka}, there are
three values Tokyo, Osaka, and Kyoto; therefore, the slot variety is 3.
This feature encodes the user’s inconsistency, and a large value of this
feature may suggest that the slot value is wrong.

Deny count: The number of times the current value has been deleted.
For example, consider the sequence { Tokyo — null — Kyoto — Tokyo}.
The current value Tokyo is once denied (set to null) by the user (later
set to Kyoto). Therefore, the value is 1. If a certain value is correct, a
cooperative user would not delete that value. A large value of this feature
may suggest that the slot value is wrong.

Overwrite count: The number of times the current value has been
overwritten by other values. For example, consider the sequence { Tokyo
— Osaka — Kyoto — Tokyo}. The current value Tokyo is overwritten
once by Osaka. Therefore, the value is 1. If a certain value is correct,
a cooperative user would not overwrite/replace that value. Therefore, a
large value of this feature may suggest that the slot value is wrong.
Continue count: Starting backwards from the current value, count the
number of times the current value is found in the slot value sequence
successively. We use this count as the feature. For example, consider the
sequence {null — Tokyo — Tokyo — Tokyo}. Before the current value
Tokyo, there are two Tokyo values. Therefore, the value is 2. Since the
slot values have to be successively the same to yield a large value, this
feature encodes the user’s possible strong consistency about a certain
value. Therefore, a large value of this feature may strongly suggest that
the slot value is correct.

Different value count: Starting backwards from the current value,

13



count the number of times the current value is nmot found in the slot
value sequence successively. We use this count as the feature. For exam-
ple, consider the sequence { Tokyo — Osaka — Kyoto — Tokyo}. There
are two non-Tokyo values before the current value Tokyo. Therefore, the
value is 2. This feature functions exactly opposite to the continue count
(D7), as it encodes the user’s possible strong inconsistency. A large value
of this feature may suggest that the slot value is wrong.

5.1.8 Features related to the maxim of manner

The maxim of manner states that one should avoid unnecessary prolixity as
well as ambiguity. Therefore, if there are a large number of same/different
words/concepts corresponding to a slot value appearing in user or system
utterances, it may be an indication that the slot value is wrong. Note that
these features focus on the user’s and system’s raw utterances or dialogue
acts with concepts, not the slot value sequence and that these features encode
what the system has observed within a dialogue rather than what the system
has understood. Taking this into account, we enumerated the following four
features (D9 through D12):

(D9)

(D10)

(D11)

(D12)

Same keyword count in user utterances: The number of times a
concept corresponding to the current value appears in the previous user
utterances. For example, when the current value is Tokyo, we count the
number of times the word “Tokyo” or the concept “place=Tokyo” appears
in the user utterance history.

Different keyword count in user utterances: The number of times
concepts not corresponding to the current value appear in the previous
user utterances. For example, when the current value is Tokyo, we count
the number of times non-Tokyo place names appear in the user utterance
history.

Same keyword count in system utterances: The number of times a
concept corresponding to the current value appears in the previous system
utterances. For example, when the current value is Tokyo, we count the
number of times the word “Tokyo” or the concept “place=Tokyo” appears
in the system utterance history.

Different keyword count in system utterances: The number of
times concepts not corresponding to the current value appear in the previ-
ous system utterances. For example, when the current value is Tokyo, we
count the number of times non-Tokyo place names appear in the system
utterance history.
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6 Experiment

6.1 System

We prepared a telephone-based spoken dialogue system in the weather infor-
mation service domain. The system provides Japan-wide weather information.
Users specify a prefecture name or a city name, a date, and an information
type (weather, temperature, and precipitation) to obtain the desired informa-
tion.

The speech recognition engine is Julius (Lee et al., 2001) with its attached
acoustic model, and the speech synthesis engine is FinalFluet (Takano et al.,
2001). The system has a vocabulary of 1,652 words. The language model is a
trigram trained from transcriptions obtained from our previous dialogue data
collection in the same domain (Higashinaka et al., 2003a).

The system uses the 1-best speech recognition hypothesis for language under-
standing. We realized our understanding grammar as a weighted finite state
transducer (WFST) in a manner similar to (Potamianos and Kuo, 2000). We
first prepared a set of transcribed utterances labeled with dialogue acts and
concepts. An utterance is assumed to have a single dialogue act with zero or
more concepts. Then, we converted the utterances into a WEFST. An utter-
ance corresponds to a path, which has one dialogue act and related concepts
on its path. The whole grammar is a union of such paths. The resulting WFST
maps a sequence of words into a scored list of dialogue acts augmented with
concepts. For example, the user utterance “Tell me the weather for tomor-
row” would derive “refer-info-date” as a dialogue act with “info=weather” and
“date=tomorrow” as its concepts. Compared to keyword spotting, this can be
seen as imposing lexical constraints using surrounding words. The scoring for
the WEST was tuned to derive as few dialogue acts and as many concepts as
possible from an utterance. Since an utterance may contain several dialogue
acts, we made an epsilon transition from the end of the path to the start,
enabling the recursion of the dialogue acts. There are 47 dialogue acts in our
grammar.

The system maintains three slots for the intention recognition result; namely,
the place slot, the date slot, and the information type slot. The intention
recognition results are updated by the discourse understanding rules, which
update the intention recognition results using the incoming dialogue acts and
concepts. The system also holds a grounding flag for each slot to indicate if
the value of a slot has been acknowledged by the user. For example, when the
system confirms by asking “Are you interested in the weather in Tokyo?” and
the user says “Yes,” then the grounding flags for the information type slot and
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the place slot are set to true. We call the slots that have been acknowledged
by the user the grounded slots.

For discourse understanding, we prepared 47 discourse understanding rules.
Each rule is responsible for the processing of a particular dialogue act and its
related concepts. For example, in the case of the dialogue act “refer-info-date”
with concepts “info=weather” and “date=tomorrow,” a rule corresponding to
“refer-info-date” is invoked, which allocates the concepts to the appropriate
slots. Currently, our crude rules put every concept they encounter into the
associated slots without consulting the dialogue history. Since only a single
value is permitted to fill a slot, previous slot-fillers are always overwritten by
the new ones.

There are other rules that deal with dialogue acts that do not have associated
concepts, such as acknowledgments and denials. In these cases, corresponding
rules are fired to set grounding flags to particular slots or erase particular
values from them. Currently, all slots which are associated with the concepts
included in the previous system confirmation request are grounded or erased
by the succeeding acknowledgment or denial by the user. The system also has
several rules that erase the values of particular slots. For example, the user
utterance “the place is wrong” yields a dialogue act “erase-place,” which erases
the value of the place slot. Our grammar allows two slots to be deleted at a
time. Users cannot reject some values while simultaneously accepting others.
The rules also handle closing remarks such as “good-bye” and the restart
commands that initialize all values of the slots.

For response generation, the dialogue manager first determines whether or not
the system should utter a back-channel (e.g., “uh-huh”). If the user’s previous
dialogue act is not of a type explicitly requesting a response from the system,
and no more than one slot is filled, the system assumes that the user has not
completed his/her request and utters a back-channel. If the system decides
not to utter a back-channel, it then checks how many slots have been filled
and grounded.

If the system finds slots that are filled but ungrounded, the system confirms
these slots in one utterance. For example, when slots for place and informa-
tion type have been filled with “Tokyo” and “weather” and have not been
grounded, the system would utter “Are you interested in the weather in
Tokyo?” Similarly, if there is only one slot that is filled and ungrounded,
it only confirms that one value. An example of confirmation requests would
be “Did you say Tokyo?” The system does not use an implicit confirmation
strategy.

If all the slots have been filled and grounded, the system sends a query to
the weather database, retrieves the weather information, formulates it into a
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sentence, and utters it to the user. The current version of our system erases
and resets all the slots upon delivering the weather information. If none of the
above conditions match, which is the case when the user explicitly requests a
response with no slots filled or two or fewer slots grounded, the system asks
the user to fill the missing slots one at a time in the order of place, information
type, and date. An example of the system’s utterances is “Tell me the area
you are interested in.” All the responses are generated by templates. There
are 17 templates in all, including the ones for greetings and back-channels.
The templates have forms such as “Did you say [place=X]?” and “Are you
interested in the [info=X] in [place=Y]|?” where X and Y are taken from slot
values.

6.2 Data collection

Eighteen subjects used the system over the telephone over a period of six days;
three subjects per day. Each subject was given a task sheet listing the infor-
mation to be requested. Each task demanded the user to ask about just one
combination of a place, an information type, and a date. Therefore, if the user
succeeds in the task, each dialogue in our collected data should contain one
delivery of weather information from the system at the end of the dialogue.
The subjects were instructed to complete the tasks one-by-one. Each sub-
ject engaged in 16 dialogues, for a total of 288 dialogues collected. Dialogues
that took more than three minutes were aborted and regarded as failures. We
separated the data into six groupings corresponding to the data for the six
experiment dates.

The overall word error rate (WER) was 40.16%. The task completion rate
was 95.83% (276/288). Figure 5 illustrates the number of turns required to
complete the tasks in each grouping. Three is the minimum number of turns
necessary to complete the tasks (a user’s request, an acknowledgment of the
system’s confirmation, and a closing remark), and five out of six groupings
had three as their mode value. Overall, the median number of turns is four,
and the mode value is three.

The WER may seem high, but considering the nature of human-computer
dialogues in which bad speech recognition prolongs dialogues, it is reasonable.
We recorded the system and user utterances and the intention recognition
results after each user utterance. All user utterances were transcribed.

We briefly ran an analysis of the slot samples we collected and found that most
of the errors were caused by speech recognition errors. This is because neither
the speech understanding component nor discourse understanding component
could override slot choices provided by the speech recognizer’s 1-best hypoth-
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Fig. 5. The number of turns required to complete the tasks in each grouping.

esis. In addition, user utterances contained very little ambiguity needing reso-
lution through language understanding and discourse understanding. For ex-
ample, the system did not have to choose between place names for arrivals
and departures as in the ATIS domain. Other than speech recognition errors,
we noticed a small number of cases (15 cases) where our grammar could not
output any parse for the input.

6.3 Data screening

Before training confidence models, we screened the data. Since we do not deal
with slots that do not have values, we discarded the data for such slots. Then,
we removed the data for slots that had a single value in the slot value sequence.
The data removed here are of two types: (1) data for slots that had just been
filled and (2) data for slots having the same value consecutively all along the
dialogue.

The data corresponding to type (1) were removed because we consider that
there is little discourse information available for these slot values. The data
corresponding to type (2) were removed because we consider it difficult to
differentiate (a) the cases in which values do not change because of repeated
misrecognitions from (b) those in which the recognizer keeps recognizing the
correct values. This is because during the data collection, users frequently
repeated the same keywords/phrases for emphases and implicit confirmations.
For such data, we recommend using non-discourse features as in conventional
methods.
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Table 1
Breakdown of the slot value samples for each grouping.

slots | null | single | grounded | single & | error | selected as

grounded training
sample

grouping-1 || 864 267 278 41 131 2 145
grouping-2 927 215 327 33 107 0 245
grouping-3 759 246 281 28 133 0 71
grouping-4 831 262 247 39 158 0 125
grouping-5 696 236 213 29 124 0 94
grouping-6 || 735 245 248 32 113 0 97
Total 4,812 | 1,471 | 1,594 202 766 2 T

In addition, we did not use the data of grounded slots, since it is natural to
consider that slots that have been grounded are basically correct.

There were 4812 slot value samples in all, and after screening, 777 samples
remained (362 positive samples and 415 negative samples).

Table 1 shows the breakdown of the slot value samples for each grouping, where
null, single, grounded, and single € grounded denote the number of vacant
slots, slots having a single value in the slot value sequence, the grounded slots,
slots that have a single value in the slot value sequence and are grounded at
the same time, respectively. Here, error indicates that the samples were not
used because acoustic and language model features could not be retrieved for
them because of defects in the recorded speech files. The numbers are mutually
exclusive in the table.

6.4 Feature extraction and labeling

We extracted the acoustic and language model features and discourse features
for all 777 slot value samples. As the acoustic and language model features, we
used the same features that Hazen et al. used in (Hazen et al., 2002) (called
word-level features in their paper) with some modifications. Modifications had
to be made because of the differences in speech recognizers. In addition, since
the utterance score in word-level features (W14) is derived from various fea-
tures of whole utterances (utterance-level features), we combined the word-
level features and the utterance-level features to create a single feature vector
instead of using the utterance score, making the total number of our acoustic
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Table 2
List of word-level features. Labels (not available), (not used), and (new) indicate
the modifications we made to the features used in (Hazen et al., 2002).

(W1) | Mean acoustic score
(W2) | Mean acoustic likelihood score (not available)
(W3) | Minimum acoustic score
(W4) | Maximum acoustic score (new)
(W5) | Acoustic score standard deviation
(W6) | Mean difference from maximum score
(W7) | Minimum difference from maximum score (new)
(W8) | Maximum difference from maximum score (new)
(W9) | Standard deviation of difference from maximum score
(W10) | Mean catch-all score (not available)
(W11) | Number of acoustic observations
(W12) | N-best purity
(W13) | Number of N-best (not used)
(W14) | Utterance score (not used) (utterance level features were
used instead)
(W15) | Mean frame purity  (new)
(W16) | Minimum frame purity (new)
(W17) | Maximum frame purity (new)

and language model features 27. We used 10-best speech recognition results
for extracting the features.

Tables 2 and 3 show the acoustic and language model features we used with
marks showing where the modifications were made. The label (not available)
means that the feature was used in (Hazen et al., 2002), but not available for
our speech recognizers, whereas (new) indicates that the feature was avail-
able, allowing us to incorporate it to our list of features. The label (not used)
indicates that the feature was available, but not used as one of our features.
The (not used) is only given to the number of N-best (W13 and Ul4) that
always had a fixed value of ten in our setting. For a detailed description of the
features, see (Hazen et al., 2002).

2 Frame purity is conceptually the same as the N-best purity, with the focus on
phonemes instead of words.
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Table 3
List of utterance-level features. Labels (not available), (not used), and (new) indicate
the modifications we made to the features used in (Hazen et al., 2002).

(U1) | Top-choice total score
(U2) | Top-choice average score
(U3) | Top-choice total N-gram score
(U4) | Top-choice average N-gram score
(U5) | Top-choice total acoustic score
(U6) | Top-choice average acoustic score
(UT) | Total score drop
(U8) | Acoustic score drop
(U9) | Lexical score drop
(U10) | Top-choice average N-best purity
(U11) | Top-choice high N-best purity
(U12) | Average N-best purity
(U13) | High N-best purity
(U14) | Number of N-best hypotheses (not used)
(U15) | Top-choice number of words

As the discourse features, we used all the discourse features except D6. The
feature D6 was excluded by a process of backward-elimination using the F-
measure as a criterion. We used the same experimental procedure as described
in Section 6.7 to find features that are not contributing to the classification
performance. (Refer to Section 6.6 for the derivation of the F-measure.) The
exclusion of D6 may be attributable to the inter-dependency among the fea-
tures. High correlation among features is likely to hinder the training of con-
fidence models, making it difficult to allocate appropriate weights to them.

We first hand-labeled the reference intention recognition results after each user
utterance using the transcriptions, and then automatically labeled slot values
as correct or incorrect. This process took several hours for our data.

6.5 Confidence model training

We trained six confidence models for intention recognition results, taking every
five of the six groupings as training data and making the remaining grouping
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the test data for the evaluation. For comparison, we also created, in the same
way, six confidence models that only use the acoustic and language model
features for training. Hereafter, we call the models trained by acoustic and
language model features the conventional models, and the models trained by
the acoustic and language model features plus the discourse features the pro-
posed models.

We adopted the confidence model training method from Hazen et al. (2002).
The method produces probabilistic confidence scores as log-likelihood ratios of
posterior probabilities, using a weighted linear combination of the confidence
feature vectors. The multi-dimensional feature vector f is reduced to the raw
score r by a linear combination with a projection vector p such that

r=p"f (1)

We trained the projection vector p'in the same manner as Hazen et al. (2002),
i.e., by initializing p using a Fisher linear discriminant analysis and then up-
dating each element of p using a hill-climbing algorithm (Powell, 1964) to
minimize the classification errors in the training data.

Using r, probabilistic confidence score c is calculated as follows:

p(r|correct) P(correct) ) 4 2)

=1
e (p(?“\incorrect)P(mcorrect)

where P(correct) and P(incorrect) are a priori probabilities of correct and
incorrect samples in the training data, and p(r|correct) and (r|incorrect) are
posterior probabilities for r for correct and incorrect samples, which were

modeled with Gaussian density functions in this experiment. The ¢ is a decision
threshold.

Although we employed the simple linear projection model, it may also be pos-
sible to use other classification techniques, such as non-linear support vector
machines and multi-layered perceptrons. However, since this paper is partic-
ularly focused on discourse features and their effect on confidence scoring, we
leave investigating the use of different classifiers as future work.

6.6 FEvaluation

Table 4 shows the F-measure (harmonic mean of the precision and recall) for
the conventional and proposed models when each grouping was used as the
test data. The result for the method that uses posterior probability of words
corresponding to concepts filling the slots is also shown for reference.
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Table 4
F-measure for the method that uses posterior probability, the conventional and
proposed models.

Test data F-measure
posterior prob. conv. prop.
grouping-1 0.711 0.809 0.803
grouping-2 0.706 0.670 0.821
grouping-3 0.704 0.645 0.689
grouping-4 0.617 0.726 0.800
grouping-H 0.747 0.753 0.833
grouping-6 0.590 0.600 0.709
total 0.685 0.710 0.791

The posterior probability was calculated on the N-best list in a similar manner
to the N-best posterior probability (Wessel et al., 2001). We used 10 for N, and
the scaling factor o was set to 0.03, which was found to be the best in our pilot
test with 982 utterances. The utterances here were those randomly selected
from the collected data. The decision threshold used for each grouping was
determined to achieve minimum classification errors within the training data.
Although we acknowledge that increasing N improves the calculation of the
posterior probability (Wessel et al., 2001), we considered 10 to be reasonable
considering the fact that the calculation has to be performed in real-time in
spoken dialogue systems.

The precision, recall, and F-measure are calculated as follows:

# of slots correctly classified as correct

Precision =
# of slots classified as correct

Recall # of slots correctly classified as correct
ecall =

# of correct slots

2 X recall x precision

()

F-measure = —
recall + precision

It is clear from Table 4 that the proposed models perform better than the
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Fig. 6. False acceptance rate (FAR)-false rejection rate (FRR) curves, and for the
method that uses posterior probability, the conventional and proposed models.

conventional models overall. The method that uses posterior probability is
the worst performing method among the three.

Figure 6 shows the FAR-FRR curves for the three methods. The figure clearly
illustrates their difference in classification performance.

The FAR and FRR are calculated as follows:

FAR — # of slots incorrectly classified as correct

# of incorrect slots

FRR — # of slots incorrectly classified as incorrect

(7)

# of correct slots

The FAR is the rate at which the model incorrectly classifies negative samples
as positives, and the FRR the rate at which the model incorrectly classifies
positives as negatives.

Table 5 shows the matrix of counts of correct and incorrect items for the
conventional and proposed models. Among all the samples, there were 83 that
only the proposed models classified correctly, and 37 that only the conventional
models classified correctly. From a statistical test [McNemar’s test (Gillick and
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Table 5
Matrix of counts of correct and incorrect items for the conventional (conv.) and
proposed (prop.) models.

prop. correct | prop. incorrect

conv. correct 550 37

conv. incorrect 83 107

Table 6
F-measure for models each trained without D6 and one of the remaining discourse
features.

Confidence models F-measure Drop in F-measure
prop. (All w/o D6) 0.791 0.000
w/o D6, D1 0.707 0.084
w/o D6, D2 0.756 0.035
w/o D6, D3 0.776 0.015
w/o D6, D4 0.750 0.041
w/o D6, D5 0.754 0.036
w/o D6, D7 0.751 0.040
w/o D6, D8 0.763 0.027
w/o D6, D9 0.758 0.032
w/o D6, D10 0.771 0.019
w/o D6, D11 0.765 0.025
w/o D6, D12 0.778 0.013

Cox, 1989)], it was found that the two models have a statistically significant
difference in terms of classification performance (p = 3.99-107°), which verifies
the effectiveness of the discourse features.

6.7 Impact of the discourse features

We investigated how each of the discourse features affects the classification
results. Table 6 shows the F-measure for the models, each of which was trained
without D6 and one of the remaining discourse features.
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Table 7
Weights assigned to each of the discourse features in the six obtained confidence
models. Averages and standard deviations of the weights are shown in the last
column.

model-1 | model-2 | model-3 | model-4 | model-5 | model-6 avg. (sd
D1 -2.212 -2.525 -1.711 -1.879 -2.074 -1.659 | -2.010 (0.3286
D2 11.802 5.966 4.809 4.040 5.436 8.130 | 6.697 (2.8591
D3 0.145 0.025 -2.304 -2.362 -1.415 -0.844 | -1.126 (1.0971
D4 0.139 -0.267 -0.258 -0.425 -0.265 -0.020 | -0.183 (0.2043
D5 -0.290 0.060 0.500 -0.449 0.500 0.540 | 0.143 (0.4377
D7 0.589 0.120 0.055 -0.117 0.051 0.254 | 0.159 (0.2428
D8 0.414 0.262 0.275 0.255 0.243 0.227 | 0.279 (0.0680
D9 1.266 1.032 1.126 0.899 1.046 1.030 | 1.066 (0.1219
D10 -0.156 -0.060 -0.111 -0.143 -0.479 -0.028 | -0.163 (0.1622
D11 -0.083 -0.113 -0.107 -0.028 -0.076 -0.462 | -0.145 (0.1581
D12 -0.018 0.103 -0.021 0.028 0.020 0.033 | 0.024 (0.0448

The row indexed by prop. (All w/o DG6) represents the proposed models
and the third column (Drop in F-measure) shows the drop of the F-measure
from the proposed models. From the table, one can see that the same keyword
pair count (D1) has a relatively large drop value, indicating that it may be
more important than other features. On the other hand, the top slot purity
(D3) and the different keyword count in system utterances (D12) have small
drop values, indicating their possible small contribution to the classification
performance.

Our finding that the same key pair count (D1) is important may suggest that
Grice’s maxim of quantity may be more useful than the others in terms of
detecting errors in a dialogue. When we look at the weights of D1 in the con-
fidence models, we find that the values are negative; that is, the larger the
same keyword pair count, the lower the confidence. The small drop values of
the top slot purity (D3) and the different keyword count in system utterance
(D12) suggest that however many times different values occupy slot value se-
quences or system utterances, the confidence of slot values may not necessarily
be affected.

Table 7 shows the weights assigned to each of the discourse features in the
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Fig. 7. False acceptance rate (FAR)-false rejection rate (FRR) curves for the pro-
posed and conventional models and for the models that do not use D1, D3, and D12
as discourse features.

six obtained confidence models.® Notice that some of the features, such as
D1 and D8, have very steady values for their weights compared to other fea-
tures, suggesting that they play similar roles across all models. Large standard
deviations in the weights of some of the features suggest that their effect on
confidence scoring is likely to vary depending on the training data.

Weights that are larger than others do not necessarily reflect their importance
of their associated features because of the ranges that each feature could take.
For example, since the slot purity takes a value between 0 and 1, even with a
very large weight, the overall effect of this feature will be limited.

Figure 7 shows the FAR-FRR curves for the models without D1, D3, and
D12 along with those for the proposed models and the conventional models.
It can be seen clearly that the models without D1 are close to the curve for
the conventional models, and the models without D3 and D12 are almost on
the curve for the proposed models.

3 Model-1 to model-6 are the models trained with all data except grouping-1 to
grouping-6, respectively.
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Analysis of successful cases

We analyzed the successful 83 cases and found that there are mainly three
patterns when our method succeeds:

(1)

Slots that have a small slot purity and a large slot variety were
successfully classified as incorrect. We found 22 samples matching
this pattern. This pattern suggests the rather obvious fact that if there are
many different values in the slot value sequence, the slot value becomes
dubious, indicating inconsistency in user utterances.

Slots that have a large slot purity and a small slot variety were
successfully classified as correct. We found 28 samples matching this
pattern. This pattern can be seen as the counterpart of the first pattern:
the user’s being consistent about a certain value adds confidence to that
value.

By looking into the dialogue data, we noticed that dialogues in which

this successful pattern was found contained the following interaction: (1)
the user fills a slot relatively easily with X, (2) the slot is accidentally
filled by some other value Y, and (3) the user fills the slot again with
X. The conventional method was likely to find X incorrect, whereas the
proposed method was likely to take X as correct. In a way, our method is
using X’s reliable past to boost X’s confidence, overcoming the possible
low acoustic and linguistic score of X.
Slots that have a small slot purity, a large slot variety, and a
large same keyword count were successfully classified as correct.
We found 22 samples matching this pattern. This can be seen as a special
case of the first pattern, where samples the first pattern may classify as
incorrect are rescued. Here, the same keyword count is acting as a booster
of the confidence.

The pattern was found in dialogues where the following type of user
utterances was frequently observed: “X’s weather Y,” where X and Y are
both associated with the same slot and X is correct and Y is wrong (mis-
recognition). An example would be “Tokyo’s weather Kyoto,” which cor-
responds to two dialogue acts and concepts: “refer-place-info place=Tokyo
info=weather” and “refer-place place=Kyoto.”

Since our discourse understanding component handles dialogue acts se-
quentially, after this kind of utterance, the slot value can only be Y, which
makes X’s slot purity very small. The same keyword count complements
this small slot purity, suggesting X’s potentially large slot purity.

There are 11 other samples that we could not categorize into patterns, partly
because they were classified correctly by a combination of the patterns and
partly because the weights for particular features were sometimes in an oppo-
site polarity depending on the training data. Although we found two samples
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where the same keyword pair count was seemingly acting as a strong indicator
of incorrectness, we did not categorize them as a pattern for the lack of sam-
ples. It is surprising that the importance of the same keyword pair count was
not evident in the successful samples considering the drop in the F-measure
when we did not use the feature. Investigating this issue remains as future
work.

7 Summary and Future work

We proposed a confidence scoring method for intention recognition results in
spoken dialogue systems. Our method utilizes both discourse-related features
and the acoustic and language model features of the speech recognition results
to train confidence models for slot values. Experimental results show that the
proposed method significantly improves the confidence scoring, indicating the
effectiveness of the discourse features.

The results also indicate the usefulness of using Grice’s maxims of cooperative-
ness to detect errors in spoken dialogue interactions. In addition, the analysis
of the successful cases have revealed that the confidence model training pro-
cess was capturing useful patterns to detect errors in the slot values, making
the patterns possible decision rules.

As future work, firstly, we plan to perform experiments using different sys-
tems in order to verify our approach in different settings, including domains
and dialogue strategies. Secondly, we would like to explore other discourse fea-
tures since the discourse features presented in this paper may not sufficiently
characterize the slot values. For example, we are planning to incorporate fea-
tures that represent relationships and constraints among the slots because
slot values tend to have dependencies in certain situations. The use of other
classification techniques for confidence model training, including non-linear
classification methods, should also be considered in this connection.

Thirdly, we would like to evaluate our method using workable dialogue sys-
tems. In this paper, we performed an off-line evaluation, which is based on
the assumption that a corpus collected with a certain system is similar to
one collected by the improved version of the system. However, in the case of
interactive systems, this is not necessarily the case. Therefore, to fully verify
the proposed method, an on-line (interactive) evaluation is necessary.

Finally, since Grice’s maxims have been found useful for the confidence scoring
of intention recognition results, we would also like to investigate the possibility
of using Grice’s maxims for improving the understanding component in spoken
dialogue systems.
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Although future work remains, the results of our experiments suggest that
our approach is promising. As a final remark, we point out that the discourse
features we introduced can be easily obtained as long as the system follows
our assumptions about spoken dialogue systems, which facilitates application
of our method to other systems.

8 Acknowledgments

We thank Naonori Ueda and Shoji Makino for their encouragement and sup-
port. Thanks also go to Kohji Dohsaka, Hajime Tsukada, Atsushi Nakamura,
Matthias Denecke, Kentaro Ishizuka and Joseph Polifroni for their helpful
comments on the draft version of the paper. We also thank the members
of the MIT Spoken Language Systems Group for letting us use their useful
confidence-scoring software. Finally, we thank the anonymous reviewers for
their valuable comments and suggestions.

References

Abdou, S., Scordilis, M., 2001. Integrating multiple knowledge sources for
improved speech understanding. In: Proc. Eurospeech. pp. 1783-1786.

Allen, J., Ferguson, G., Stent, A., 2001. An architecture for more realistic
conversational systems. In: Proc. IUI. pp. 1-8.

Ammicht, E., Potamianos, A., Fosler-Lussier, E., 2001. Ambiguity represen-
tation and resolution in spoken dialogue systems. In: Proc. Eurospeech. pp.
2217-2220.

Baggia, P., Rullent, C., 1993. Partial parsing as a robust parsing strategy. In:
Proc. ICASSP. pp. 123-126.

Béchet, F., Gorin, A. L., Wright, J. H., Hakkani-T1ir, D., 2004. Detecting and
extracting named entities from spontaneous speech in a mixed-initiative
spoken dialogue context: How May I Help You? Speech Comm. 42, 207—
225.

Bobrow, D. G., Kaplan, R. M., Kay, M., Norman, D. A., Thompson, H.,
Winograd, T., 1977. GUS, a frame driven dialog system. Artif. Intel. 8,
155-173.

Chu-Carroll, J., 2000. MIMIC: An adaptive mixed initiative spoken dialogue
system for information queries. In: Proc. 6th Applied NLP. pp. 97-104.
Corazza, A., Mori, R. D., Gretter, R., Satta, G., 1991. Computation of proba-

bilities for an island-driven parser. IEEE Transactions on Pattern Analysis
and Machine Intelligence 13 (9), 936-950.
Dohsaka, K., Yasuda, N., Aikawa, K., 2003. Efficient spoken dialogue control

30



depending on the speech recognition rate and system’s database. In: Proc.
Eurospeech. pp. 657-660.

Endo, T., Ward, N., Terada, M., 2002. Can confidence scores help users post-
editing speech recognizer output? In: Proc. ICSLP. pp. 1469-1472.

Filisko, E. A., 2002. A context resolution server for the GALAXY conversa-
tional systems. Master’s thesis, Massachusetts Institute of Technology.

Foote, J., Young, S., Jones, G., Jones, K. S., 1997. Unconstrained keyword
spotting using phone lattices with application to spoken document retrieval.
Computer Speech and Language 11, 207-224.

Gillick, L., Cox, S., 1989. Some statistical issues in the comparison of speech
recognition algorithms. In: Proc. ICASSP. Vol. 1. pp. 532-535.

Goddeau, D., Meng, H., Polifroni, J., Seneff, S., Busayapongchai, S., 1996. A
form-based dialogue manager for spoken language applications. In: Proc.
ICSLP. pp. 701-704.

Grice, H. P., 1975. Logic and conversation. In: Cole, P., Morgan, J. (Eds.),
Syntax and Semantics 3: Speech Acts. New York: Academic Press, pp. 41—
58.

Hacioglu, K., Ward, W., 2002. A concept graph based confidence measure. In:
Proc. ICASSP. pp. 225-228.

Hazen, T. J., Seneff, S.; Polifroni, J., January 2002. Recognition confidence
scoring and its use in speech understanding systems. Computer Speech and
Language 16, 49-67.

Higashinaka, R., Miyazaki, N., Nakano, M., Aikawa, K., 2003a. Evaluating
discourse understanding in spoken dialogue systems. In: Proc. Eurospeech.
pp- 1941-1944.

Higashinaka, R., Nakano, M., Aikawa, K., 2003b. Corpus-based discourse un-
derstanding in spoken dialogue systems. In: Proc. 41st ACL. pp. 240-247.
Higashinaka, R., Sudoh, K., Nakano, M., 2005. Incorporating discourse fea-
tures into confidence scoring of intention recognition results in spoken dia-

logue systems. In: Proc. ICASSP. Vol. 1. pp. 25-28.

Hirschberg, J., Litman, D., Swerts, M., 2004. Prosodic and other cues to speech
recognition failures. Speech Communication 43, 155-175.

Huang, J., Zweig, G., Padmanabhan, M., 2001. Information extraction from
voicemail. In: Proc. 39th ACL. pp. 290-297.

Komatani, K., Kawahara, T., 2000. Flexible mixed-initiative dialogue manage-
ment using concept-level confidence measures of speech recognizer output.
In: Proc. 18th COLING. Vol. 1. pp. 467-473.

Kuhn, R., Mori, R. D., 1995. The application of semantic classification trees
to natural language understanding. IEEE Transactions on Pattern Analysis
and Machine Intelligence 17 (5), 449-460.

Lee, A., Kawahara, T., Shikano, K., 2001. Julius — an open source real-time
large vocabulary recognition engine. In: Proc. Eurospeech. pp. 1691-1694.
Lin, Y.-C., Wang, H.-M., 2001. Probabilistic concept verification for language
understanding in spoken dialogue systems. In: Proc. Eurospeech. pp. 1049-

1052.

31



Macherey, K., Och, F. J., Ney, H., 2001. Natural language understanding using
statistical machine translation. In: Proc. Eurospeech. pp. 2205-2208.

Miyazaki, N., Nakano, M., Aikawa, K., to appear. Spoken dialogue under-
standing using an incremental speech understanding method. Systems and
Computers in Japan.

Pellom, B., Ward, W., Pradhan, S., 2000. The CU communicator: an archi-
tecture for dialogue systems. In: Proc. ICSLP. Vol. 2. pp. 723-726.

Potamianos, A., Kuo, H.-K. J., 2000. Statistical recursive finite state machine
parsing for speech understanding. In: Proc. ICSLP. Vol. 3. pp. 510-513.

Powell, M., 1964. An efficient method of finding the minimum of a function
of several variables without calculating derivatives. The Computer Journal
7 (2), 155-162.

Pradhan, S. S., Ward, W. H., 2002. Estimating semantic confidence for spoken
dialog systems. In: Proc. ICASSP. Vol. 1. pp. 233-236.

Rahim, M. G., Lee, C.-H., Juang, B.-H., 1997. Discriminative utterance veri-
fication for connected digits recognition. IEEE Transactions on Speech and
Audio Processing 5 (3), 266-277.

Rich, C.; Sidner, C., Lesh, N., 2001. COLLAGEN: Applying collaborative
discourse theory. Al Magazine 22 (4), 15-25.

Seneff, S., 1992. Robust parsing for spoken language systems. In: Proc.
ICASSP. pp. 23-26.

Seneff, S., 2002. Response planning and generation in the MERCURY flight
reservation system. Computer Speech and Language 16 (3—4), 283-312.
Singh, S., Litman, D., Kearns, M., Walker, M., 2002. Optimizing dialogue man-
agement with reinforcement learning: Experiments with the NJFun system.

Journal of Artificial Intelligence Research 16, 105-133.

Takano, S., Tanaka, K., Mizuno, H., Abe, M., Nakajima, S., 2001. A Japanese
T'TS system based on multi-form units and a speech modification algorithm
with harmonics reconstruction. IEEE Transactions on Speech and Audio
Processing 9 (1), 3-10.

Wessel, F., Schliiter, R., Macherey, K., Ney, H., 2001. Confidence measures
for large vocabulary continuous speech recognition. IEEE Transactions on
Speech and Audio Processing 9 (3), 288-298.

32




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


