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Abstract. We propose a new method for computing the probabilistic
vector expression of words based on dictionaries. This method provides a
well-founded procedure based on stochastic process whose applicability
is clear. The proposed method exploits the relationship between head-
words and their explanatory notes in dictionaries. An explanatory note
is a set of other words, each of which is expanded by its own explanatory
note. This expansion is repeatedly applied, but even explanatory notes
expanded infinitely can be computed under a simple assumption. The
vector expression we obtain is a semantic expansion of the explanatory
notes of words. We explain how to acquire the vector expression from
these expanded explanatory notes. We also demonstrate a word simi-
larity computation based on a Japanese dictionary and evaluate it in
comparison with a known system based on T'F' - [DF'. The results show
the effectiveness and applicability of this probabilistic vector expression.

1 Introduction

Word frequency vectors for information retrieval (IR) are generally calculated
with Term Frequency - Inverse Document Frequency (T'F - IDF') or simple nor-
malization. While these methods are certainly useful and effective in some appli-
cations, they are heuristic and do not seem to be firmly grounded in a principle
that explains why these methods are selected or why they work well. Papineni,
for example, showed that I DF is optimal for document self-retrieval with respect
to a generalized Kullback-Leibler distance [1]. However, this argument does not
take into account the co-occurrence of words and, therefore, cannot be applied
to TF - IDF. Such uncertainty regarding TF - I DF' may often cause confusion
when it is applied to particular applications, for example, not knowing whether
these word frequency vectors can be reasonably added up or multiplied. To avoid
such confusion, we investigate a new well-grounded method for computing word
frequency vectors that can be used instead of T'F' - I DF or simple normalization.

Recently, learning methods based on stochastic processes have become popu-
lar in the field of computational learning theories because of their simple descrip-
tions and logically founded procedures. As for IR, some probabilistic methods



have also been proposed lately. Hofmann, for example, suggested Probabilistic
Latent Semantic Indexing (PLSI), which provides an alternative method that
can be written as a matrix product resembling the singular-value decomposition
underlying Latent Semantic Indexing (LST) [2]. Using a probabilistic description
makes it easy to understand what each process does and how the processes are
applied. Hence, we also try to apply a stochastic process to the computation of
word frequency vectors from dictionaries to establish a well-grounded method.

The method we propose constructs probabilistic vectors by expanding the
semantics of words that are given as explanatory notes in dictionaries. The ex-
planatory notes may not sufficiently describe the general meaning of the words,
but each explanatory note consists of words that are further explained by their
own explanatory notes. Such semantic expansion can be repeatedly applied to
assemble many large explanatory notes. We can therefore expect them to provide
a more general description of word semantics.

A way of dealing with these large explanatory notes expanded infinitely will
be described in the next section. We explain how to deal with headwords and
their explanatory notes in dictionaries and produce a word frequency vector
based on a stochastic process.

To check the effectiveness of the proposed vector expression, we examined an
application for measuring word similarity that is also based on a stochastic pro-
cess. Our definition of word similarity and our computational method is detailed
in Section 3. Results of computational experiments with a Japanese dictionary
are also reported in that section.

2 Probabilistic Word Vector

2.1 Basic Idea

Dictionaries are composed of sets consisting of a headword and a related explana-
tory note. However, the explanatory note does not always explain the headword
sufficiently. Therefore, we investigated a method of realizing ideal explanatory
notes from the original notes. This approach is based on the following assumption
(see Figure 1).

A headword is explained by its explanatory note, and the words in the ex-
planatory note are also explained by their own explanatory notes. Consequently,
hierarchical explanations may continue infinitely. As a result, a headword obtains
many large explanatory notes, each of which has a different depth of hierarchy.
Here, we assume that the ideal explanatory note is a probabilistic combination
of these large explanatory notes, whose ratios become smaller according to the
hierarchical depth. This assumption makes it possible to calculate the ideal ex-
planatory note even if the hierarchical explanatory note at infinity cannot be
computed.
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Fig. 1. Model of semantic expansion

2.2 Methods

Here, we describe how to compute ideal explanatory notes from dictionaries.
First, we explain the notation of word frequency in explanatory notes. Explana-
tory notes are expressed as a set of probabilistic word frequencies.

We write the relationship between headword w; and word w; in the form

P(w;1)|wi), where wg-l) means word w; in the original (first) explanatory note.

This means that P(w;1)|wi) is the probability that word w; appears in the
explanatory note of headword w;. The probabilities over all headwords can be
formulated as a square matrix:

P (wgl) \w1> P (w§1)|w2) -ee P <w§1)|wm>
| P(esm) S
p (wgml) e (0D

where m is the number of headwords in the dictionaries. Each element P (w](-l) |w;)
is equal to the probabilistic frequency of w; in the explanatory note of wy, i.e.,

N(w')
Plug ) = L, 2
2au 1 N(wy )
(1)

where N(w;’), N (w](cl)) is the frequency of the word in the explanatory note
of w;. Column vectors of probability matrix A are the original word frequency
vectors.

Next, we try to obtain a secondary explanatory note that is a probabilistic
combination of the original explanatory notes. All words in the original explana-
tory note are regarded as headwords, and their explanatory notes are probabilis-
tically combined into a secondary explanatory note. The probability of word w;
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Fig. 2. Model of secondary explanatory notes

in the secondary explanatory note of headword w; is expressed in a formula:

Pw) = >~ Pl ) Plwg w,), (3)
all k
where w,(el) is a word in the explanatory note of w;. Formula (3) over all words
can be written as a formula of matrix A: A2.

Figure 2 shows a model of secondary explanatory notes. All paths from a
headword on the top layer to a word on the bottom layer pass through one of
the words on the second layer. Formula (3) shows all of these paths, and matrix
A expresses the relationship between the neighboring two layers.

Generally, we can formulate probability P(wﬁ-m |w;) as follows, where wg-n)
a word in the nth explanatory note of headword w;:

is

P(w"w;) = (4)
1 1) 2
> all - > all kn_2"'zau k1 P(w ”)|w,f:b 1))P(w/(cn |w1f£ 2)) P(wk1)|wz)

Formula (4) over all words can also be written as a formula of matrix A: A™.
Now, we probabilistically combine all the explanatory notes from the first to
infinity. That is, we compute the following formula:

C=PA+PA*+ -+ PA" +---, (5)

where Py, P5,---, P,,--- are probabilities of selecting the models of the hierar-
chical explanatory note.

Figure 3 shows a model of the ideal explanatory notes. This model illustrates
the probabilistic combinations of all hierarchical explanatory notes as expressed
by formula (5).
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Generally, it is extremely difficult to calculate C' exactly. However, when
the probability P,, becomes smaller at a certain rate according to n, C' can be
formulated as

C=blaA+a*A* +... +a"A" +-..), (6)

where a, b are parameters that satisfy the following:

0<ac<l, (7)
P, = ba™, (8)

ipn =1 9)

We can obtain b as a formula of a from the infinite series given by these equations:

p—179 (10)

a

Consequently, we can transform formula (6) into an equation:
(I —aA)C = (1—a)A. (11)

If matrix (I — aA) is non-singular, we can directly compute matrix C' by the
following formula:
C=(1-a)A(l —aA) . (12)



Alternatively, we could use a numerical solution of linear equations of the ith

column vector v; of C:
(I —aA)v;, =(1—a)A,;, (13)

where A; is the ith column vector of A. Otherwise, we could estimate v; with
some learning methods in formula (13). In any case, vector v; can be computed.

The (j, i) element of matrix C is P(wj|w;), which indicates the probability
that word w; appears in the ideal explanatory note of headword w;. We can
therefore regard the ¢th column vector of matrix C as a probabilistic frequency
vector of word w;.

2.3 Computation of word vectors

We next describe simulation results based on the method presented above. We
used a Japanese dictionary in the simulation [3]. As preprocessing, general nouns
and verbal nouns' were listed as headwords, and example sentences in their
explanatory notes were as far as possible excluded. ChaSen [4] was used as a
morphological analyzer. The total number of headwords was 44,050, and the
average number of words in an original explanatory note was about seven.

First, probability matrix A was calculated with formula (2), which is a 44,050-
dimensional square matrix.

Second, all column vectors of matrix C' were estimated by a learning method
that minimizes squared errors to solve equation (13), where parameter a was set
at 0.9. After the learning, we excluded words where the learning did not converge
or where the learning error was bigger than a certain threshold. The result
provided us with 43,616 headwords and their probabilistic frequency vectors.
The average number of non-zero elements of the column vectors was around
25,000. This means that more than half of all the headwords are used in each
ideal explanatory note.

Table 1 shows examples of the probabilistic frequency vectors.? Probabilistic
frequencies in the original and ideal explanatory notes are listed in the table with
regard to two headwords. These values are elements of probabilistic frequency
vectors, and all of the elements of each column vector naturally add up to 1. We
can roughly say that the probabilistic frequency in an ideal explanatory note is
large according to the probabilistic frequency in the original explanatory note,
aside from the headword itself.

3 Word Similarity

To evaluate the probabilistic word vector, we tried to compute word similarity.
First, we define the similarity of words and explore a method for computing it,
which is based on a stochastic process.

! Some nouns work as verbs with a post-positional auxiliary verb “suru” in Japanese.
For example, “denwa” (telephone) + “suru” means ‘make a phone call’.
2 See the next section for a detailed explanation of word similarity.



3.1 Definition and Method

We define the similarity of words as the probability that a headword is estimated
from the ideal explanatory note of another headword. This similarity expresses
how closely a headword represents the ideal explanatory note of another head-
word. Therefore, the similarity of all headwords to a certain headword can be
described as a probability vector.

The probability that headword w; represents a word w; in an ideal explana-
tory note is formulated as follows:

P(wj|wi) P(w;)

Plwilwj) = — P(w?[wg) P(wy)’

(14)

where P(w;) is the a priori probability of w;. Note that P(w;|w}) is the prob-
ability of a headword estimated from an ideal explanatory note, not of a word
in the next hierarchy of the explanatory note. We cannot calculate P(w;|w})
directly but can use the (i, j) element of the probabilistic frequency matrix C' as
P(w}|w;) in formula (14).

The similarity of headword w; from headword w; is obtained by processing
all the words in the ideal explanatory note of wj, i.e.,

Pluilwy) = 3 Pluwilwp) Plwi|w))
all k
all k > au 1 P(wi lwi) P(wr)

3.2 Simulation

To compute formula (15), we applied the results of the probabilistic frequency
vector obtained in Section 2.3. P(wj|w;) in the formula is the kth element of
the probabilistic word vector of w;. By contrast, the values of another unknown
parameter, a priori probability P(w;), are not yet given. P(w;) means the prob-
ability of word w; appearing without a precondition. Here, it should be remem-
bered that all headwords appear once in a dictionary. Hence, we can assume the
a priori probabilities of all headwords to be equal, giving the following formula:

P(wi|w:) P(wi|w;)
P(w;|w;j . 16
i) % a1 P(w|wr) (18)

The results of the computation with formula (16) are also shown in Table
1. Compared with the probabilistic frequency result, shown on the left hand in
the table, common words such as “#%=4€ (standard)” or “A#J (person)” have rel-
atively low values. By contrast, words that are semantically close but do not ap-
pear in the explanatory notes have high values, e.g., “L' )V 7 v 7 (raise level)”

r “J— K (guard)”.



LV (level)

Words Probabilistic frequency || Word similarity
in explanatory note Original exp.|Ideal exp.||Similarity|Order
JK¥ERE (leveling instrument) 0.1 0.012765 || 0.005534 | 1
L (level) 0.1 0.012487 || 0.005037 | 2
LAVY v 7 (raise level) 0 0 0.003480 | 3
SEHE (make level) 0 0 0.001155 | 4
TK¥#E (level) 0.2 0.025732 || 0.000914 | 5
FEE (precision) 0 0.002002 || 0.000791 | 6
1% (affair) 0 0.000002 || 0.000754 | 7
#€ (semi-) 0 0.000001 || 0.000684 | 8
#E (semi-) 0 0.000001 || 0.000684 | 8
B (distinguish) 0 0 0.000617 | 10
#% (degree) 0.1 0.011949 || 0.000273 | 25
kv 7 (top) 0.1 0.011806 || 0.000197 | 47
HEHE (standard) 0.2 0.026058 || 0.000092 | 166
TEEE (grade) 0.1 0.019590 || 0.000085 | 187
B¢F& (echelon) 0.1 0.014523 || 0.000070 | 277
RF 4 —H— K (bodyguard)
Words Probabilistic frequency || Word similarity
in explanatory note Original exp.|Ideal exp.|[Similarity|Order
RT 4 —H— K (bodyguard) 0 0.024390 || 0.025666 | 1
#— K (guard) 0 0 0.004786 | 2
F3l (one’s affair) 0.25 0.047686 || 0.003050 | 3
244 (guard) 0 0 0.002760 | 4
Bl (guard the king) 0 0.000010 || 0.002464 | 5
FH/OE (bodyguard) 0.25 0.026339 || 0.002308 | 6
T 22— b (escort) 0 0 0.002254 | 7
JEH D (familiar proverb) 0 0 0.001947 | 8
&7 (guard) 0 0.000192 || 0.001810 | 9
## (guard) 0.25 0.033887 || 0.001569 | 10
A (person) 0.25 0.026765 || 0.000090 | 224

Table 1. Examples of probabilistic word vector and similarity.
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Fig. 4. Comparison of proposed method and tuned system.



3.3 Evaluation

We evaluated our results by comparing them with those of the system proposed
by Kasahara et al. [5]. This system vectorizes original explanatory notes in a
dictionary using TF - IDF and measures word similarity in terms of the inner
product of those vectors. A feature of this system is that the vectors produced
by TF - IDF are manually tuned to accord with human feelings.

For comparison with our results, we used psychological data from question-
naires on word similarities [6]. In the psychological experiment, 77 subjects were
asked if the stimulus words were synonyms of the headwords or not. Stimu-
lus words that gained more than 50% agreement from the other subjects were
regarded as true synonyms.

We analyzed the population of the order of each true synonym in the com-
puted similarity. Associative words were also examined in the same manner.
Figure 4 shows the difference between our method and the tuned system. It il-
lustrates the ratio of accumulated ¢rue synonyms (A) and t¢rue associative words
(B) plotted over the order of similarity. In both cases, the plotted values of
the proposed method are almost always larger than those of the tuned system,
which means that these true words appear earlier in the order of similarity in our
results than in that of the tuned system. As for associative words, the effective-
ness is more significant. However, these are not accurate comparisons because
the tuned system contains words other than nouns, e.g., verbs and adjectives.
Nevertheless, we can easily expect our method to have almost the same results
as the simulation results, even with words other than nouns, because common
or frequently used words such as verbs have a low similarity in our method as
shown in Table 1.

4 Discussion

As mentioned at the beginning of this paper, we know that the TF - I DF method
is useful and works well. However, it does not provide us with a well-grounded
comprehension. By contrast, due to the stochastic process, it is quite clear what
the proposed method computes, and why the procedure is necessary. This clarity
is required when we are confused as to how to apply frequency vectors. For
example, if we assume that an application contains the process (A + AT), is it
possible to compute this reasonably? Here, A is a word-by-word square matrix
such as that used in our simulation. TF - IDF gives us no idea whether it is
possible to add A and A”. However, in terms of the stochastic process, it is clear
that adding P(w;|w;) and P(w;|w;) does not make sense. Of course, a matrix
based on T'F' - IDF need not abide by the rules of a stochastic process. However,
the meanings of the matrix elements are still the same. It is easy to understand
this idea if we assume a document-by-word matrix instead of a word-by-word
matrix.

In our simulation of word similarity, the probability P(w;|w;) was given
by formula (16). This process resembles a calculation of the inner product of



TF - IDF vectors when headwords are regarded as document indices. This is
because, in this case, the denominator adds up word frequencies over all doc-
uments, and the numerator is the word frequency in a document. A widely
used document similarity method computes the inner product of TF - IDF vec-
tors, i.e., > (TF)?- (IDF)2. On the other hand, our method nearly computes
SYTF)?-IDF as follows:

-y P(wjw;) P(wy|w;)

(wi|w;)
o all k Zall l wk|wl)
_ P(w|w;) P(wi|w;)
SN 2 a1 Pwilw) /3 0 Pwi|wi)
TF TF

- VDFVDF’

As described above, our method clarifies how we can use the method for
other applications. From this point of view, the proposed method is significantly
different from TF - IDF', although these two processes work similarly in some
ways. As for the word similarity, we may be able to undertake some further work
to evaluate its accuracy, but the simulation results clearly show the effectiveness
of the probabilistic frequency vectors.

5 Conclusions

We proposed a probabilistic method for computing word frequency vectors based
on dictionaries. This method is significant in its well-founded procedure. A
stochastic process clearly shows how to employ this method for certain applica-
tions. As an example of such applications, we demonstrated the computation of
word similarity. The results show the effectiveness of our approach.

The key feature of our method is the semantic expansion of dictionaries.
However, the dictionaries themselves may influence this expansion. To avoid such
an influence, we may need to use as many dictionaries as possible or investigate
a way of applying corpora to our procedure.
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