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Abstract

This paper presents a modular network architecture that learns to cluster multiple views of multiple three-dimensional (3D) objects. The
proposed network model is based on a mixture of non-linear autoencoders, which compete to encode multiple views of each 3D object. The
main advantage of using a mixture of autoencoders is that it can capture multiple non-linear sub-spaces, rather than multiple centers for
describing complex shapes of the view distributions. The unsupervised training algorithm is formulated within a maximum-likelihood
estimation framework. The performance of the modular network model is evaluated through experiments using synthetic 3D wire-frame
objects and gray-level images of real 3D objects. It is shown that the performance of the modular network model is superior to the
performance of the conventional clustering algorithms, such as theK-means algorithm and the Gaussian mixture model.q 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

One of the fundamental issues in vision science is how the
information of the three-dimensional (3D) environment is
represented in the brain. The biological visual systems have
a remarkable ability of recognizing the 3D world from
constantly changing retinal images. In particular, although
the projected images of a 3D object significantly change as
the viewpoint or the pose of the object changes, the object
can be readily identified. It is therefore a great challenge to
elucidate computational mechanisms of how the informa-
tion on 3D object is learned and represented in the neural
systems.

Recent computational studies have explored a view-based
approach to 3D object recognition, where 3D objects are
described by the representations in the viewer-centered
coordinate frame (e.g. Poggio & Edelman, 1990; Murase
& Nayar, 1995; Moghaddam & Pentland, 1996). This
approach contrasts with a conventional approach that
constructs structural descriptions of objects using 3D volu-
metric primitives in the object-centered coordinate frame

(e.g. Marr & Nishihara, 1978). In this structural description
approach, however, the reliable construction of volumetric
primitives is often very difficult and time-consuming. In the
view-based approach, on the contrary, a limited number of
view examples are learned and view invariant recognition
achieved by interpolating the acquired representations.

The use of view-dependent representations of 3D objects
in the brain was suggested by empirical experiments:
psychophysical studies have shown that representations of
3D objects in the human visual system are viewpoint-speci-
fic (Bülthoff & Edelman, 1992; Edelman & Bu¨lthoff, 1992).
Electrophysiological experiments on behaving monkeys
have also indicated that the primate inferotemporal (IT)
cortex employs viewer-centered object representations
(Logothetis & Pauls, 1995; Logothetis, Pauls & Poggio,
1995).

Although a number of research works have addressed the
issue of the representation of a single object, how the images
of a number of objects are learned and organized has not
been studied very much. In particular, as the images of
objects are in general not explicitly labeled as belonging
to objects, the images should be able to be organized with
no knowledge on their object identities. This paper, therefore,
investigates an unsupervised learning model that auto-
matically clusters multiple views into multiple object classes.
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Unsupervised data clustering can be regarded as one of
the advanced inductive functions of the brain. Recent
physiological data from single-unit recording experiments
showed that cells in the anterior IT cortex of the primate
brain selectively responds to moderately complex object
features, and that cells responding to similar features cluster
in a columnar region (Tanaka, 1993; Tanaka, Saito, Fukada
& Moriya, 1991; Fujita, Tanaka, Ito & Cheng, 1992). An
optical imaging study further revealed that in the primate IT,
the activation spot gradually shifts as the viewing angle of a
face changes (Wang, Tanaka & Tanifuji, 1996). These
observations suggest that the representations of multiple
object images may be self-organized into modular structures
in the anterior IT.

Clustering multiple views into multiple object classes is
generally a difficult computational task due to the following
reasons: firstly, the dimensionality of object images is very
high. Secondly, the distribution of the views of an object in
the data space is often very complex, i.e. the object image
significantly changes as the viewpoint changes. Thirdly, the
view distributions of multiple objects are not easily separ-
able, i.e. some views of different objects are more similar
than the views of the same object. Despite these difficulties,
there are two properties of the data structure that we can
make good use of. First, although the input dimension is
very high, the view data of an object often resides in a
low-dimensional sub-space. Second, the view distribution
of an object is inherently continuous, i.e. a chain of multiple
views constitutes the continuous data manifold.

A clustering strategy that we explore in this paper is,
therefore, to identify multiple non-linear sub-spaces each
of which contains the views of each object class. The clus-
tering algorithm proceeds by iterating the computation of
the distances between each view data and the estimated sub-
spaces, and the re-estimation of the sub-spaces using these
distances. This iterative procedure is similar to the expecta-
tion-maximization (EM) clustering algorithm of the Gaus-
sian mixture model (Dempster, Laird & Rubin, 1977). A
critical difference, however, is that in the proposed model
the distance of the data is defined not to a single prototypical
view but to a non-linear sub-space which contains multiple
view data. Once these sub-spaces are identified, the given
view can be classified into an object class whose sub-space
is closest to the data.

This multiple sub-space strategy can be achieved by using
a modular network architecture that consists of a combina-
tion of multiple autoencoders. In this mixture of autoenco-
der architecture, each autoencoder network is considered as
a module that discovers a non-linear sub-space of each
object class. Here, an unsupervised learning algorithm for
estimating unknown parameters of the model can be formu-
lated in a statistical framework, i.e. the connection weights
in the modular networks are iteratively estimated based on
maximum likelihood estimation. Preliminary investigations
on the modular network model have been discussed earlier
(Suzuki and Ando, 1999, 1995; Ando, 1996; Fujita, Suzuki

& Ando, 1996). However, this paper presents a more
detailed description of the model with its relation to other
conventional clustering models, and experimental evalua-
tions on its performance using not only synthetic 3D objects
but also real 3D objects.

The paper is organized as follows: Section 2 describes the
details of the clustering models examined in this paper. This
section first describes theK-means algorithm, and then
shows how the algorithm is extended to the Gaussian
mixture model and to the modular network model. Section
3 describes the clustering experiments using computer-
generated images of 3D wire-frame objects and gray-level
images of real 3D objects. The performance of the modular
network model is compared with the performance of theK-
means algorithm and the Gaussian mixture model. Section 4
finally concludes the paper.

2. Modular network model

This section describes a modular network model based on
the mixture of autoencoders. We first describe the conven-
tional clustering models, i.e. theK-means method and its
extension, the Gaussian mixture model (Duda & Hart, 1973;
Bishop, 1995). We then point out some limitations of these
methods when applied to object view data and explain how
the mixture of autoencoders may overcome these limita-
tions. The main advantage of using a mixture of autoenco-
ders is that the model assumes multiple sub-spaces for
describing continuous data distributions whereas theK-
means algorithm and the Gaussian mixture model assume
multiple center points. We will explain the training methods
based on the maximum likelihood estimation.

2.1. K-means algorithm

TheK-means algorithm is a simple yet effective unsuper-
vised clustering algorithm, hence it has widely been used for
data clustering. It has also been used for determining initial
center values for the subsequent supervised training of
radial basis function networks (Moody & Darken, 1989).
The K-means algorithm finds K vectorsmi�i � 1;…;K�
given N data points {xn}. The algorithm partitions the data
points intoK classesCi which containNi data points. The
numberK must be given in advance. To find the partitions,
we can minimize a sum-of-squares cost function of the form

E �
X

i

X
n[Ci

ixn 2 mii
2
; �1�

wherem i is the mean vector of the data points in classCi,
which is written as

mi � 1
Ni

X
n[Ci

xn: �2�

The batch version of theK-means algorithm starts from
arbitrary initial mean vectors and iterates between the
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assignment of each data point to the class that has the near-
est mean vector, and the computation of the mean vectors of
the data points in each redefined class. It can be shown that
the value of the cost function does not increase at each
iteration (Linde, Buzo & Gray, 1980). The iteration
proceeds until there is no further change in the assignment
of the data points.

The online version of theK-means algorithm, on the
contrary, updates the mean vectors as each data point is
presented. The update rule is given by

Dmi � k�xn 2 mi� �3�
wherek is the learning rate parameter.

2.2. Gaussian mixture models

The mixture models regard unsupervised data clustering
as a mixture density estimation problem (Duda & Hart,
1973). The mixture density of the input data is given by a
linear combination of component densitiesp�xnui� of the
form

p�xn� �
X

i

p�xnui� P�i�: �4�

In the probabilistic framework, the mixing coefficients
P(i) can be regarded as the prior probability of the data
being generated from componenti, and the component
densitiesp�xnui� can be regarded as the conditional probabil-
ity. Using Bayes’ theorem, the posterior probability, which
gives the probability that the dataxn belongs to a classi, is
written as

P�iuxn� � p�xnui� P�i�
p�xn� : �5�

In the case of the Gaussian mixture model, the component
densities are modeled by Gaussian distribution functions of
the form

p�xnui� � 1

�2p�d=2uSi u
1=2 exp 2

1
2
�xn 2 mi�TS21

i �xn 2 mi�
� �

;

�6�
where the meanmi is a d-dimensional vector,Si is a d × d
covariance matrix, anduSi u is the determinant ofSi . The
distance defined byDi�xn� � �xn 2 mi�TS21

i �xn 2 mi� is
called the Mahalanobis distance. If we assume that the
covariance matrix has the form ofSi � s2

i I ; whereI is the
identity matrix, the component density can be written as

p�xnui� � 1

�2ps2
i �d=2

exp 2
1

2s2
i

ixn 2 mii
2

( )
: �7�

To find the unknown parameters {mi , si , P�i�} for each
classi, we can employ the maximum likelihood estimation

method. The log-likelihood function is given by

ln L � ln
Y

n

p�xn�
( )

�
X
n

ln p�xn� �
X
n

ln
X

i

p�xnui� P�i�
( )

:

�8�
We can maximize the log-likelihood function, or equiva-

lently, minimize the energy function defined by the negative
of log-likelihood,

E � 2ln L: �9�
To maximize the log-likelihood function, standard non-

linear optimization algorithms can be used. The simplest
method among these is the gradient descent algorithm,
which is generally written in the continuous form as

dui

ds
� 2k

2E
2ui

; �10�

where {ui} is the set of parameters to be estimated,s is the
time in the gradient descent procedure, andk is the learning
rate parameter. In order to enhance the gradient descent
performance, we can employ more efficient methods, such
as the conjugate gradient algorithm or the quasi-Newton
algorithm. In the case of maximizing (8), using (5) and
(7), we can derive the following gradients, which are used
for the gradient descent algorithm:

2E
2mi

� 2
X
n

P�iuxn� �xn 2 mi�
s2

i

; �11�

2E
2si
�
X
n

P�iuxn� d
si

2
ixn 2 mii

2

s3
i

( )
: �12�

For estimating the prior probabilityP(i), the constraintP
i P�i� � 1 must be incorporated. We can use the Lagrange

method, which yields

2Ep

2P�i� � N 2

X
n

P�iuxn�
P�i� ; �13�

whereN is the number of data points, andEp is a modified
energy function where a terml�Pi P�i�2 1� is added to (9).
Here, we set the Lagrange multiplierl to N, which is
derived by setting the derivative (13) to zero with the use
of
P

i P�i� � P
i P�iuxn� � 1:

An alternative powerful optimization method for the
maximum likelihood estimation is the EM algorithm
(Dempster et al., 1977). The EM algorithm can be applied
to the maximum likelihood problem when the data set is
incomplete, i.e. the class labels are not given, or some vari-
ables are missing in the training data. The EM algorithm
iterates between the E-step which computes the expectation
of the complete data likelihood assuming that each data is
completely labeled and the M-step, which maximizes this
expectation. The E-step then reduces the computation of the
posterior probabilityP�iuxn� given by (5). Using the esti-
mated posterior probability, the M-step yields the following
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update equations:

ms11
i �

X
n

Ps�iuxn�xnX
n

Ps�iuxn�
; �14�

�ss11
1 �2 �

X
n

Ps�iuxn�ixn 2 ms11
i i2

d
X
n

Ps�iuxn�
; �15�

P�i�s11 � 1
N

X
n

Ps�iuxn�: �16�

The K-means algorithm described in Section 2.1 can be
regarded as a special case of the EM algorithm of the Gaus-
sian mixture model. In the limit wheresi goes to zero, it can
be shown that the posterior probability becomes zero except
for the probability whose centermi is closest to the dataxn,
hence the EM Eq. (14) reduces to theK-means Eq. (2)
(Bishop, 1995). Therefore, the Gaussian mixture model
can be regarded as a probabilistic extension of theK-
means algorithm, i.e. the Gaussian mixture model allows
the soft partition of data points in proportion to the respon-
sibility defined by the posterior probability which indicates
the relative probability that the data was derived from each
class.

Moghaddam and Pentland (1996), for example, presented
a method that combines the principal component analysis
with a Gaussian mixture model for object recognition and
detection. As the dimensionality of object images is in
general very high in the input space, the method first finds
a principal sub-space, and then the Gaussian mixture model
is applied to estimate the multimodal densities within the
principal sub-space.

2.3. Mixtures of autoencoders

One of the limitations of using theK-means algorithm
and the Gaussian mixture model is that the density estima-
tion is not accurate if their underlying assumptions do not
hold for the given distributions. In particular, theK-means
algorithm and the Gaussian mixture model assume that the
distribution of each class is unimodal, i.e. the distribution of
each class is assumed to have a center in the data space.
However, when the training data represents multiple views
of a 3D object, the data is not generally distributed around a
fixed center point but continuously distributed in the data
space. Moreover, the manifold formed by each object
should, in general, form a complex shape in the data
space, and cannot be easily separated from the manifold
of other objects; therefore, the within-class similarity is
not always less than the between-class similarity. For exam-
ple, the frontal view of a person’s face can be more similar
to the frontal view of another person’s face than the profile
view of the same person.

We can certainly approximate an arbitrary data distribu-
tion with multimodal densities, i.e. modeling a data distri-
bution using a number of Gaussian densities. Nonetheless, if
the goal of unsupervised clustering is to find meaningful
classes, simply representing the data with multiple densities
is not sufficient. Multiple views ofn objects, for instance,
could be described bym (.n) Gaussian densities each of
which covers a subset of views of individual objects.
However, in order to findn object classes, an additional
clustering procedure is needed for combiningm multiple
densities. This additional clustering is generally not an
easy task because the closest Gaussian centers do not neces-
sarily belong to the same object class.

The basic idea of using a mixture of autoencoders for
clustering data distributions is that it can capture multiple
non-linear sub-spaces rather than multiple centers. In parti-
cular, when the data distributions form continuous and
complex manifolds, which have no fixed centers, it is
more effective to estimate the sub-spaces where the data
distributions lie. During the training of a mixture of auto-
encoders, competition among the autoencoders allows the
system to identify multiple non-linear sub-spaces. The
following sections provide detailed descriptions of linear
and non-linear autoencoders, their mixture models, and
the maximum likelihood formulation for estimating
unknown parameters in the models.

2.3.1. Linear and non-linear autoencoders for
dimensionality reduction

It is often essential to reduce the dimensionality of high-
dimensional data for extracting the intrinsic information in a
low dimensional sub-space. Linear sub-space methods, such
as principal component analysis (PCA), also known as
Karhunen–Loe´ve transform (KLT), are widely used for
dimensionality reduction. These methods, however, yield
only approximate dimensions when the underlying statisti-
cal structure is non-linear in nature.

In the case of projected views of a 3D object, the number
of parameters constraining the input distribution is intrinsi-
cally limited, despite the significant image variations as the
viewpoint changes. In fact, any rigid object transformation
can be described by six parameters or degrees of freedom,
three for rotation and three for translation. As a mapping
from the input views to the viewpoint parameters should be
non-linear, a non-linear dimensionality reduction method is
needed to extract such intrinsic dimensionality of the view
distribution.

An autoencoder, which is also called an auto-associative
network, can be used to perform linear and non-linear
dimensionality reduction. An autoencoder consists of a
multilayer perceptron which finds an identity mapping
through a bottleneck in the hidden layer, i.e. the number
of units in the hidden layer is set to be smaller than the
number of input and output units. Hence, the network
approximates functions F and F21 such that
RD!F RM !F

2 1

RD, whereM , D. The autoencoder network
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compresses the input into a low-dimensional representation
by eliminating redundancy in the input data distribution.
The autoencoder network can be trained by minimizing a
sum-of-squares error of the form

E �
X
n

X
k

{ yk�xn�2 xnk}
2
; �17�

wherexn � { xnk} is the nth data vector andyk is the output
of thekth unit of the network. Standard optimization meth-
ods, such as the gradient descent algorithm, can be used for
estimating the network weights.

It has been shown that a three-layer autoencoder with a
bottleneck in the second layer performs a linear dimension-
ality reduction specified by the principal components of the
input distribution (Bourlard & Kamp, 1988; Baldi &
Hornik, 1989; Oja, 1991). Specifically, if an autoencoder
containing M hidden units is trained by minimizing the
error function (17), the network projects the data onto the
M-dimensional sub-space spanned by the firstM principal
components of the data. TheseM vectors, however, need not
be orthogonal or normalized. For the new data,xp, the errorP

k { yk�xp�2 xp
k} 2 can be regarded as the distance between

the data and the estimated sub-space.
If we use a five-layer autoencoder, on the contrary, with a

bottleneck in the third layer, the network can perform a non-
linear dimensionality reduction, which is a non-linear analo-
gue to the principal component analysis (Oja, 1991; DeMers
& Cottrell, 1993). In this case, the estimated sub-space can
be non-planar. The error

P
k { yk�xp�2 xp

k} 2 can again be
regarded as the distance between the dataxp and the
estimated sub-space. A five-layer autoencoder is, therefore,
a simple yet powerful method for non-linear dimensionality
reduction, although training the non-linear network may
result in it becoming trapped in a sub-optimal local
minimum.

A five-layer autoencoder has been applied to various
tasks, such as time series data compression and face recog-
nition (DeMers & Cottrell, 1993), color information encod-
ing (Usui, Nakauchi & Nakano, 1992), and visual and motor
information integration for grasping (Uno, Fukumura,
Suzuki & Kawato, 1995). The non-linear dimensionality
reduction is expected to overcome some limitations of linear
principal component analysis. If, for example, the intrinsic
dimension ofD-dimensional data is two, and the data is not
distributed on a planar surface, linear PCA cannot detect this
two-dimensional (2D) sub-space but requires a sub-space
with more dimensions for describing the data, whereas a
non-linear method can, in principle, capture this 2D curved
surface. Therefore, we expect that a five-layer autoencoder
is more effective for estimating a non-linear mapping
between the multiple views of 3D objects and their intrinsic
viewpoint parameters.

2.3.2. Modular network architecture based on the mixture of
autoencoders

When samples of multiple classes are distributed in a data
space, the dimensionality reduction should be performed for
the data of each class separately in order to extract the
intrinsic information of each class. If we do not know
which class each data belongs to, we should cluster the
data into multiple classes while performing dimensionality
reduction within each class at the same time. Therefore, the
goal is to find multiple sub-spaces that capture the data
distribution of each class. To achieve this, we could use
the mixture of autoencoders, which is the combination of
multiple autoencoders.

More specifically, the network architecture that we use
for clustering the multiple views of multiple 3D objects
consists of a set of modules, as illustrated in Fig. 1. Each
module is a five-layer auto-associative network, which
encodes and decodes multiple views of an object based on
non-linear mappings. If each module can be trained to
encode and decode multiple views of a single object, we
can identify an input view as an object by selecting the
module whose output view best fits the input view. We,
therefore, define a classifier whose output vector is given
by the softmax function of the negative squared difference
between the input and the output of the module, i.e.

fi � exp�2ixn 2 yii
2�X

j

exp�2ixn 2 yii
2� ; �18�

wherexn andyi denote the input vector and output vector of
the ith module, respectively. We regard each componentfi
as the output of a unit in the classifier, which indicates a
probability of the input view belonging to the corresponding
classi. Therefore, if only one of the modules has an output
that best matches the input, then the output value of the
corresponding unit in the classifier becomes nearly one
and the output values of the other units become nearly zero.
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multiple views of multiple 3D objects. The modular network model consists
of a set of five-layer autoencoders and a classifier.



2.3.3. Unsupervised training based on maximum likelihood
estimation

Algorithms for training the modular network architecture
described in the previous section can be formulated based
on a maximum likelihood estimation. In unsupervised train-
ing algorithms, the views provided to the networks are clus-
tered without any knowledge of the object identities. As in
the case of the Gaussian mixture model, we maximize the
log-likelihood function,

ln L �
X
n

ln{
X

i

p�xnui� P�i�} : �19�

While the component densityp�xnui� for the Gaussian
mixture model is given by Eq. (6) or (7), for the mixture
of autoencoders, the output of theith autoencoderyi should
replace the mean vectormi . Therefore, assuming that the
covariance matrix has the formSi � s2

i I ; the component
density function for the mixture of autoencoders is written
as

p�xnui� � 1
�2ps2

i �d=2
exp 2

1
2s2

i

ixn 2 yii
2

( )
; �20�

wherexn is the input data.
The gradient descent algorithm (10) for minimizing the

energy functionE � 2ln L can be used to estimate the set of
unknown parameters {wi ;si ;P�i�} ; where wi is the set of
connection weights in each autoencoder network. By repla-
cing the mean vectormi in Eqs. (11), (12) and (13) with the
output vector of theith autoencoderyi, we obtain the follow-
ing gradients for a batch formulation of the optimization

2E
2yi
� 2

X
n

P�iuxn� �xn 2 yi�
s2

i

; �21�

2E
2si
�
X
n

P�iuxn� d
si

2
ixn 2 yii

2

s3
i

( )
; �22�

2E
2P�i� � N 2

X
n

P�iuxn�
P�i� : �23�

The posterior probabilityP�iuxn� is given by Eq. (5). The
chain rule is applied to Eq. (21) to derive the derivative of
the energy function with respect to weightswi.

To obtain an online formulation, where the parameters
are updated after the presentation of each data, we may
simply drop the summation sign ofn in the likelihood func-
tion (19), use (20) for the component density function, and
approximate the prior probability in the likelihood function
with the softmax functionfi described in Eq. (18). These
operations yield a log-likelihood function of the form

ln L � ln

X
i

1
�2ps2

i �d=2
exp 2 1 1

1
2s2

i

 !
ixn 2 yii

2

" #
X

j

exp�2ixn 2 yji
2�

8>>><>>>:
9>>>=>>>;: �24�

This log-likelihood function can be maximized using the
gradient ascent method. The obtained algorithm forces the
output of at least one module to fit the input, and it also
forces the rest of the modules to increase the error between
the input and the output. As the constraint imposed by the
bottleneck in the hidden layer prevents each module from
encoding more than one object, we expect that the networks
should eventually converge to a state where each module
can identify an object.

The algorithms for training the mixture of autoencoders
are related to a formulation of the adaptive mixture model
(Jacobs & Jordan, 1993; Jacobs, Jordan, Nowlan & Hinton,
1991; Jordan & Jacobs, 1994). The adaptive mixture model
can be regarded as a supervised version of the mixture of
autoencoders model. In supervised learning problems, such
as regression or classification, when the task can be divided
into distinct subtasks, it is more useful and efficient to use
multiple separate networks, each of which handles a sub-
region of the input space, than a single homogeneous
network covering the whole input space. The adaptive
mixture model is designed to learn how to allocate different
‘expert’ networks into different input regions. An appropri-
ate decomposition of the input space is achieved by forcing
the expert networks to compete in specializing the training
data, and simultaneously training an extra ‘gating’ network
that decides which of the expert networks should be used for
each training data. By using the softmax activation function
as the output of the gating network, the gating output can be
regarded as a prior probability. As a result, a maximum
likelihood estimation algorithm can be applied to the train-
ing of the expert and gating networks. While the adaptive
mixture model uses a gating network for selecting a suitable
network, the mixture of autoencoder’s model does not
require an additional network, as the classifier (18) can
choose a module based on the reconstruction error of each
module.

We should note that similar modular architectures using
autoencoders for pattern recognition have been presented
independently by several authors (Suzuki & Ando, 1995;
Hinton, Revow & Dayan, 1995; Schwenk & Milgram,
1995). The model presented in this paper is significantly
distinct from other models in the training methods, i.e. the
proposed model is based on the unsupervised training of
multiple autoencoders, whereas all other models train each
module assuming that the identity of each pattern is
provided during the training.

3. Experiments and discussions

The modular network model based on the mixture of
autoencoders was implemented to evaluate its performance
in unsupervised classification of images of 3D objects. In
the experiments, multiple views of multiple 3D objects were
randomly presented to the networks without providing their
object labels, and the networks learned to cluster the given
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views into multiple object classes. The difficulty of cluster-
ing multiple views of 3D objects lies in the fact that some
views of an object are often more similar to the views of
different objects than to other views of the same object.
Therefore, in the following experiments, we selected multi-
ple objects whose views were relatively difficult to discri-
minate, and compared the clustering abilities of the modular
network model and conventional unsupervised models.

In Section 3.1, we describe the clustering experiments
using computer-synthesized wire-frame objects. Here, we
test how the modular network model clusters multiple
views of multiple objects where the only available informa-
tion is a set of positions of vertices or angles between
segments in the projected images. In the experiments, we
assume that a correspondence of these features is given
among multiple views. We describe analyses of the encoded
representations acquired in the hidden layer and the general-
ization properties of the networks. In Section 3.2, we
describe the experiments using gray-level images of real
3D objects. Here, we test how the model clusters multiple
views distributed in a high-dimensional input space. In the
experiments, we assume that a correspondence among
multiple views is unknown. We compare the performance
of the mixture of autoencoders to the performance of
conventional methods, such as theK-means algorithm and
the Gaussian mixture model.

3.1. Wire-frame objects

This section examines the clustering ability of the modu-
lar network model using synthetic 3D wire-frame objects.
Wire-frame objects have been used for computational
studies on the supervised learning of 3D objects (Poggio
& Edelman, 1990), psychophysical analyses of the human

recognition system (Bu¨lthoff & Edelman, 1992; Edelman &
Bülthoff, 1992), and physiological investigations on object
representations in the primate IT cortex (Logothetis &
Pauls, 1995; Logothetis, Pauls & Poggio, 1995).

3.1.1. Three-dimensional objects and training procedures
The 3D objects that we used for the experiments were

novel five-segment wire-frame objects whose six vertices
were randomly selected in a unit cube {21 , x; y; z , 1} ;
as shown in Fig. 2(a). Multiple views of the objects were
obtained by orthographically projecting the objects onto an
image plane whose position covered a sphere around the
objects as shown in Fig. 2(b). The view position was
defined by two parameters:u andf �0 # u # p; 0 # f ,
2p�: A vector describing the view direction is given by
(sinu cosf , sinu sinf , cosu). In the following experi-
ments, we used two types of features for the input—one
was thex andy image coordinates of the six vertices which
formed a twelve-dimensional vector, and the other was the
cosines of the angles between the projected images of the
adjoining segments which formed a four-dimensional
vector.

The network model consisted of a set of modules where
the number of modules was set equal to the number of
objects used for the experiments. The number of units in
the third layer of each module was set equal to the number
of view parameters, which was two in the experiments. The
number of units in the second and fourth layers was varied.
In most of the experiments, five units were enough to
achieve a reasonable clustering performance. To obtain a
more accurate clustering performance, the number of units
was increased up to twenty for these layers. During the
training, objects were randomly selected among the object
set and their views were randomly selected within the whole
view range. Alternatively, we initially limited the ranges of
u and f to p=4 and p=2; respectively, and gradually
increased the ranges until they covered the whole sphere.
These two types of training methods yielded similar results,
but the latter method converged roughly ten times faster
than the former method. We also conducted an experiment
where the networks learned only a limited range of views in
order to study how the networks generalize their clustering
ability beyond the trained data set. In this experiment, the
networks were trained within the ranges ofp=4 andp=2 foru
andf , respectively.

3.1.2. Results and analyses
The clustering performance of the networks was first

examined using three wire-frame objects. To train the
networks, we maximized the log-likelihood function
described in Section 2.3.3. In this experiment, we used an
on-line version of the training algorithms. The steepest
ascent method was used to maximize the log-likelihood
function. To improve the convergence rate, more efficient
methods, such as the conjugate gradient method, can also be
applied. We conducted experiments with two types of input
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Fig. 2. (a) Examples of 3D wire-frame objects used for the experiments. The
3D objects were produced by connecting six vertices randomly generated in a
unit cube. (b) A viewpoint which covers a sphere around the 3D objects.
The position of the viewpoint is specified by two parameters (u , f).



features of the wire-frame objects: thex andy image coor-
dinates of the vertices and the cosines of the angles formed
by the adjoining segments in the image. Both types of
features yielded a satisfactory classification performance,
although the training using the angles required a longer

learning period. In the following analyses, we only show
the results that used the coordinates of vertices for the input
to the networks.

Fig. 3(a) shows the output images of the three modules in
the case where a view of Object 3 was used as the input to
the trained networks. The output image of Module 2 exhibits
the most accurate recovery of the input, hence this view can
be classified into Class 2. Fig. 3(b) shows some other input
views of Object 3 and the images recovered by Module 2.
The figure shows that the module can recover multiple
views of Object 3 although the shapes of these images are
significantly different.

To determine the recovery ability of the networks in more
detail, we provided the trained networks with 2500 views to
cover the entire view range�0 # u # p;0 # f , 2p� for
each object. Fig. 4(a) shows the squared difference between
the input views of the three objects and the recovered views
of Module 2. As shown in the figure, the recovery error is
nearly zero for all the views of Object 3 but the error is much
larger for the views of the other two objects. The results,
therefore, show that each module can recover the views of
only one object, which is due to the dimensionality reduc-
tion in the hidden layer of each network. The ability of each
network to recover the views of a single object can be used
to classify multiple views of 3D objects. Fig. 4(b) shows the
output of the classifier defined by Eq. (18) plotted over the
view direction (u , f ) when the inputs are all of the views of
Object 3. The output value of Unit 2 in the classifier is
nearly one over all the view directions, but the outputs of
the two other units are nearly zero. When the views of other
objects were used for the inputs, similar binary output
patterns were obtained. Therefore, the results indicate that
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Fig. 3. (a) Recovered images of the three modules when a view of Object 3
was used for the input to the networks. The output image of Module 2
shows the most accurate recovery of the input view. (b) Examples of the
input views of Object 3 and the views recovered by Module 2. The module
can recover multiple views of the object.

Fig. 4. (a) The squared difference between the input views and the views generated from Module 2 over an entire view range. The recovery error is nearly zero
for the views of Object 3. (b) The output of a classifier when the views of Object 3 were used for the inputs. The output value of Unit 2 in the classifier is nearly
one over the entire view range, while the outputs of the two other units are nearly zero.



the modular network model effectively clusters the multiple
views of 3D objects without any object identity given to the
networks during the training.

We analyzed the information acquired by the hidden units
of the third layer. Fig. 5 shows the relationship between the
encoded representations in the hidden layer of a network
and the view directions (u , f ) of the input images. Fig.
5(a) plots the outputs of the two units in the third layer of
the network with labels of the view directions (u , f ), when
the images of the entire view range were provided to the
networks. In this figure, the curves radiating in all directions
from the center indicate contours at certain values of the
periodic variable f , and the circular curves indicate
contours at certain values of the non-periodic variableu .
Therefore, each input view is mapped onto a point in the
disk-like region of the hidden state. This figure shows that
the information on the view direction, or equivalently, the
pose of each 3D object is completely extracted and
compactly described in the hidden layer of each module.

To see this encoded information in more detail, the output
values of the two hidden units are shown as a function of the
view directions of the input views in Fig. 5(b). This graph is
re-plotted conversely in Fig. 5(c) where the view direction
(u , f ) is shown as a function of the outputs of the hidden
units. Fig. 5(b) and (c) show that these functions are single-
valued, and this indicates that there are one-to-one corre-
spondences between the view directions and the representa-
tions in the hidden layer. This viewpoint information
encoded in the third layer enables each autoencoder network
to reconstruct the multiple views of each 3D object in the
fifth layer.

The generalization ability of the networks was investi-
gated using the same set of data. Fig. 6 shows a clustering
result obtained when the networks were trained within a
limited view range, �3p=8 # u # 5p=8; 3p=4 # f #
5p=4�; which is indicated by the square in the figure. Fig.
6(a) shows the recovery error of one module when all the
views of an object were provided to the trained networks. As
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Fig. 5. Encoded representations in the third layer of a network. (a) The relationship between the outputs of the two hidden units and the view directions (u , f)
of the input views; (b) the output values of the two hidden units as a function of the view directions; and (c) the view directions as a function of the outputs of
the two hidden units.



shown in the figure, the recovery error is almost zero within
the trained region, and slowly increases as the view goes
away from the trained region. Fig. 6(b) shows the output
value of the corresponding unit of the classifier. The figure
shows that the views were correctly classified not only
within the trained region but also far beyond this region.
We also conducted experiments to test how the model
performs when the networks are trained with discretely
sampled views. The result showed that even when the
networks are trained with a set of 16 views evenly spaced
in the entire view range, the model achieves a clustering rate
of 90% for all the views. These results suggest that the
modular network model has some generalization ability
for clustering data when the training data is spatially limited
or sparsely distributed in the data space.

Finally, the number of objects was varied and the perfor-
mance of the modular network model compared with that of
the K-means algorithm described in Section 2.1. We used
sets of 3, 5, and 10 wire-frame objects, which were
randomly generated in a unit cube. The average classifica-
tion rate was computed for each condition by repeating the
experiments 12 times using different sets of objects. As the
experiments were based on unsupervised learning, there was

no fixed correspondence between the objects that we used
and the classes that the networks estimated. Therefore, to
compute the classification rate for each trial, we selected the
best classification rate among the rates of all possible
combinations of the objects and the classes. As shown in
Fig. 7, the average classification rates were 90.2, 90.6, and
78.7% for 3, 5, and 10 objects, respectively.

The performance of the modular network model was
compared with that of theK-means clustering algorithm.
Using the same set of objects, the batch version of theK-
means algorithm yielded average classification rates of 81.4,
73.3, and 56.6% for 3, 5, and 10 objects, respectively (see
Fig. 7). The results, therefore, show that the performance of
the modular network model is superior to the performance
of the K-means algorithm.

3.2. Gray-level images of three-dimensional objects

The purpose of the experiments described in this section
is to evaluate the ability of clustering gray-level images of
real 3D objects, whose dimensions are much higher than
those of the wire-frame objects used in the previous experi-
ments. The performance of the mixture of autoencoders is
compared to the performance of theK-means algorithm and
the Gaussian mixture model.

3.2.1. Three-dimensional objects
The 3D objects that we used for the experiments included

a doll and two stuffed animals. We chose these three objects
because clustering the views of these objects is relatively
difficult due to the similarity of their images. To obtain
multiple views of the objects, we used a motorized turn
table on which we placed each object. The objects were
illuminated by two light sources located in front and an
ambient dim light. The turn table was rotated around the
vertical axis, and multiple views of the objects were taken
by a fixed CCD camera at every one degree of rotation. We,
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Fig. 7. The average classification rate when the number of objects were
varied. The figure shows that the performance of the modular network
model is superior to the performance of theK-means algorithm.

Fig. 8. Some examples of multiple views of 3D objects used for clustering
experiments.

Fig. 6. A generalization ability of the networks. The networks were trained
within a limited view range, which is indicated by the square in the figure.
(a) The recovery error of one module; and (b) the output value of the
corresponding unit of the classifier.



therefore, obtained 360 images for each object. Each image
had 512× 480 pixels with 8-bit gray-scale values. Some
examples of these images are shown in Fig. 8.

To reduce the noise and dimensionality of the images, the
raw images were first blurred by a Gaussian filter whose
standard deviation was 4.0 pixels and the gray-level values
of the filtered images were then sampled by 16× 15 grid
points. The filtering and sampling yielded quantized images
with 240 dimensions, which were used for the inputs to the
networks. As each network contained sigmoidal functions
whose outputs were bounded by (0,1), we divided the 8-bit
gray-level values of the images by 100, which yielded
values within the range (0.4,1.6).

To illustrate the similarity among these object images, we
computed the Euclidean distance between every pair of
images. Fig. 9 plots the distance over all the views, which
is defined by the sum of the squared differences between the
corresponding pixel values of the images. A key observation
in this figure is that the distance of the data within each
object class is not always smaller than the distance of the
data between the object classes. For instance, the distance
between the 08 view of Object A and its 1808 view is much
larger than the distance between the former view and all the
views of Object B. Fig. 8 shows that the back head of Object
A is much darker than its front and all the views of Object B
shown in this figure. This observation suggests that an unsu-
pervised method that simply assumes the center of each
class will not easily cluster these images into object classes.

We discuss this argument in more detail by comparing the
performance of the mixture of autoencoders and conven-
tional clustering algorithms.

3.2.2. Results and analyses
We used three five-layer autoencoders each of which

contained 240 units for the first and fifth layers, five units
in the second and fourth layers, and two units in the third
layer. In general, the number of units in the third layer can
be set to the degrees of freedom of the data distribution. As
we used rigid objects rotated around a single axis, the intrin-
sic dimensionality was one. However, as the rotational para-
meter is periodic, its distribution cannot be described in a
one-dimensional (1D) space. We therefore added one more
dimension to the number of third-layer units and described a
closed 1D manifold in a 2D encoded space.

For the networks used for training, a sigmoidal non-linear
function was used for the units in the second and fourth
layers, and a linear function was used for the units in the
third and fifth layers. The autoencoders were trained by an
online version of the learning method described in Section
2.3.3. We maximized the log-likelihood function using the
steepest ascent method. For the initial weight values, a
random number within the range of (20.5,0.5) was selected.
At each training epoch, an image was randomly selected
from all 1080 images.

After training the networks, all 360 views of each object
were presented to the network in order to test the clustering
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Fig. 9. Euclidean distance between every pair of object views. Contours of the constant distance are shown at the bottom of each figure.



ability of the trained networks. The different views were
encoded as a closed non-overlapping curve in the 2D hidden
space of the third layer of each network. Fig. 10 shows a
typical clustering result, which indicates the output of the
classifier defined by Eq. (18) for all 360 views of each
object. Fig. 10(a) shows that only the solid curve has a
value near one, indicating that the views of Object A were
clustered into Class 1. This is rather surprising because the
front and the back views of Object A are all clustered into a
single class, although the distance between these views is
large as shown in Fig. 9. Fig. 10(b) shows that only the dash-
dotted curve has a value near one, indicating that the views
of Object B were all clustered into Class 2 as well. Fig.
10(c), on the contrary, shows that most of the views of
Object C were clustered into Class 3 which is denoted by
the broken curve, but for the views from 578 to 1178, the
classifier yields a larger output value for the Class 2 unit
than the Class 3 unit. The reason for this misclassification is
that the images of Objects B and C are very similar for these
view angles. In fact, as shown in the contours of the constant
distance shown at the bottom of Fig. 9, the Euclidean
distance between the images of Objects B and C takes the
smallest values around this range of view angles. Even
though such a misclassification exists, the overall classifica-
tion rate reaches 94.40% for the result shown in this figure.
The experiments were repeated 12 times with different
initial weight values and we obtained the average classifica-
tion rate of 92.26%. A perfect clustering occurred once out
of the 12 trials.

We also tested the performance of the networks with
three instead of five layers. In the case of a three-layer
autoencoder, each network performs no better than a linear
principal component analysis, as discussed in Section 2.3.1.
The number of hidden units in the second layer was set to
two, as in the case of the third layer of the five layer auto-
encoders. In this case, the classification rate averaged over
12 trials with different initial weight values was 80.81%.
The results indicated that the mixture of the five-layer
autoencoders specifying non-linear sub-spaces performs
much better than the mixture of three-layer autoencoders

specifying only linear sub-spaces. Increasing the number
of hidden units from two to five for the three-layer network
yielded an even poorer performance, i.e. the average classi-
fication rate was 62.43%. A linear space with a larger
number of dimensions may have covered not only each
class data, but the data of other classes.

We compared the performance of the mixture of autoen-
coders model to that of theK-means algorithm using the
same set of data. We used the batch version of theK-
means algorithm described in Section 2.1, assuming that
the number of classes was three. As the objective function
was non-quadratic and may have contained many local
minima, the experiments were conducted with different
initial values. To set the initial mean estimates, a number
was randomly generated within the range (0.5,0.6) and was
assigned to each of the 15× 16 pixels. We regarded that the
algorithm converged when the amount of data each class
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Fig. 10. A typical clustering result of the modular network architecture. Solid curves, dash-dotted curves, and broken curves indicate the output values of Class
1 unit, Class 2 unit, Class 3 unit in the classifier, respectively.

Fig. 11. Clustering results of theK-means algorithm. The converged
patterns were categorized into six clustering types indicated by Ti �i �
1;2;…;6�: The number of views that was clustered into each class for
each type is shown.



covered did not change any more during the iterative
process.

We ran 33 trials with different initial values. Out of the 33
trials, three did not converge, i.e. the iterative process
reached a state where at least one of the classes contained
no data; therefore, its mean value could no longer be
computed. The remaining 30 trials converged within 30
iterations. The classification rate averaged over the 30 trials
was 75.50%. To compute the average classification rate, we
selected the best classification rate among the six possible
combinations of the three objects and the three classes. The
lowest possible classification rate in this computation was
therefore 33.3%.

The converged patterns were categorized into six cluster-
ing types indicated by Ti �i � 1;2;…; 6�: The number of
trials categorized into Ti �i � 1;2;…; 6� were 12, 11, 3, 2,
1, 1, respectively. Fig. 11 shows the number of views that
were clustered into each class for each type. The views of
Object A were split into two classes in all six types. The
clustering of the views of Objects B and C varied, i.e. the
views were successfully clustered into two classes in T1 and
T3, but split into different classes in T2, T5, and T6, and all
were clustered into one class in T4. The algorithm never
reached a perfect state where each class contained only the
views of a single object. When we ran the algorithm from an
initial state where each mean value was set to the average
of all the views of each object, the means gradually
changed their values. We, therefore, confirmed that a

perfectly clustered state is not a stable state of theK-
means algorithm.

How theK-means algorithm clustered the views more or
less reflected the similarity between the views. Fig. 12
shows the clustering results indicating which class each
view of each object was clustered into. For the views of
Object A, the front and back views were separated into
two classes. This is a reasonable result when we consider
the large Euclidean distance between these views as shown
in Fig. 9. In T6, the views of Objects B and C around 908
were clustered together into Class 2, similar to the result
using the mixture of autoencoders shown in Fig. 10, but
Class 2 of theK-means algorithm also contained some
views of Object A.

Experiments using the Gaussian mixture model were also
conducted. Estimating ad × d full covariance matrix for
each class was found to be computationally expensive,
whered � 240 for the view data that we used. A covariance
matrix was, therefore, assumed to be diagonal and to reduce
the number of covariance components to be estimated tod.
The EM algorithm described in Section 2.2 was used for
estimating the parameters. However, we had difficulties
getting the EM algorithm to converge. Twenty seven out
of 30 trials did not converge, i.e. one of the covariance
components became zero. Increasing the number of para-
meters may have also increased the number of inappropriate
local minima. Therefore, we conducted experiments that
assumed a constant variance for each Gaussian function.
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Fig. 12. Detailed description of theK-means clustering results. The figure indicates which class each view of each object was clustered into.

Table 1
Clustering results on gray-level images of 3D objects

Conventional algorithms Model network architectures

K-means Gaussian mixture Three-layer autoencoders Five-layer autoencoders

75.50% 75.37% 80.81% 92.26%



In this case, the EM algorithm converged in most trials. To
compute the classification rate, the class that had the largest
posterior probability was considered as the class that the
view was classified into. The classification rate averaged
over 30 trials with different initial values was 75.37%.
Therefore, the Gaussian mixture model did not produce an
improvement over the results of theK-means algorithm.

The main experimental results using the images of real
3D objects are summarized in Table 1. The performance of
the mixture of autoencoders model was much better than the
performance of theK-means algorithm and the Gaussian
mixture model. The poorer performance of the conventional
models can be ascribed to the inappropriate assumptions
they imposed. These models assumed that each class has a
center in the data space, but the views of each object are not
distributed around a single center but rather forms a contin-
uous manifold which has a complex shape in the data space.
The better performance of the mixture of autoencoders, on
the contrary, can be ascribed to its ability to find a sub-space
that contains the data manifold of each object. In particular,
the use of five-layer autoencoders outperformed the use of
three-layer autoencoders, because they found non-linear
sub-spaces which can more appropriately specify a complex
shape of each view distribution.

4. Conclusions

To conclude, we have presented a modular network archi-
tecture that learns to cluster multiple views of multiple 3D
objects without any identification of the object classes. An
advantage of using the modular network architecture is that
competition among the autoencoders allows the system to
identify multiple non-linear sub-spaces. Consequently, the
proposed model is more suited toward describing the
complex distributions of the view data than the conventional
clustering methods, which assume a center point for each
data distribution. The superiority of the proposed model to
the conventional clustering algorithms when applied to the
view clustering problem was confirmed through experi-
ments using both images of synthetic 3D wire-frame objects
and gray-level images of real 3D objects.

Although this paper shows the usefulness of the proposed
modular architecture, there are more issues to investigate.
Firstly, in the current formulation, the number of objects is
assumed to be given, but in more natural conditions, the
number of objects is unknown. In this more general case,
modules may be added or deleted during the training based
on the reconstruction error of each module. Such a split–
merge technique is worth exploring for further elaboration
of the model. Secondly, we did not optimize the training
time in the experiments described in this paper. In order to
speed up the convergence, more efficient algorithms for
training the modules need to be studied. Thirdly, the gener-
alization ability of the networks should be investigated. We
are currently modeling how to use the generalization ability

of the trained networks to analyze a complex cluttered
scene. Finally, it is a great challenge for us to unveil how
biological neural systems acquire and self-organize 3D
object representations. The proposed modular network
architecture may provide useful directions towards under-
standing flexible visual learning in the brain.
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