
ICONIP’97, Springer, pp.1166-1169, 1997. 1

Self-Organization of Feature Columns and its application to Object
Classification

Satoshi Suzuki and Naonori Ueda

NTT Communication Science Labs.
Kyoto, Japan

Abstract

We propose a computational model for the self-organization
of feature columns based on a modular framework. The pro-
posed model consists of several modules; each module is com-
posed of a collection of Gaussian units. The combination of
hierarchical competition within and between modules and a
smoothness constraint finds out continuity among input pat-
terns, and topographically maps these series of patterns into
different modules. Computer simulations show an example
of self-organization and object classification by combining the
created feature columns.

1. INTRODUCTION

Recent experimental studies have shown some new aspects of
high-level visual cortices. Fujita et al. (1992) found that the
inferotemporal cortex (IT) is composed of columnar modules
in which cells with overlapping but slightly different selectivi-
ties to complex patterns cluster together. This result suggests
that we, human beings, may use such feature columns for ob-
ject recognition. Wang et al. (1996) showed in an experiment
that involved the optical recording of a monkey’s IT using a
series of dame doll faces, that an optical spot moves gradually
as the face turns. This indicates the topological mapping of
object views to the position of the cells in the cortex.

On the other hand, using a computational approach, several
self-organization models were proposed to represent maps of
the early visual cortex (Kohonen, 1982; Tanaka, 1990). How-
ever, no apparent relation to higher-level tasks such as pattern
recognition has been shown. In pattern recognition tasks, the
feature columns can be regarded as a set of exclusive columns
each of which responds only to input patterns belonging to
the same class. Although Weinshall et al. (1990) proposed
a self-organization model for object classification, their model
requires separate training for each object class.

We propose a computational model for forming feature
columns for pattern recognition tasks in a self-organizing man-
ner. The important point to note is that our model, unlike
Weinshall’s model, can form feature columns without any pat-
tern class information. The proposed model is based on a
modular structure (Jordan & Jacobs, 1992). That is, given
input patterns for some classes, the same number of modules
are trained so that only one module responds to the patterns
of the same class. The training is based on the competitive
learning scheme previously proposed by one of the authors
(Suzuki & Ando, 1995; Fujita et al., 1996).

2. THE MODEL

We detail the proposed network model in this section. The
proposed network can find out the continuity among various
input patterns and can classify the input patterns belonging
to the same continuity into a category. During the learning,
the network acquires several representative patterns in each
module corresponding to a category.

2.1. The Architecture

The network model, as shown in Fig. 1, consists of three lay-
ers: the input layer, the competition layer and the represen-
tation layer. The representation layer consists of M modules
each of which is composed of U Gaussian units. Suppose that
an input pattern is represented by a vector x, the input vector
x is presented to each Gaussian unit of all M modules through
the input layer. The output of the jth unit in the ith module
for the input x is defined by

yj|i = cj|i hj|i . (1)

Here, cj|i is a “center” parameter and hj|i is a softmax func-

tion of the squared error
∥∥x − cj|i

∥∥2
for the jth Gaussian unit

Representation layer

Competition layer

Input layer

x

x

zi

Module i

unit

Figure 1: The network model

ICONIP’97, Springer, pp.1166-1169, 1997. 2

in the ith module. That is,

hj|i =
exp

[
−
∥∥x − cj|i

∥∥2
/

2σ2
]

U∑
j=1

exp
[
−
∥∥x − cj|i

∥∥2
/

2σ2

] . (2)

The output of the ith module is given by

zi =

U∑
j=1

yj|i . (3)

Clearly, yj|i is the nonlinear weighted average of cj|i, for
j = 1, · · ·, U and zi represents a reconstructed pattern for
x by ith module.

Once the reconstructed pattern for each module is obtained,
the classification rule is given by

Decide Class k if ‖x − zk‖ < ‖x − zl‖ ,∀l 6= k.

2.2. Learning

During the learning, the network is given input patterns in
random order. With such random input patterns, the smooth-
ness constraints force successive representations to gather in
a module; on the contrary, competition between units within
a module strengthens the difference between the representa-
tions. This combination encourages similar but slightly differ-
ent representations to gather in a module. On the other hand,
competition between modules strengthens the differences of
the representations among the modules. The representations
in the ith module are shown by cj|i, for j = 1, · · · , U .

To realize the above competitions, we maximize the following
log likelihood function (Suzuki & Ando, 1995; Jordan et al.,
1992):

ln

M∑
i=1

gi

U∑
j=1

hj|i
1

σ
exp

[
−
∥∥x − cj|i

∥∥2
/

2σ2
]
− δ

M∑
i=1

Si, (4)

where

gi =
exp

[−‖x − zi‖2
/
2σ2

]
M∑
i=1

exp
[−‖x − zi‖2

/
2σ2

] , (5)

and Si denotes the smoothness constraint in the ith module
and δ is its coefficient. Si is computed by

Si =

U∑
j=1

∥∥∥∥∥
cj−1|i − cj|i∥∥cj−1|i − cj|i

∥∥ − cj|i − cj+1|i∥∥cj|i − cj+1|i
∥∥
∥∥∥∥∥

2

. (6)

This smoothness constraint corresponds to computing the sec-
ond derivative of cj|i by using cj−1|i and cj+1|i. That is, this
constraint forces three successive representative vectors to be
smooth as much as possible.

3. SIMULATIONS

3.1. Self-organization of Object representations

First, we show a simulation result in which representative im-
ages of three-dimensional objects are made to self-organize,
and are topologically mapped into different modules.

Module 1

Unit 1 Unit 10

Unit 2

Unit 3 Module 2

Unit 1 Unit 10

Unit 2

Unit 3

Unit 9 Unit 9

Figure 2: The representation layer used in the simulations

Learning We prepared two 3D objects, i.e., two kinds of
dolls, for input and produced 360 different images from each
of the objects, each image differing by one degree of rotation.
Each image was compressed into 16×15 dimensional image
with a Gaussian filter and then was converted into a vector as
an input vector x ∈ R16×15. These compressed images were
employed as input to train the network.

The network was arranged into two modules to correspond to
the number of object classes. Ten units were set on a circle
in each module, where we assumed the first unit and the last
unit to be adjacent (Fig. 2).

As the learning proceeded, we gradually decreased the stan-
dard deviation of the units to a threshold, to enhance the
competition within the modules.

Results After training, we fixed the weights of the network
and tested it with all images. Figure 3 plots g in Eq. (5) as
a function of the view direction. Each value of g for an input
image means the relative accuracy of image recovered by each
module, and g1 > g2 and g1 < g2 indicate that the input
image is classified as class 1 and class 2, respectively. Almost
all winners of recovered images for input images of the same
class were the same module, which means that most images
of the same object were classified into the same class.

0 90 180 270 360
0

1
g

Module 2

Module 1

0 90 180 270 360
0

1
g

Module 1

Module 2

�View direction of Object 1

View direction of Object 2

Figure 3: The results of classification

ICONIP’97, Springer, pp.1166-1169, 1997. 3

Input images Recovered images

Module 1 Module 2

Object 1

Object 2

Figure 4: Input and recovered images

Figure 4 shows the input and recovered images by the mod-
ules. We can see that the input images of Object 1 and Object
2 were successfully recovered by module 2 and module 1, re-
spectively.

Figure 5 shows images acquired in the units of each module.
These images can be seen as images corresponding to repre-
sentative view angles. The representations obtained in the
modules differ in their view directions according to the posi-
tions of the units. These results suggest that the network has
an ability of acquiring representations of 3D objects in differ-
ent modules and topological mapping of the representations.

3.2. Extension to Hierarchical Model

We also implemented a hierarchical model by combining the
network models described above. The self-organization of par-
tial features and classification using the feature columns are
shown through a simple simulation.

Learning Figure 6 shows the hierarchical network model
composed by piling up the above-mentioned model: a higher
network is put on four lower networks. Each network is given
the same conditions as the simulation described above, that
is, arranged into two modules and there are ten units on a
circle in each module.

Module 1 Module 2

Figure 5: Representations obtained in modules

The lower networks

The higher network

Input pattern

Figure 6: The hierarchical model

We prepared two line drawings: Circle and Rectangle. Dur-
ing the training, these drawings were sequentially presented
to the network by changing their positions within a region.
The region is divided into 2×2 subregions and each subregion
corresponds to an input layer of the lower networks. Thus, we
used four lower networks as shown in Fig. 6.

Each subregion is further divided into 5×5 areas which is
shown as broken circles. For each area, 4 dimensional vec-
tor is produced according to the orientation of the drawing
across the area: input vectors to the network are created by
filtering the line across the area with four orientation filters.
That is, four directions are represented by vertical, horizontal
and two oblique directions bisecting them, and the strength
of each direction is represented by its thickness. After all,
a 5×5×4-dimensional vector is being presented to the lower
network as one input pattern. On the other hand, the higher
network gets the activities of all units in the lower networks,

i.e., exp
[
−
∥∥x − cj|i

∥∥2
/2σ2

]
, ∀i, j, as input vector.

ICONIP’97, Springer, pp.1166-1169, 1997. 4

Module 1 Module 2

Figure 7: The representations obtained in a lower network

During training, we gradually decreased the standard devia-
tion of the units like in the previous section. Each network
was trained independently and the higher network was trained
after the lower networks had been trained.

Results Figure 7 shows obtained representative patterns of
all units for each module. Each representative pattern con-
sists of 5×5 points each of which corresponds to one divided
area of input image. The symbol at each point indicates four
directions and their strength. Note that four kinds of symbols
are superimposed at each point. As we expected, desired rep-
resentative patterns for each module were obtained: parts of
Rectangle and parts of Circle were gathered in module 1 and
module 2, respectively.

Figure 8 shows values of g (Eq. (5)) over input region obtained
in the higher network. One can see that g1 < g2 and g1 > g2

holds over the input region for Rectangle and Circle, respec-
tively. This means that two line drawings were successfully
classified.

Clearly, the hierarchical representation realizes more detailed
feature columns that might get characteristic features for each
pattern class.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Module 1 Module 2

Rectangle

Circle

x y x y

x y x y

Figure 8: Classification results by hierarchical model

4. CONCLUSION

We proposed a network which can automatically form the
feature columns for pattern recognition tasks. The within-
module and between-modules competitions with a smoothness
constraint enable the network to acquire several representative
patterns for each class.

The simulation results with a single network have validated
these abilities. On the other hand, a simulation with a hier-
archical model showed that the networks can gather similar
features even from partial images and can also classify ob-
jects by using these feature columns. The simulation that we
showed was just a simple example. Nevertheless, this model
may be hints on more general type of self-organization of fea-
ture columns and object recognition using feature columns.

References

[1] Fujita, I. Tanaka, K. et al. (1992). Columns for visual fea-
tures of objects in monkey inferotemporal cortex. Nature,
360, 343-346.

[2] Fujita, T. Suzuki, S. & Ando, H. (1996). 3D Object
Recognition by Coupling Mixtures of Autoencoders and
Dynamic Matching. ICONIP’96, Hong Kong.

[3] Jordan, M. I. and Jacobs, R. A. (1992). Hierarchies of
adaptive experts. In Moody, J. E., Hanson, S. J. & Lipp-
mann, R. P., (eds), Advances in Neural Information Pro-
cessing Systems 4. Morgan Kaufmann Publishers, San
Mateo, CA. 985-992.

[4] Kohonen, T. (1988). Self-organization and associative
memory. Springer, New York Berlin Heidelberg.

[5] Suzuki, S. and Ando, H. (1995). Unsupervised Classifica-
tion of 3D Objects from 2D Views. Advances in Neural
Information Processing Systems 7. The MIT Press, Cam-
bridge, MA.

[6] Tanaka, S. (1990). Theory of Self-Organization of Cor-
tical Maps: Mathematical Framework. Neural Networks,
3, 625-640.

[7] Wang, G., Tanaka, K., & Tanifuji, M. (1996). OPTI-
CAL IMAGING OF FUNCTIONAL ORGANIZATION
IN THE MONKEY INFEROTEMPORAL CORTEX.
science, 272 (pp. 1665-1668).

[8] Weinshall, D., Edelman, S. and Bülthoff, H. H. (1990).
A self-organizing multiple-view representation of 3D ob-
jects. In Touretzky, D. S., (eds), Advances in Neural In-
formation Processing Systems 2. Morgan Kaufmann Pub-
lishers, San Mateo, CA. 274-281.

