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Abstract

This paper presents an unsupervised learning scheme for recognizing 3D objects from their
2D projected images. The scheme consists of a mixture of nonlinear autoencoders which can
compress various views of 3D objects into representations that indicate the view direction. We
evaluate the performance of the proposed modular network scheme through simulations using
3D wire-frame objects and discuss its related issues on object representations in the primate
visual cortex. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The human visual system can recognize 3D (three-dimensional) objects from their
2D (two-dimensional) retinal images even though the images will signi"cantly vary as
the viewpoint changes. An important problem in 3D object recognition is therefore
how to accomplish view invariant recognition. The traditional approach is to recover
the 3D shape and to construct structural descriptions of 3D volumetric primitives in
the object-centered coordinate frames ([14], for example). Nevertheless, due to the
complexity of 3D shape processing, the reliable construction of volumetric primitives
is often di$cult and time-consuming. Alternatively, recent computational studies
have explored view-based approaches, where 3D objects are recognized more directly
from their 2D projected views ([16,18], for example). In these approaches, a limited
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number of view examples are learned to achieve view invariant recognition through
a generalization property of the trained systems. View-based models are attractive not
only for their computational e$ciency and simplicity, but also for their biological
relevance. Psychophysical studies have indicated that representations of 3D objects in
the human visual system are viewpoint-speci"c [2,5]. In addition, recent elec-
trophysiological experiments on behaving monkeys suggest that the primate in-
ferotemporal cortex (IT) employs viewer-centered object representations [12,13].

While most existing view-based models for 3D object recognition employ super-
vised learning, this paper focuses on unsupervised aspects of object recognition. In the
real world, a given view is not always labeled explicitly as belonging to an object. Even
when an identity for di!erent views of an object is provided through motion, only
a fraction of all of these views is usually given at each temporal sequence. The human
visual system seems to have a mechanism that can automatically cluster fragmental
pieces of object views without using explicit object labels. Recent cognitive science
studies have focused on the implicit learning ability of humans, where knowledge is
automatically or unconsciously acquired without any explicit intention or instruction
[25]. We therefore investigate a system that discovers object identities by itself solely
from the input views of various 3D objects.

To achieve unsupervised object learning, we propose a modular network scheme
which consists of a mixture of nonlinear autoencoders. Each autoencoder compresses
a set of images of an object to form a manifold in a low-dimensional subspace. The
compressed representations describe the degree-of-freedom of the input variations,
which speci"cally represents the view direction or the pose of the 3D object. For the
automatic clustering of various input views, we formulate an unsupervised modular
learning algorithm, which is an extension of the adaptive mixture model [9}11]. The
adaptive mixture model was devised for the competitive decomposition of a function
approximation task based on maximum likelihood estimation. Unlike the original
supervised formulation, the proposed unsupervised formulation does not incorporate
a gating network which directly splits the input space.

There is a computational motivation for using a modular structure for unsuper-
vised object classi"cation. When the input data for recognition is high-dimensional, it
is essential to reduce the dimensionality and extract intrinsic information from the
input variations. A number of techniques have been proposed for dimensionality
reduction such as principal component analysis (PCA) [4]. In general, however, how
the dimensionlity is reduced depends on the input data set to be used. For example,
PCA representations are greatly altered if another set of data is included in the input
data. In most data compression applications, all of the available data is simply used or
a set of data is manually de"ned. The proposed scheme, on the other hand, performs
clustering and compression at the same time, i.e., while the input space is divided into
subspaces, the scheme performs dimensionality reduction within each subspace.
Speci"cally, in the case of 3D object recognition, the scheme clusters various views of
3D objects into individual object classes and each module compresses the views in
each object class to form a compact subspace.

This paper is organized as follows. Section 2 describes details of the proposed
unsupervised learning scheme. Section 3 examines the performance of the scheme
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through computer simulations. We used synthetic 3D wire-frame objects for the
simulations, which have commonly been used in computational studies [18],
psychophysics [2,5], and electrophysiology [12,13]. Section 4 discusses some
related computational and biological issues and concludes this paper. The earlier
versions of this research were presented in [1,20,21]. This paper expounds upon these
preliminary results with additional simulations on the e!ect of varying the number of
objects.

2. The network model

2.1. The nonlinear autoencoders

Storing all available raw data in a high-dimensional input space is impractical in
general, so it is essential to reduce the dimensionality and to extract the intrinsic
information causing the input variations. Intrinsic information can be found if
a statistical structure exists behind the data distribution. In the case of projected views
of a 3D object, despite the signi"cant image variations with changing viewpoint, the
number of parameters constraining the input distribution is intrinsically limited. In
fact, any rigid object transformation can be described by six parameters, three for
rotation and three for translation. Such intrinsic parameters de"ne the degree of
freedom of the data distribution.

A number of techniques have been proposed for reducing the high dimensionality of
the input space. The linear subspace methods among them, such as principal compon-
ent analysis (PCA), also known as Karhunen}LoeH ve transform, are widely used for
data compression, mainly due to their simplicity and practicality. Nevertheless, these
methods yield only approximate dimensions when the underlying statistical structure
is nonlinear in nature. In the case of projected images of 3D objects, a mapping from
input views to viewpoint representations should be intrinsically nonlinear. To obtain
such intrinsic dimensionality of the view distribution, we need to use more general
nonlinear dimensionality reduction methods.

The proposed scheme thus exploits a nonlinear autoencoder for identifying an
object. The autoencoder, or an auto-associative network, "nds an identity mapping
through a bottleneck in the hidden layer, that is, where the number of units in the
hidden layer is smaller than the number of input and output units. Hence, the network

approximates functions F and F~1 such that Rn FP RmF
~1

P Rn where m(n. The
auto-associative network compresses the input into a low-dimensional representation
by eliminating redundancy in the input data distribution. If we use a "ve-layer
perceptron network with a bottleneck in the third layer, the network can achieve
a nonlinear dimensionality reduction, which is a nonlinear analogue to the principal
component analysis [3,17]. A three-layer autoencoder, on the other hand, performs
no better than a linear data compression speci"ed by the principal components of the
input distribution [17]. Five-layer autoencoders are simple yet powerful for nonlinear
data compression. They have therefore been applied to various tasks, such as time
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Fig. 1. Modular network architecture for unsupervised 3D object recognition. Network scheme consists of
a set of "ve-layer auto-associative networks and competition among modular networks leads to unsuper-
vised classi"cation of input views.

series data compression and face recognition [3], color information encoding [27],
and visual and motor information integration for grasping [26].

2.2. The modular network architecture

The network architecture that we propose for 3D object recognition consists of a
set of modules, as illustrated in Fig. 1. Each module is a "ve-layer auto-associative
network that encodes and decodes various views of an object using nonlinear map-
pings. If each module can learn to encode and decode various views of a di!erent
object, then each module can recover all the views of only a single object. Thus, we can
identify an input view as an object by selecting the module whose output view best "ts
the input view. Speci"cally, we assume a classi"er that contains n units where n is the
number of modules. The output value of the ith unit of the classi"er is given by the
softmax function of the negative squared di!erence between the input and the output
of the module, i.e.,

f
i
"exp[!DDx!y

i
(x)DD2]N+

j

exp [!DDx!y
j
(x)DD2], (1)

where x and y
i
(x) denote the input and output vector of the ith module, respectively.

Therefore, if only one of the modules has an output that best matches the input, then
the output value of the corresponding unit in the classi"er nearly becomes one and the
output values of the other units nearly become zero.
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As described in the previous section, the number of dimensions constraining the
input variation of a rigid 3D object is the degree of freedom of the view distribution.
Therefore, we can set the number of units in the third layer of each network to the
degree of freedom. Nonetheless, there is an exception, where the encoded dimension
does not correspond to the degree of freedom of the view distribution. This occurs
when the intrinsic parameters are all periodic in nature. For example, to encode the
pose variation of a rigid object rotating around a single axis, a two-dimensional
Euclidian space is needed to describe a closed one-dimensional manifold or torus in
the encoded space. The rotation of a lighting position is another example that requires
an additional dimension to fully represent the input variation. To set the encoded
dimension in such periodic cases, we may simply add one more dimension to the
degree of freedom of the object transformation.

In the proposed network scheme, an input view can be represented by any type of
image information, such as feature positions, orientations, shapes, textures or gray-
level images, as long as there exists a continuous nonlinear mapping between the input
views and the viewpoint representations in the hidden layer. This generic property
exhibits the #exibility of the proposed scheme, because the reliable extraction of
particular features depends on individual object images. Although the simulations in
this paper only use the positions or the angles of image features as the inputs to the
networks to show the scheme's basic properties, we are currently investigating
di!erent types of input information. Preliminary results show that the scheme can also
be applied to the gray-level images of 3D objects [1,7].

2.3. The unsupervised modular learning method

The modular scheme illustrated in Fig. 1 can identify an input view as an object by
selecting the network whose output view best matches the input view. To achieve this
classi"cation, each network needs to be trained with the views of a single object so
that only one module can recover di!erent views of an object. When we know which
object each input view belongs to in the supervised learning, we can simply select the
module that corresponds to the object and train the network by minimizing the
di!erence between the input and the output views. This paper, on the other hand,
proposes an unsupervised learning method that can automatically classify the given
views without knowledge of the object identities.

To achieve unsupervised clustering, some form of competition should be intro-
duced among the modules during the learning process so that only those modules
whose output views resemble the input view can change their connection weights.
Since it is di$cult for each module to represent the views of many objects due to
the constraint given by the bottleneck in the hidden layer, we expect that as
the training proceeds each module gradually learns to recover the views of one object.
Some similar modular architectures using autoencoders have been independently
proposed for character or digit recognition [8,19], but unlike the unsupervised
algorithm presented in this paper, these methods are all designed for supervised
learning, i.e., the identity of each character or digit must be provided during the
training.
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We can formally derive an unsupervised learning algorithm based on the adaptive
mixture model [9}11]. The adaptive mixture model is designed to partition the input
space into multiple independent regions and to allocate di!erent expert networks to
learn the di!erent input regions. An appropriate decomposition is found by forcing
the expert networks to compete in learning the training data and by simultaneously
training an extra gating network to "nd the responsibility of each expert network for
each training data. Therefore, the "nal mixed output of the entire networks y(x) is
given by

y(x)"+
i

g
i
(x)y

i
(x), (2)

where x, g
i
(x), y

i
(x), denote the input vector, the activation of the ith output unit of the

gating network, and the output vector of the ith expert network, respectively.
The adaptive mixture model can be statistically interpreted. Namely, the training

patterns are assumed to be generated by multiple stochastic processes, and each
process is selected with a prior probability at each pattern generation. We can assume
that the prior probability is given by the gating network g

i.
if a softmax activation

function is used for the output of the gating network, and that the conditional
probability p(xDi) is modeled by a Gaussian distribution function in the form

p(xDi)"exp[!DDyH!y
i
(x)DD2/(2p2)], (3)

where yH denotes the target vector and p2 denotes the variance of the distribution. As
a result, the expert and gating networks are simultaneously trained by adjusting their
connection weights so as to maximize the log likelihood function (¸):

ln¸"ln+
i

g
i
(x)p(xDi)"ln +

i

g
i
(x)exp[!DDyH!y

i
(x)DD2/(2p2)]. (4)

When the adaptive mixture model is applied to supervised learning tasks, we need
a gating network in order to determine the "nal mixed output in Eq. (2). In unsuper-
vised data clustering, on the other hand, there is no "nal mixed output to be
computed. Therefore, we use an autoencoder for each expert network and compute
the responsibility for each autoencoder based on its recovery error instead of an extra
gating network. The log likelihood function for training a mixture of autoencoders is
obtained by replacing g

i
in Eq. (4) with the softmax function f

i
described in Eq. (1). The

resulting function is written in the form

ln¸"ln
+

i
exp[!aDDx!y

i
(x)DD2]

+
j
exp[!DDx!y

j
(x)DD2]

, (5)

where x and y
i
(x) denote the input and output vector of the ith autoencoder,

respectively, and a"1#1/2p2. To maximize the log likelihood function, we apply
the steepest ascent method; i.e., we derive update equations for estimating the
connection weights of each autoencoder by computing the derivatives of the log
likelihood function with respect to the output vector y

i
(x) and then applying the chain

rule for partial derivatives as in the case of a standard back-propagation algorithm.
Since this optimization process introduces competition among the autoencoders, only
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one of the autoencoders learns to recover each input data as the training of the
networks proceeds. In particular, when the views of 3D objects are the input data to
be learned, we limit the number of dimensions in the third layer of each autoencoder
to the degree of freedom of the data distribution, as described in Sections 2.1 and 2.2.
The bottleneck constraint imposed in the hidden layer attempts to prevent each
network from encoding views of more than one object class. As a result, the networks
gradually approach to a state where the views of di!erent 3D object are clustered into
di!erent modules.

3. Simulations

We implemented the network scheme described in the previous section to evaluate
its performance in a 3D object recognition task. This section shows unsupervised
classi"cation results and analyses of the encoded representations acquired in the
hidden layer.

3.1. 3D objects and training procedures

The 3D objects that we used for our simulations were novel "ve-segment wire-frame
objects whose six vertices were randomly selected in a unit cube, as shown in Fig. 2a.
Various views of the objects were obtained by orthographically projecting the objects
onto an image plane whose position covered a sphere around the objects as shown in
Fig. 2b. The view position was de"ned by two parameters: h and / (04h4p,
04/(2p). In principle, the scheme can use various types of view information for the
inputs to the networks as described in Section 2.2. In the following simulations, we
used two types of features for the inputs: one was the x and y image coordinates of the
six vertices which formed a 12-dimensional vector, and the other was the angles
between the projected images of the adjoining segments which formed a four-
dimensional vector.

The network scheme contains a set of modules whose number is equal to the
number of objects used for the simulations. The number of units in the third layer of
each module is set equal to the number of view parameters, which is two in our
simulations.We varied the number of units in the second and fourth layers and found
that "ve units were enough to achieve a reasonable clustering performance in most of
the simulations. To obtain a more accurate clustering performance, the number of
units was increased up to 20 for these layers. To train the network more e$ciently, we
can initially limit the ranges of h and / to p/4 and p/2, respectively, and gradually
increase the ranges until they cover the whole sphere. During the training, objects are
randomly selected among the object set and their views are randomly selected within
the view ranges. The networks are trained in an on-line manner, i.e., the networks
receive the inputs one after another during the training. To train the networks, we
maximize the objective function ln ¸ described in Eq. (5) while setting a"100. The
steepest ascent method is used to maximize the objective function in the simulations,
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Fig. 2. (a) Examples of 3D wire-frame objects used for simulations. The 3D objects were produced by
connecting six vertices randomly generated in a unit cube. (b) A viewpoint which covers a sphere around
a 3D object. The position of the viewpoint is speci"ed by two parameters (h,/). Various views of the 3D
objects are obtained by orthographically projecting the objects onto an image plane.

but more e$cient methods, such as the conjugate gradient method, can also be
applied.

3.2. Results and analyses

We trained the networks with two di!erent types of input features: the x and
y image coordinates of the vertices and the angles formed by the adjoining segments of
the wire-frame objects. Although the latter required a longer learning period, both
types of features yielded a satisfactory classi"cation performance. Thus, in the follow-
ing analyses, we only show simulation results for the former type of input features.

We "rst examined recognition properties and internal representations of the pro-
posed network scheme using three objects. Fig. 3 illustrates some examples of the
relationship between the input views of a 3D object (Object 3) and views recovered by
a trained module (Module 2). The "gures show that this module can recover various
views of Object 3 although the views are signi"cantly di!erent from one another. To
con"rm the recovery ability of the networks, we tested the networks using 2,500 views
for each object, covering the entire view range (04h4p, 04/(2p). Fig. 4 illus-
trates the squared di!erence between the input views and the generated views of
a module (Module 2) over the entire view range for all three objects. As shown in the
"gure, the recovery error is nearly zero for the views of one object (Object 3) but the
error is signi"cantly larger for the views of the two other objects. The results show that
each trained module can compress and recover all the views of a single object but
cannot recover the views of other objects.
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Fig. 3. Examples of input views of a 3D object (Object 3) and views recovered by a module (Module 2). The
module can recover di!erent views of the object after compressing the input views into low-dimensional
representations.

Fig. 4. Squared di!erence between input views and views generated from a module (Module 2) over entire
view range (04h4p, 04/(2p). Recovery error is nearly zero for views of only one object (Object 3).

The ability of each network to recover the views of a single object can be used to
classify various 3D object views. Fig. 5 shows the output of the softmax classi"er,
f
i
(i"1, 2, 3), which is de"ned by Eq. (1) plotted over the view directions (h,/), when

the inputs are all views of an object (Object 3). The output value of one unit (Unit 2) in
the classi"er is almost equal to one over the entire range of the view directions, while
the outputs of the two other units are close to zero. Similarly, when the views of other
objects (Object 1 or 2) are provided to the networks, only the output of one unit (Unit
1 or 3) is activated. Therefore, the results show that the proposed network scheme is
able to cluster various views into their correct 3D object classes without any object
identity provided to the networks.

We then analyzed the relationship between the compressed representations in the
hidden layer of the networks and the view directions (h, /) of the input patterns. Fig. 6
illustrates a mapping from the images of a 3D object to the compressed representa-
tions of the corresponding network. Speci"cally, this "gure plots the outputs of the
two units in the third layer of the network with labels of the view directions (h, /) of
the input views. For example, when the object view at (h, /)"(0, 0) is provided to the
network, the output values of the two hidden units are indicated by the rightmost
point of a distorted &disk' shown in the "gure. Thus, if we rotate the object in the
h direction, the output values of the hidden units move towards the center of the disk;
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Fig. 5. Output of classi"er plotted over entire view range when views of an object (Object 3) are used for the
inputs. The output value of one unit (Unit 2) in the classi"er is nearly one over the entire view range, while
the outputs of two other units are nearly zero.

Fig. 6. Compressed representations of object views in the third layer of a network. The "gure shows the
relationship between the outputs of two hidden units and the view positions (h,/) of the input patterns.

if we rotate the object in the / direction, the values of the hidden units move around
the center of the disk. Therefore, the view direction of the 3D object is continuously
and uniquely represented in the hidden layer. The result demonstrates that each
autoencoder is able to extract the view direction information from the high-dimen-
sional images and to compactly describe this intrinsic information in the low-
dimensional hidden space.

We further studied the classi"cation ability of the scheme by varying the number of
objects used for the training. Speci"cally, we used sets of 3, 5, and 10 wire-frame
objects randomly generated in a unit cube. By repeating the simulations 12 times
using di!erent sets of objects, we obtained average recognition rates of 90.2%, 90.6%,
and 78.7% for 3, 5, and 10 objects, respectively. The results were compared with the
performance of the conventional K-means clustering algorithm. Using the same set of
objects, the K-means algorithm yielded average recognition rates of 81.4%, 73.3%,
and 56.6% for 3, 5, and 10 objects, respectively. The results show that the proposed
scheme achieves a signi"cantly better performance than the K-means algorithm.
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4. Discussion and conclusions

One advantage of using a mixture of nonlinear autoencoders for recognition tasks
is that the mixture scheme has the potential ability to deal with complex geometrical
distributions of the data set in a high-dimensional input space. Speci"cally, in the case
of 3D object recognition, we presume that a distribution of various views of a 3D
object should be highly nonlinear in the input space so that the input views of di!erent
3D objects form manifolds that cannot be easily partitioned by hyperplanes. We
investigated the linear separability of the view distributions of 3D objects to con"rm
this presumption. Using the same data set employed in the simulations described in
the previous section, we performed supervised training of a simple perceptron that
contains no hidden layer. During the training, the binary teacher signal was provided
to the output units of the network, which indicates an object identity of the input view.
According to the convergence theorem of a simple perceptron, the network should
converge to the correct data classi"cation within a "nite-learning period if the data
sets are linearly separable [15]. Nonetheless, the simulation results showed that the
classi"cation error did not approach zero, which suggests that the views of di!erent
objects cannot be simply separated by hyperplanes. This observation indicates the
e!ectiveness of the proposed modular scheme on complex clustering problems that
are not linearly separable. We also note that any view of a 3D object can be described
as a linear combination of a small number of other views [24]. This property,
however, is only valid for x and y image coordinates under orthographic projection,
while the proposed scheme can use di!erent types of input information (Section 2.2); in
addition, there seems to be no straightforward way of using the linear combination
property for unsupervised view clustering.

The proposed modular architecture may have some implications for the nature of
object representations in the cortical areas of primates. Data from unit recording
experiments have shown that cells in the anterior inferotemporal (IT) cortex selective-
ly respond to moderately complex object features, and cells that respond to similar
features cluster in a columnar region [6,22,23]. A recent physiological study using an
optical imaging technique has revealed that in the primate inferotemporal cortex the
activation spot gradually shifts as the viewing angle of a face changes; thus, repres-
entations of di!erent views of a face may cluster in a modular region [28]. Single-unit
recording experiments have also suggested that 3D objects are represented in
a viewer-centered coordinate frame in the IT area [12,13]. These observations indi-
cate that the extraction of intrinsic information on the object patterns and the
clustering of extracted object representations to form multiple modular sub-regions
occur in the anterior IT cortex.

However, it is still not clear how such intrinsic representations are extracted and
self-organized into a modular structure in the IT area. The proposed network scheme
may provide a useful framework for investigating neural mechanisms of modular
organization in the cortex. In particular, e!ective clustering results of the proposed
scheme suggest that competition among the modules as well as dimensionality
reduction within each module may be possible underlying mechanisms of modular
organization of 3D object representations in the cortex. In order to construct a more
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biologically feasible model, the proposed scheme should incorporate more elaborate
functions in the future. Such functions include an automatic determination of the
number of modules and the dimension of encoded information [3], a representation of
encoded information using population codes [29], and a hierarchical construction of
modules that encode local features in the lower level and object categories in the
higher level.

To conclude, we have presented an unsupervised learning scheme for clustering 2D
projected views of 3D objects without using any explicit identi"cation of the object
classes. The scheme consists of a mixture of nonlinear autoencoders which extract
view direction information from the object images. The results of simulations using
3D wire-frame objects demonstrated that the scheme is more e!ective in clustering 2D
object views compared with the traditional K-means algorithm. The proposed modu-
lar scheme may thus provide a useful architecture in further investigations on complex
pattern clustering and in studies on how object representations are acquired in the
primate visual cortex.
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