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Abstract

This paper presents an unsupervised learning scheme for catego-
rizing 3D objects from their 2D projected images. The scheme
exploits an auto-associative network's ability to encode each view
of a single object into a representation that indicates its view direc-
tion. We propose two models that employ di�erent classi�cation
mechanisms; the �rst model selects an auto-associative network
whose recovered view best matches the input view, and the second
model is based on a modular architecture whose additional network
classi�es the views by splitting the input space nonlinearly. We
demonstrate the e�ectiveness of the proposed classi�cation models
through simulations using 3D wire-frame objects.

1 Introduction

The human visual system can recognize various 3D (three-dimensional) objects from
their 2D (two-dimensional) retinal images although the images vary signi�cantly as
the viewpoint changes. Recent computational models have explored how to learn to
recognize 3D objects from their projected views (Poggio & Edelman, 1990). Most
existing models are, however, based on supervised learning, i.e., during training the
teacher tells which object each view belongs to. The model proposed by Weinshall
et al. (1990) also requires a signal that segregates di�erent objects during train-
ing. This paper, on the other hand, discusses unsupervised aspects of 3D object
recognition where the system discovers categories by itself.

This paper presents an unsupervised classi�cation scheme for categorizing 3D ob-
jects from their 2D views. The scheme consists of a mixture of 5-layer auto-
associative networks, each of which identi�es an object by non-linearly encoding
the views into a representation that describes transformation of a rigid object. A
mixture model with linear networks was also studied by Williams et al. (1993) for
classifying objects under a�ne transformations. We propose two models that em-
ploy di�erent classi�cation mechanisms. The �rst model classi�es the given view by
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selecting an auto-associative network whose recovered view best matches the input
view. The second model is based on the modular architecture proposed by Jacobs
et al. (1991) in which an additional 3-layer network classi�es the views by directly
splitting the input space. The simulations using 3D wire-frame objects demonstrate
that both models e�ectively learn to classify each view as a 3D object.

This paper is organized as follows. Section 2 describes in detail the proposed models
for unsupervised classi�cation of 3D objects. Section 3 describes the simulation
results using 3D wire-frame objects. In these simulations, we test the performance
of the proposed models and examine what internal representations are acquired in
the hidden layers. Finally, Section 4 concludes this paper.

2 THE NETWORK MODELS

This section describes an unsupervised scheme that classi�es 2D views into 3D
objects. We initially examined classical unsupervised clustering schemes, such as the
k-means method or the vector quantization method, to see whether such methods
can solve this problem (Duda & Hart, 1973). Through simulations using the wire-
frame objects described in the next section, we found that these methods do not
yield satisfactory performance. We, therefore, propose a new unsupervised learning
scheme for classifying 3D objects.

The proposed scheme exploits an auto-associative network for identifying an ob-
ject. An auto-associative network �nds an identity mapping through a bottleneck
in the hidden layer, i.e., the network approximates functions F and F�1 such that

Rn F
�! Rm F�1

�! Rn where m < n. The network, thus, compresses the input into
a low dimensional representation by eliminating redundancy. If we use a �ve-layer
perceptron network, the network can perform nonlinear dimensionality reduction,
which is a nonlinear analogue to the principal component analysis (Oja, 1991; De-
Mers & Cottrell, 1993).

The proposed classi�cation scheme consists of a mixture of �ve-layer auto-
associative networks which we call the identi�cation networks, or the I-Nets. In
the case where the inputs are the projected views of a rigid object, the minimum
dimension that constrains the input variation is the degree of freedom of the rigid
object, which is six in the most general case, three for rotation and three for transla-
tion. Thus, a single I-Net can compress the views of an object into a representation
whose dimension is its degree of freedom. The proposed scheme categorizes each
view of a number of 3D objects into its class through selecting an appropriate I-Net.
We present the following two models for di�erent selection and learning methods.

Model I: The model I selects an I-Net whose output best �ts the input (see Fig.1).
Speci�cally, we assume a classi�er whose output vector is given by the softmax
function of a negative squared di�erence between the input and the output of the
I-Nets, i.e.,

fi = exp
h
�ky � �yik

2

i,X
j

exp
h
�ky � �yjk

2

i
(1)

where y� and yi denote the input and the output of the i th I-Net, respectively.
Therefore, if only one of the I-Nets has an output that best matches the input, then
the output value of the corresponding unit in the classi�er becomes nearly one and
the output values of the other units become nearly zero. For training the network,
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Figure 1: Model I and Model II. Each I-Net (identi�cation net) is a 5-layer auto-
associative network and the C-Net (classi�cation net) is a 3-layer network.

we maximize the following objective function:
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where � (>1) denotes a constant. This function forces the output of at least one
I-Net to �t the input, and it also forces the rest of I-Nets to increase the error
between the input and the output. Since it is di�cult for a single I-Net to learn
more than one object, we expect that the network will eventually converge to the
state where each I-Net identi�es only one object.

Model II: The model II, on the other hand, employs an additional network which
we call the classi�cation network or the C-Net, as illustrated in Fig.1. The C-Net
classi�es the given views by directly partitioning the input space. This type of mod-
ular architecture has been proposed by Jacobs et al. (1991) based on a stochastic
model (see also Jordan & Jacobs, 1992). In this architecture, the �nal output, y, is
given by

y =
X
i

giyi (3)

where yi denotes the output of the i th I-Net, and gi is given by the softmax func-
tion

gi = exp [si]

,X
j

exp [sj ] (4)

where si is the weighted sum arriving at the i th output unit of the C-Net.

For the C-Net, we use three-layer perceptron, since a simple perceptron with two
layers did not provide a good performance for the objects used for our simulations
(see Section 3). The results suggest that classi�cation of such objects is not a linearly
separable problem. Instead of using MLP (multi-layer perceptron), we could use
other types of networks for the C-Net, such as RBF (radial basis function) (Poggio
& Edelman, 1990).

We maximize the objective function

ln
X
i

gi�
�1 exp

h
�ky � �yik

2

.�
2�2
�i

(5)
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Figure 2: (a) 3D wire-frame objects. (b) Viewpoint de�ned by two parameters, �
and �.

where �2 is the variance. This function forces the C-Net to select only one I-Net, and
at the same time, the selected I-Net to encode and decode the input information.
Note that the model I can be interpreted as a modi�ed version of the model II,
since maximizing (2) is essentially equivalent to maximizing (5) if we replace si
of the C-Net in (4) with a negative squared di�erence between the input and the

output of the i th I-Net, i.e., si = �ky � �yik
2 . Although the model I is a more

direct classi�cation method that exploits auto-associative networks, it is interesting
to examine what information can be extracted from the input for classi�cation in
the model II (see Section 3.2).

3 SIMULATIONS

We implemented the network models described in the previous section to evaluate
their performance. The 3D objects that we used for our simulations are 5-segment
wire-frame objects whose six vertices are randomly selected in a unit cube, as shown
in Fig.2 (a) (see also Poggio & Edelman, 1990). Various views of the objects are
obtained by orthographically projecting the objects onto an image plane whose
position covers a sphere around the object (see Fig.2 (b)). The view position is
de�ned by the two parameters, � and �. In the simulations, we used x, y image
coordinates of the six vertices of three wire-frame objects for the inputs to the
network.

The models contain three I-Nets, whose number is set equal to the number of the
objects. The number of units in the third layer of the �ve-layer I-Nets is set equal
to the number of the view parameters, which is two in our simulations. We used
twenty units in the second and fourth layers. To train the network e�ciently, we
initially limited the ranges of � and � to �=8 and �=4 and gradually increased the
range until it covered the whole sphere. During the training, objects were randomly
selected among the three and their views were randomly selected within the view
range. The steepest ascent method was used for maximizing the objective functions
(2) and (5) in our simulations, but more e�cient methods, such as the conjugate
gradient method, can also be used.

3.1 SIMULATIONS USING THE MODEL I

This section describes the simulation results using the model I. As described in
Section 2, the classi�er of this model selects an I-Net that produces minimum error
between the output and the input. We test the classi�cation performance of the
model and examine internal representations of the I-Nets after training the networks.
The constant � in the objective function (2) was set to 50 during the training.

Fig.3 shows the output of the classi�er plotted over the view directions when the
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Figure 3: Outputs of the classi�er in the model I. The output value of the second
unit is almost equal to one over the full view range, and the outputs of the other
two units are nearly zero for one of the 3D objects.
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Figure 4: Examples of the input and recovered views of an object. The recovered
views are signi�cantly similar to the input views.
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Figure 5: Error between the input view and the recovered view of an I-Net for each
object. The �gures show that the I-Net reco vers only the views of Object 3.
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Figure 6: (a) Outputs of the third layer units of an I-Net plotted over the view
direction (�; �) of an object. (b) The view direction plotted over the outputs of the
third layer units. Figure (b) was obtained by inversely replotting Figure (a).

views of an object are used for the inputs. The output value of a unit is almost equal
to one over the entire range of the view direction, and the outputs of the other two
units are nearly zero. This indicates that the network e�ectively classi�es a given
view into an object regardless of the view directions. We obtained satisfactory
results for classi�cation if more than �ve units are used in the second and fourth
layers of the I-Nets.

Fig.4 shows examples of the input views of an object and the views recovered by
the corresponding I-Net. The recovered views are signi�cantly similar to the input
views, indicating that each auto-associative I-Net can successfully compress and
recover the views of an object. In fact, as shown in Fig.5, the squared error between
the input and the output of an I-Net is nearly zero for only one of the objects. This
indicates that each I-Net can be used for identifying an object for almost entire
view range.

We further analyzed what information is encoded in the third layer of the I-Nets.
Fig.6 (a) illustrates the outputs of the third layer units plotted as a function of the
view direction (�; �) of an object. Fig.6 (b) shows the view direction (�; �) plotted as
a function of the outputs of the third layer units. Both �gures exhibit single-valued
functions, i.e. the view direction of the object uniquely determines the outputs of
the hidden units, and at the same time the outputs of the hidden units uniquely
determine the view direction. Thus, each I-Net encodes a given view of an object
into a representation that has one-to-one correspondence with the view direction.
This result is expected from the condition that the dimension of the third layer is
set equal to the degree of freedom of a rigid object.

3.2 SIMULATIONS USING THE MODEL II

In this section, we show the simulation results using the model II. The C-Net in the
model learns to classify the views by splitting the input space nonlinearly. We ex-
amine internal representations of the C-Net that lead to view invariant classi�cation
in its output.
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Figure 7: (a) Output values of an output unit of the C-Net when the views of an
object are given (cf. Fig.3). (b) Output values of two hidden units of the C-Net for
the same object.
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Figure 8: (a) Output values of an output unit of the C-Net. (b) Errors between
the input views and the recovered views of the corresponding I-Net. The region
surrounded by a rectangle indicates the view range where the training was done.

In the simulations, we used the same 3 wire-frame objects used in the previous
simulations. The C-Net contains 20 units in the hidden layer. The parameter s
in the objective function (5) was set to 0.1. Fig.7 (a) illustrates the values of an
output unit in the C-Net for an object. As in the case of the model I, the model
correctly classi�ed the views into their original object for almost entire view range.
Fig.7 (b) illustrates the outputs of two of the hidden units as examples, showing
that each hidden unit has a limited view range where its output is nearly one. The
C-Net, thus, combines these partially invariant representations in the hidden layer
to achieve full view invariance at the output layer.

To examine a generalization ability of the model, we limited the view range in the
training period and tested the network using the images with the full view range.
Fig.8 (a) and (b) show the values of an output unit of the C-Net and the error of
the corresponding I-Net plotted over the entire view range. The region surrounded
by a rectangle indicates the range of view directions where the training was done.
The �gures show that the correct classi�cation and the small recovery error are not
restricted within the training range but spread across this range, suggesting that
the network exhibits a satisfactory capability of generalization. We obtained similar
generalization results for the model I as well. We also trained the networks with
a sparse set of views rather than using randomly selected views. The results show
that classi�cation is nearly perfect regardless of the viewpoints if we use at least 16
training views evenly spaced within the full view range.
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4 Conclusions

We have presented an unsupervised classi�cation scheme that classi�es 3D objects
from their 2D views. The scheme consists of a mixture of non-linear auto-associative
networks each of which identi�es an object by encoding an input view into a rep-
resentation that indicates its view direction. The simulations using 3D wire-frame
objects demonstrated that the scheme e�ectively clusters the given views into their
original objects with no explicit identi�cation of the object classes being provided to
the networks. We presented two models that utilize di�erent classi�cation mecha-
nisms. In particular, the model I employs a novel classi�cation and learning strategy
that forces only one network to reconstruct the input view, whereas the model II is
based on a conventional modular architecture which requires training of a separate
classi�cation network. Although we assumed in the simulations that feature points
are already identi�ed in each view and that their correspondence between the views
is also established, the scheme does not, in principle, require the identi�cation and
correspondence of features, because the scheme is based solely on the existence of
non-linear mappings between a set of images of an object and its degree of freedom.
Therefore, we are currently investigating how the proposed scheme can be used to
classify real gray-level images of 3D objects.
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