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Summary�
•  Constructed a new in order to evaluate 

semantic modeling of relational patterns
�Experiment 2 indicates its usefulness
•  Proposed an encoder, Gated Additive 

Composition (GAC), inspired by LSTM
•  Comparative study of encoders: additive 

composition (Add), RNN, GRU, LSTM, and 
GAC � Experiment 1

•  Modeling the meanings of relational patterns 
    is crucial for various applications: IE, QA
•  Constructed the new dataset in order to evaluate semantic modeling of relational patterns
•  Usefulness of the constructed dataset � Experiment 2
•  The best method for semantic modeling of relational patterns � Experiment 1 Data construction�

•  Asked crowdsourcing workers to annotate 
similarity judgments on relational patterns

•  Used relational pattern pairs in the 
inference relation dataset [Zeichner et al., 12]

•  The constructed dataset is publicly 
available on https://github.com/takase/
relPatSim

 

Encoder for relational patterns�

Experiment 1: Relational pattern similarity�
•  Compare encoders on the above dataset

 

Experiment 2: Relation classification�

Rating: 1 (dissimilar) to 7 (very similar)
Worker: 5 workers for every pair
The standard deviation of similarity judgments: 1.16
Spearman’s ρ between each worker: 0.728

… smoking     increase        the            risk           of      cancer … �

RNN, LSTM, GAC�5'
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Figure 2: Number of judgments for each similarity
rating. The total number of judgments is 27, 775
(5, 555 pairs × 5 workers).

similarity ratings of the Gold examples, and used
those judged by the workers.

To build a high quality dataset, we use judg-
ments from workers whose confidence values (re-
liability scores) computed by CrowdFlower are
greater than 75%. Additionally, we force every
pair to have at least five judgments from the work-
ers. Consequently, 60 workers participated in this
job. In the final version of this dataset, each pair
has five similarity ratings judged by the five most
reliable workers who were involved in the pair.

Figure 2 presents the number of judgments for
each similarity rating. Workers seldom rated 7
for a pair of relational patterns, probably because
most pairs have at least one difference in content
words. The mean of the standard deviations of
similarity ratings of all pairs is 1.16. Moreover, we
computed Spearman’s ρ between similarity judg-
ments from each worker and the mean of five judg-
ments in the dataset. The mean of Spearman’s ρ
of workers involved in the dataset is 0.728. These
statistics show a high inter-annotator agreement of
the dataset.

3 Encoder for Relational Patterns

The new dataset built in the previous section raises
two new questions — What is the reasonable
method (encoder) for computing the distributed
representations of relational patterns? Is this
dataset useful to predict successes of distributed
representations of relational patterns in real ap-
plications? In order to answer these questions, this
section explores various methods for learning dis-
tributed representations of relational patterns.

3.1 Baseline methods without supervision
A naı̈ve approach would be to regard a rela-
tional pattern as a single unit (word) and to
train word/pattern embeddings as usual. In fact,
Mikolov et al. (2013) implemented this approach

as a preprocessing step, mining phrasal expres-
sions with strong collocations from a training cor-
pus. However, this approach might be affected by
data sparseness, which lowers the quality of dis-
tributed representations.

Another simple but effective approach is ad-
ditive composition (Mitchell and Lapata, 2010),
where the distributed representation of a relational
pattern is computed by the mean of embeddings of
constituent words. Presuming that a relational pat-
tern consists of a sequence of T words w1, ..., wT ,
then we let xt ∈ Rd the embedding of the word
wt. This approach computes 1

T

∑T
t=1 xt as the em-

bedding of the relational pattern. Muraoka et al.
(2014) reported that the additive composition is a
strong baseline among various methods.

3.2 Recurrent Neural Network

Recently, a number of studies model seman-
tic compositions of phrases and sentences by
using (a variant of) Recurrent Neural Network
(RNN) (Sutskever et al., 2014; Tang et al., 2015).
For a given embedding xt at position t, the vanilla
RNN (Elman, 1990) computes the hidden state
ht ∈ Rd by the following recursive equation5,

ht = g(Wxxt +Whht−1). (1)

Here, Wx and Wh are d×d matrices (parameters),
g(.) is the elementwise activation function (tanh).
We set h0 = 0 at t = 1. In essence, RNN com-
putes the hidden state ht based on the one at the
previous position (ht−1) and the word embedding
xt. Applying Equation 1 from t = 1 to T , we
use hT as the distributed representation of the re-
lational pattern.

3.3 RNN variants

We also employ Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) (Cho et al., 2014) as
an encoder for relational patterns. LSTM has been
applied successfully to various NLP tasks includ-
ing word segmentation (Chen et al., 2015), depen-
dency parsing (Dyer et al., 2015), machine trans-
lation (Sutskever et al., 2014), and sentiment anal-
ysis (Tai et al., 2015). GRU is also successful in
machine translation (Cho et al., 2014) and various

5We do not use a bias term in this study. We set the num-
ber of dimensions of hidden states identical to that of word
embeddings (d) so that we can adapt the objective function
of the Skip-gram model for training (Section 3.5).

that were sampled from the unigram distribution8

at every iteration of
∑

k.
At every occurrence of a relational pattern in

the corpus, we use Stochastic Gradient Descent
(SGD) and backpropagation through time (BPTT)
for training the parameters (matrices) in encoders.
More specifically, we initialize the word vectors xt
and context vectors x̃t with pre-trained values, and
compute gradients for Equation 5 to update the pa-
rameters in encoders. In this way, each encoder
is trained to compose a vector of a relational pat-
tern so that it can predict the surrounding context
words. An advantage of this parameter estimation
is that the distributed representations of words and
relational patterns stay in the same vector space.
Figure 3 visualizes the training process for GAC.

4 Experiments

In Section 4.1, we investigate the performance of
the distributed representations computed by differ-
ent encoders on the pattern similarity task. Section
4.2 examines the contribution of the distributed
representations on SemEval 2010 Task 8, and dis-
cusses the usefulness of the new dataset to predict
successes of the relation classification task.

4.1 Relational pattern similarity
For every pair in the dataset built in Section 2, we
compose the vectors of the two relational patterns
using an encoder described in Section 3, and com-
pute the cosine similarity of the two vectors. Re-
peating this process for all pairs in the dataset, we
measure Spearman’s ρ between the similarity val-
ues computed by the encoder and similarity ratings
assigned by humans.

4.1.1 Training procedure
We used ukWaC9 as the training corpus for the
encoders. This corpus includes the text of 2 bil-
lion words from Web pages crawled in the .uk
domain. Part-of-speech tags and lemmas are an-
notated by TreeTagger10. We used lowercased
lemmas throughout the experiments. We apply
word2vec to this corpus to pre-train word vec-
tors xt and context vectors x̃t. All encoders use
word vectors xt to compose vectors of relational
patterns; and the Skip-gram model uses context

8We use the probability distribution of words raised to the
3/4 power (Mikolov et al., 2013).

9http://wacky.sslmit.unibo.it
10http://www.cis.uni-muenchen.de/

˜schmid/tools/TreeTagger/

Figure 4: Performance of each method on the rela-
tional pattern similarity task with variation in the
number of dimensions.

vectors x̃t to compute the objective function and
gradients. We fix the vectors xt and x̃t with pre-
trained values during training.

We used Reverb (Fader et al., 2011) to the
ukWaC corpus to extract relational pattern can-
didates. To remove unuseful relational patterns,
we applied filtering rules that are compatible with
those used in the publicly available extraction re-
sult11. Additionally, we discarded relational pat-
terns appearing in the evaluation dataset through-
out the experiments to assess the performance un-
der which an encoder composes vectors of unseen
relational patterns. This preprocessing yielded
127, 677 relational patterns.

All encoders were implemented on Chainer12, a
flexible framework of neural networks. The hyper-
parameters of the Skip-gram model are identical
to those in Mikolov et al. (2013): the width of
context window δ = 5, the number of negative
samples K = 5, the subsampling of 10−5. For
each encoder that requires training, we tried 0.025,
0.0025, and 0.00025 as an initial learning rate, and
selected the best value for the encoder. In contrast
to the presentation of Section 3, we compose a pat-
tern vector in backward order (from the last to the
first) because preliminary experiments showed a
slight improvement with this treatment.

4.1.2 Results and discussions
Figure 4 shows Spearman’s rank correlations of
different encoders when the number of dimensions
of vectors is 100–500. The figure shows that GAC
achieves the best performance on all dimensions.

Figure 4 includes the performance of the naı̈ve
approach, “NoComp”, which regards a relational
pattern as a single unit (word). In this approach,

11http://reverb.cs.washington.edu/
12http://chainer.org/

Objective: Skip-gram with negative sampling
Data: relational patterns extracted by Reverb [Fader+ 11]
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Method � F1 �
SVM (BoW, POS) �
SVM + NoComp�
SVM + LSTM �
SVM + Add �
SVM + GRU �
SVM + RNN �
SVM + GAC �
Ranking loss + GAC w/ fine-tuning 
SVM [Rink and Harabagiu, 10] 82.2�
depLCNN + NS [Xu+ 15] 85.6�

Method � F1 �
SVM (BoW, POS) � 77.3�
SVM (BoW, POS) + LSTM � 81.1�
SVM (BoW, POS) + Add � 81.1�
SVM (BoW, POS) + GRU � 81.4�
SVM (BoW, POS) + RNN � 81.7�
SVM (BoW, POS) + GAC � 82.0�
Ranking loss + GAC w/ fine-tuning � 84.2�

Dataset: SemEval 2010 task 8
Training instance: 8,000, Test instance: 2,717
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The improvements roughly correspond to 
the performance on Experiment 1
� The constructed dataset provides a 
gauge to predict successes in another task

Zeichner+ (2012)

(increase the risk of, cause):
(be open from, close at):
.........
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..........

Similarity ratings of pattern pairs

increase:
risk:

open:

increase the risk of:
cause:

Corpus (ukWaC)

... evidence that passive smoking increases the 
risk of lung cancer by 10%. The research also ...
                  ......
Cigarette smoking causes breathing problems ...
Usually, pubs closes at midnight, and people 

increase the risk of passive smoking lung cancer
cause cigarette smoking heart attack
close at pub midnight
be open from department store 10am

Relational pattern X Y

... ... ...

Encoder for
relational patterns (§3)

Additive composition,
RNN, LSTM, GRU, GAC

be open from:

Annotating human judgments
using crowd sourcing (§2)

Embeddings of relational patterns

Word embeddings SemEval 2010 Task 8

(word2vec)

Training

Open IE (Reverb)

Relational pattern similarity Evaluation (§4.1)

Relation classification Evaluation (§4.2)

Experiment 1�

Experiment 2�

GAC achieves the best performance on all dimensions
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