
Reading Comprehension using Entity-based Memory
Network

Xun Wang12, Katsuhito Sudoh1, Masaaki Nagata1,
Tomohide Shibata2, Kawahara Daisuke2, and Kurohashi Sadao2

1 NTT Communication Science Labratories, Kyoto, Japan,
wang.xun,sudoh.katsuhito,nagata.masaaki@lab.ntt.co.jp

2 Kyoto University, Kyoto, Japan
shibata,dk,kuro@i.kyoto-u.ac.jp

Abstract. This paper introduces a novel neural network model for question an-
swering, the entity-based memory network. It enhances neural networks’ ability
of representing and calculating information over a long period by keeping records
of entities contained in text. The core component is a memory pool which com-
prises entities’ states. These entities’ states are continuously updated according
to the input text. Questions with regard to the input text are used to search the
memory pool for related entities and answers are further predicted based on the
states of retrieved entities. Compared with previous memory network models, the
proposed model is capable of handling fine-grained information and more sophis-
ticated relations based on entities. We formulated several different tasks as ques-
tion answering problems and tested the proposed model. Experiments reported
satisfying results.

Keywords: Text Comprehension, Entity Memory Network, Question Answering

1 Introduction

A question answering (QA) task is to predict an answer for a given question with regard
to related information. It can be formulated as a map f : {related text, question} −→
{answer} [10].

QA is an important task in natural language processing (NLP). It is an efficient way
of obtaining information from text and a natural way of interacting with computers.
More than that, almost all problems in NLP can be formulated as QA tasks. Some ones,
like information retrieval and dialog system, are by nature question answering tasks.
Other problems, like machine translation, pos tagging, co-reference resolution and so
on, can also be formulated as question answering tasks. Take the co-reference resolution
for example, given a piece of text, we raise questions like “What does XX refer to?”
and expect the system to give correct answers. Similarly, we can model POS tagging as
a question answering task by asking “What are the parts of speech?” .

Formulating these tasks as QA provides us with the convenience of solving several
different problems using one scheme. This point is of vital importance. As we know,
existing work on different NLP tasks are highly differentiated, each designed for an (or

2

a class of) unique task(s) with unique features and unique architectures. It is almost im-
possible to develop a comprehensive system which can conduct several different tasks
without damaging the performance.

Although challenging, such comprehensive systems are of great interest to the arti-
ficial intelligence community in their ability of comprehension. Formulating different
tasks as QA problems and resolving them using a unified scheme is to some extent,
closer to how humans process languages. It differs from previous work in that compre-
hension of text is needed to serve as the basis for answering various questions.

Developing a comprehensive system with a unified scheme faces challenges in fea-
ture representations and model design. Feature representation converts text into features
which can be easily computed by models. Models are designed accordingly to process
the input features and generate the desired output. A comprehensive model requires us
to develop feature representations which are capable of storing all the information con-
tained in text as different tasks may need different information, and to develop a model
which is capable of paying attention to different aspects of the information carried by
features with regard to the problems raised and generating the desired results. The two
are the core challenges to be met and overcome towards a comprehensive system.

Now with the deep neural networks, it becomes probable to develop such a multi-
purpose system in a unified scheme. All deep learning models rely on distributed repre-
sentations representing various features as vectors. These vectors are believed to have
encoded all the semantic and syntactic information in themselves. By replacing the var-
ious features used in traditional models with vector representations, we can solve the
problem of feature representations. But existing deep neural network models are often
developed for a certain problem or a certain class of problems. In other words, they are
in no sense different from traditional methods in being highly differentiated.

A recent breakthrough is to employ memories in neural networks, the memory net-
work. Memory network and its variants rely on storing sentences in a memory pool
for later retrieval to answer questions. One problem with memory networks is that us-
ing sentence vectors as elementary units of information makes it impossible to explore
fine-grained information.

To overcome the above problems and to fully explore the potential of distributed
representations and the neural networks, we introduce a novel model named the entity-
based memory network. Entities refer to anything that exist in reality or are purely
hypothetical. We assume that text can be projected to a world of entities. The key of
conducting comprehension and reasoning over text is to identify its containing entities
and analyze the states of these entities and the relations between them. The entity-
based memory network we proposed is capable of keeping a memory of entities when
answering questions.

The proposed model is tested on several datasets, including the toy bAbI dataset
[27], large movie review dataset [15] and the machine comprehension test dataset [18].
Results show we have achieved satisfying results using the entity-based memory net-
work. The rest of the paper is organized as follows: Section 2 describes our approaches
and elaborates the details. Section 3 reviews previous work that uses memories. Section
4 presents the experiments and the analysis. Section 5 concludes the paper.

3

2 Approaches

2.1 Overview

Firstly we use an example to illustrate how the model works. Table 1 shows a piece of
text which contains 4 sentences and 2 questions. There are 7 entities in total, all of them
underlined.

1 Mary moved to the bathroom.
2 John went to the hallway.
3 Where is Mary? Bathroom. 1
4 Daniel went back to the hallway.
5 Sandra moved to the garden.
6 Where is Daniel? Hallway. 4

Table 1. An example from bAbI, a toy dataset for question answering.

This text is elaborated around the 7 entities. It describes how their states change
(i.e., the change of a character’s location) when the story goes on. Note that here all
the entities are concrete concepts that exist in reality. It is also possible to talk about
abstract concepts.

The core of the proposed model are entities. We take Sentence 1 (S1) as input and
extract the entities it contains {Mary, bathroom}. Vectors representing the states of these
entities are initialized using some pre-learned word embeddings {

−−−→
Mary,

−−−−−−→
bathroom}

and stored in a memory pool. Meanwhile, we turn S1 into a vector (
−→
S1) using an autoen-

coder model 3. Then we use the sentence vector
−→
S1 to update the entities’ states {

−−−→
Mary,

−−−−−−→
bathroom}. The goal is to reconstruct

−→
S1 solely from {

−−−→
Mary,

−−−−−−→
bathroom}. In the same

way, we process the following text (S2) and its containing entities (John, hallway) until
encounter a question (S3). S3 is converted into a vector (

−→
S3) following the same method

that processes previous input text. Then taking
−→
S3 as input, we retrieve related entities

from the memory which now stores all the entities (Mary, bathroom, John, hallway) that
appear before S3. The related entities’ states are then used to produce a feature vector.
In this case, (Mary and bathroom) are related to the question and their states are used
for constructing the feature vector. Note the current states of the two entities (Mary and
bathroom) are different from their initial values due to S1. Based on the feature vector,
we then use another neural network model to predict the answer to S3.

The model monitors the entities involved in text and keeps updating their states
according to the input. Whenever we have a question with regard to the text, we check
the states of entities and predict an answer accordingly. The proposed model comprises
of 4 modules, as is shown in Fig. 1. Each module is designed for a unique purpose and
together they construct the entity-based memory network model.

3 Note that the sentence vector is not used to answer question directly and it is also plausible to
use other models to learn sentence representation.

4

1. I: Input module. Take as input a sentence and turn it into a vector. Meanwhile,
extract all the entities it contains. The question is also processed using this module.

2. G: Generalization module. Update the states of related entities according to the
input. For entities that are not contained in the memory pool, create a new memory
slot for each of them and initialize these slots using pre-learned word embeddings.

3. O: Output feature module. It is triggered whenever a question arrives. Retrieve
related entities according to the input question and then produce an output feature
vector accordingly.

4. R: Response module. Generate the response according to the output feature vector.

Fig. 1. Architecture of the entity-based memory network. The model is divided into four modules
which are shown in the figure using squares.

2.2 Entity-based Memory Network Model

Here we present a formal description of the proposed model. Assume we have text
S1, S2, ...Sn whose entities are annotated in advance as e1, e2, ..., em.

Input Module We firstly turn each sentence Si into its vector representation:

Si = f1(Si) (1)

Generalization Module For a sentence Si, we collect all the entities it contains {ei1, ..., eik, ..., eij}.
These entities’ states {eik} are simultaneously updated according to Si as follows:

5

S′
i = f2(e

i
1, ..., e

i
k, ..., e

i
j)

{eik} = arg min
{ei

k}
(|S′

i − Si|) (2)

f2 is to reconstruct Si only using the states of Si’s containing entities {eik}. {eik}
are updated to minimize the difference between S′

i and Si. Recall that Si is generated
using f1 with the whole sentence Si as input. We compress the information carried by
Si into a vector Si and then unfold it into {eik}.

After processing these sentences, we construct a memory pool which consists of
entities whose states are regarded as capable of representing the information carried by
the input text.

Fig. 2. the Generalization Module: Using S1 as an example, the autoencoder is used to convert
the sentence into a vector S1 and the entities contained in S1 are used to reconstruct the sentence
vector.

Output Feature Module Question q is turned into a vector q = f1(q) and then q is used
to retrieve related entities from the memory pool.

Q0 = q

Qj−1 = g(Qj−2, ej−2)

p(ej ,Qj−1) = h(ej ,Qj−1)

Oj = u(Oj−1, p(ej ,Qj−1) ∗ ej)

(3)

p(ej ,Qj−1) is the probability (or score) of ei being selected to compose the feature
vector for answering q. In Q, we consider the entity selected in the previous iteration.
Q is kept updated using e and p. O∗ is the output feature vector.

After several iterations, we use the final Om as the output feature vector O. Note
that if the O∗ does not change much between iterations, we will omit the remaining
entities. This early-stop strategy helps reduce the time cost.

6

Fig. 3. the Output Feature Module: In each iteration, entities are assigned different scores which
indicate their importance in constructing the output feature vector.

Response Module Then we decide the answer using a(q) = v(O). a(q) produces a
vector whose each item corresponds to one word in the vocabulary. a(q)i indicates
the probability of wordi being used as the correct answer. We choose the one with
the highest probability. Models like recurrent neural network can be used to output a
sentence as the answer.

2.3 Implementation

This is a supervised model and requires annotated data for the training. The training
data contains the input text, questions and answers. Also we need all the entities and
entities that are related to the answer labeled.

We define the function form for training as follows: As for f1, many models, like
the recurrent neural network, recursive neural network and so on [16,20,9], can be used
to convert a sentence into a vector. Here we use an Long Short-Term Memory (LSTM)
autoencoder [13] which takes a word sequence as input and outputs the same sequence.

f2 takes a list of entity states as input and tries to reconstruct Si. We use the Gated
Recurrent Unit (GRU) [2].

Sk
i = tanh(GRU(Sk−1

i , eik))

S′
i = Sj

i

(4)

A GRU can be represented as the follows:

zjt = δ(Wz ∗ xt + Uz ∗ ht−1)
j

¯
hj
t = tanh(W ∗ xt + U ∗ (rt ◦ ht−1))

j

rjt = δ(Wr ∗ xt + Ur ∗ ht−1)

hj
t = (1− zjt)h

j
t−1 + zjt

¯
hj
t

(5)

7

◦ represents an element-wise multiplication. zjt and rjt are two gates controlling the
impact of historical hj

t−1 on the current hj
t . The GRU takes xt as input and updates the

state of the neuron to hj
t . Compared with LSTM which it often replaces, it simplifies

the computation while still keeps a memory of previous states. Therefore it takes less
time to train GRU than LSTM.

Our goal is to minimize the loss |S′
i−Si|. Using the stochastic gradient descent, we

are able to train f2 and also update {eik}. Note that the input module and the general-
ization module do not interact with the remaining. Thus they can be trained in advance.

The output feature module checks the memory pool repeatedly to select entities to
form a feature vector:

Qj−1 = tanh(GRU(Qj−2, ej−2))

p(ej ,Qj−1) = sigmoid(W ∗GRU(ej ,Qj−1) + b)

Oj = tanh(GRU(Oj−1, p(ej ,Qj−1) ∗ ej))
(6)

To generate the final answer, we use a simple neural network which takes the feature
vector O as input and predict a word as output. pw = v(O) = softmax(tanh(W ′ ∗
O + b)). The word with the highest probability is selected. Suppose a sentence is to be
generated, we use the GRU to update O and then generate the sentence {w∗} as follows:

pi−1
w = softmax(tanh(W ′ ∗Oi−1 + b))

wi−1 = argmaxpi−1
w

Oi = tanh(GRU(Oi−1,wi−1))

(7)

Similar to [28], we use the stochastic gradient descent algorithm to minimize the
loss function shown in Equation 8 over parameters. For an input Si and a given question
q annotated with the correct answer wordk and related entities {ecj}, the loss function
is as follows:

∑
i ̸=cj

max(0, γ−(p(ecj , q)−p(ei, q)))+
∑
l ̸=k

max(0, γ−(pwordk
−pwordl

))+|Θ2| (8)

Here γ is the margin and |Θ2| is the squared sum of all parameters which is used for
regularization. Note that Θ does not include parameters of f1 and f2. Their parameters
and states of entities are learned as described in Section 2.2. Word vectors used to
initialize entity states and words in autoencoder come from GloVe [17]. The dimension
is set to be 50.

2.4 Data Annotation

The model requires entities to be annotated in advance. In this work, we treat each
noun and pronoun as an entity. Different words are regarded as different entities for
simplicity. This strategy saves us the effort of entity resolution which is a challenge for
many languages. It also makes possible the application of the proposed model to entity

8

resolution 4. For datasets with related entities annotated, we can use the loss function
described above. But annotating the related entities is time and labor-costing. Most
datasets available are not annotated. The weakly supervised learning can be applied to
such data by trimming the loss function to

∑
l ̸=k max(0, γ−(pwordk

−pwordl
))+ |Θ2|.

For unannotated data, a fully supervised training is also possible if we regard entities
contained in questions as related entities or if we can use other methods to identify
entities that are believed to be related.

3 Memories in Deep Neural Networks

In this section we will briefly introduce some neural models considering memories.

3.1 Memory at Neuron Level (LSTM & GRU)

Recurrent neural network is widely adopted in various tasks. It uses hidden states to
handle historical inputs. The long short-term memory network (LSTM) is regarded as
an improvement of the traditional recurrent neural networks (RNN).

A long short-term memory [5] cell is composed of four main elements: an input
gate, a neuron with a self-recurrent connection, a forget gate and an output gate. The
input gate controls the impact of the input value on the state of the memory cell and the
output gate controls the impact of the state of the memory cell on the output. The self-
recurrent connection controls the evolution of the state of the memory cell and the forget
gate decides whether to keep or reset the histories of the memory cell’s states. These
elements serve different purposes and work together to make LSTM cells much more
powerful than traditional neural cells. LSTM is widely used in various tasks in NLP and
other machine learning fields such as machine translation [22,4], open-domain dialogue
generation [11,12,24], or parsing [23].

LSTM uses additional memory units to control the gates. It increases the complex-
ity of the neural networks. The Gated Recurrent Unit (GRU) simplifies the structure
and reports performance on par with LSTM but costs less time to train. An empirical
analysis of GRU and LSTM model shows that they have similar performance on se-
quence modeling [2]. In our model, we use the GRUs as an effective method to deal
with information over time series. We have an elaborated description about how to use
them in our work in Section 2.

3.2 Memory at Layer Level (Memory Network)

In LSTM, the neuron looks at the input in a relatively small scale. Normally the neuron
takes one word vector as input each time thus it cannot look beyond the level of words.
Layer-level memory networks are designed to keep memories of sentence vectors.

The Memory Network (MNN) [28] contains four parts: the input module which
converts sentences into vectors, the memory which keeps all sentence vectors a retrieval

4 We treat each mentions of entities as different one when processing the text and ask questions
about which of these mentions refer to the same entities.

9

module and a response module. Whenever a question comes, the question is turned into
a vector and the question vector is used to retrieve the memory for related sentences.
The response module is used to predict an answer based on the related sentences. The
core component is the memory pool that stores all the input sentences so that they can be
retrieved later to answer questions. This model contains several neural networks which
are jointly optimized according to the task. Experiments on a toy dataset show that this
model is able to answer simple questions according to the input text. This proposed has
been successfully applied to many question answering tasks [3,14,26].

Later [8] propose the Dynamic Memory Network (DMNN) which introduces the
attention mechanism into the memory network model. When retrieving memories, the
location of the next related sentence is predicted according to the related sentences
identified in the previous iterations. Using the attention mechanism, they obtain further
improvements. Some other work [21,1] introduce other variants of MNN by introducing
additional memory network modules. These work focus on storing sentence vectors for
later retrieval with no exceptions. Most of them have been tested on the toy dataset bAbI
[27] and are reported to have achieved satisfying results. When further tested on some
practical tasks, these models also show the ability to produce results as good as existing
state-of-the-art systems or even better results.

Compared with LSTM, memory networks store sentence vectors as memories and
have the superiority of processing information from a large scale. Experiment results
they reported on a series of tasks are concrete proofs. But there is also a problem with
the memory networks as we have stated. Taking sentence vectors as input means that it
is difficult to further analyze and take advantages of relations between smaller text units,
such as entities. For example, when an entity ea of sentence A interacts with another
entity eb of sentence B, we have to take the whole sentences A and B into consideration
rather than just focus on ea and eb. This inevitably brings about noise and damages
the comprehension of text. The failure of obtaining fine-grained information prevents
further improvements.

4 Experiments

To verify the effectiveness of the proposed model, we conduct experiments on several
datasets, including a toy QA data set bAbI, the large movie review dataset for sentiment
classification and the Machine Comprehension dataset (MC Test).

4.1 bAbI

bAbI [27] is a toy data set developed for comprehension-based question answering. The
example shown in Table 1 is extracted from the bAbI dataset. It contains 20 topics, each
of which contains short stories, simple questions with regard to the stories and answers.
The data is generated with a simulation which behaves like a classic text adventure
game. According to some pre-set rules, stories are generated in a controlled context.

Previous work reports extremely satisfying results using memory networks for most
topics (around 90% for most of them). However, we notice an interesting thing that all

10

of them with no exception fail on the problem of path-finding which is to predict a sim-
ple path like ”north, west” given the locations of several subjects. Another one is the
positional reasoning. The Memory Network [27] reports accuracies of 36% and 65%
for the two topics. The Dynamic Memory Network [8] reports accuracies of 35% and
60%. The proposed model (Entity-MNN) reports accuracies of 53% and 67% respec-
tively. It is still far from satisfying but the improvements on the two tasks indicates the
superiority of the entity-based memory network.

Results on the toy dataset is not as convincing as that on practical tasks. Given how
the bAbI data is generated, it is easy to achieve a 100% accuracy if we do simple reverse
engineering to identify the entities and rules. The good results of memory networks,
including our model, can not be solely attributed to their ability of comprehension. It
may be partly due to their ability of inducting the entities and rules from text.

4.2 Large Movie Review Dataset

We further tested our model on the Large Movie Review Dataset [15], which is a col-
lection of 50,000 reviews from IMDB, about 30 reviews per movie. Each review is
assigned a score from 1 (very negative) to 10 (very positive). The ratio of positive sam-
ples to negative samples is 50:50. Following the previous work [15], we only consider
polarized samples with scores no greater than 4 or no smaller than 7.

For each review, we present it as a short story and then add a question “what is the
opinion?”. The answer is either “negative” or “positive”. In this way we turn this task
into a question answering problem. Note that although here the answer to a question is
either “negative” or “positive”, we do not put any constraints on the output. It is treated
in the same way as open domain question answering and the system is expected to learn
to predict the output by itself.

Sys. Acc.%
Maas’11 [15] 89
Johnson’14 [6] 93.4
Johnson’15 [7] 95
EntityMNN 97.2

Table 2. Results on Large Movie Dataset

We do not use the full dataset as the train-
ing takes a long time. We randomly select
10K samples (5K negative samples + 5K pos-
itive samples) for training and another 10K
for test. We obtain an accuracy of 97.2% on
the subset which is higher than the 89% re-
ported by [15], 93.4% by [6] and 95% by [7].

4.3 Machine Comprehension Test

The machine comprehension test (MCTest)
dataset [18] has 500 stories and 2000 ques-
tions (MC500). All of them are multiple
choice reading comprehension questions. The stories are for children so limited world
knowledge is required. An additional smaller dataset with 160 stories and 640 questions
(MC160) is also included in the MCtest data and used in our work.

Since the proposed model does not consider the form of multiple choice questions,
we need to convert MCTest data into suitable formats firstly. When answering a multiple
choice question, one is provided with several alternatives of which at least one is correct.
These alternatives can be regarded as information known.

11

For a question, we replace the “Wh-” words using each alternative and Each alter-
native is turned to a new declarative sentences. These generated declarative sentences
are generally understandable though may not be grammatically correct. Then we use
the proposed system to decide whether the generated sentences are correct or wrong.
However, we do not distinguish between questions with only one answer and those
with more than one answers as these newly generated sentences are treated separately.
In other words, all questions are treated as having multiple answers.

The MCTest contains only hundreds of stories and is usually used for test only as
statistical models normally require a large amount of training data. However, we still
obtain satisfying results using this dataset. Table 3 demonstrates the effectiveness of the
entity-based model on the MCTest dataset. We outperform the previous state-of-the-art
[25,19] on both MC160 and MC500. Our model does not employ rich semantic features
as others do, and hence is easy to be migrated to languages aside from English.

Sys. Acc.(%) MC160 Acc.(%) MC500
Type Single Multiple Average Single Multiple Average
Richardson’13 [18] 76.8 62.5 69.2 68.0 59.5 63.3
Wang’15 [25] 84.2 67.9 75.3 72.1 67.9 69.9
Sachan’16 [19] - - - 72.0 68.9 70.3
EntityMNN Average=76.1 Average=76.6

Table 3. Results on Machine Comprehension Test

4.4 Analysis

The proposed model is designed based on the assumption that entities are the core
of text. By updating the states of entities, information carried by text is encoded into
entities. Thus all questions which are related to the text can be answered based on
entities solely. Entities enable us to break a sentence into smaller text units and analyze
text from a smaller scale. Therefore the entity-based model is more sophisticated and
powerful than those based on sentences as has been proven in our experiments.

A shortcoming with such a model is that, it cannot handle text that contains very few
entities. Also hidden entities are not considered. As we know, pro-drop languages, like
Japanese and Chinese, tend to omit certain classes of pronouns when they are inferable.
The proposed model will encounter problems when dealing with such text.

5 Conclusion

This work presents the entity-based memory network model for text comprehension.
All the information conveyed by text is encoded into the states of its containing entities
and questions regarded to the text are answered using these entities. Experiments on
several tasks have proven the effectiveness of the proposed model.

The proposed model is based on the assumption that entities can express all the
information of text. In future research, we will further explore its ability by considering
more components in text. not merely entities.

12

References

1. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question answering with
memory networks. arXiv preprint arXiv:1506.02075 (2015)

2. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

3. Dodge, J., Gane, A., Zhang, X., Bordes, A., Chopra, S., Miller, A., Szlam, A., Weston,
J.: Evaluating prerequisite qualities for learning end-to-end dialog systems. arXiv preprint
arXiv:1511.06931 (2015)

4. Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, N.A.: Transition-based dependency
parsing with stack long short-term memory. arXiv preprint arXiv:1505.08075 (2015)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–
1780 (1997)

6. Johnson, R., Zhang, T.: Effective use of word order for text categorization with convolutional
neural networks. arXiv preprint arXiv:1412.1058 (2014)

7. Johnson, R., Zhang, T.: Semi-supervised convolutional neural networks for text categoriza-
tion via region embedding. In: NIPS. pp. 919–927 (2015)

8. Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., Ondruska, P., Gulrajani, I.,
Socher, R.: Ask me anything: Dynamic memory networks for natural language processing.
arXiv preprint arXiv:1506.07285 (2015)

9. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: ICML.
vol. 14, pp. 1188–1196 (2014)

10. Lehnert, W.G.: The process of question answering: A computer simulation of cognition.
Lawrence Erlbaum Associates (1978)

11. Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A diversity-promoting objective function
for neural conversation models. arXiv preprint arXiv:1510.03055 (2015)

12. Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A persona-based neural conversation
model. arXiv preprint arXiv:1603.06155 (2016)

13. Li, J., Luong, M.T., Jurafsky, D.: A hierarchical neural autoencoder for paragraphs and doc-
uments. arXiv preprint arXiv:1506.01057 (2015)

14. Li, J., Miller, A.H., Chopra, S., Ranzato, M., Weston, J.: Dialogue learning with human-in-
the-loop. arXiv preprint arXiv:1611.09823 (2016)

15. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors
for sentiment analysis. In: ACL-HLT. pp. 142–150 (2011)

16. Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., Khudanpur, S.: Recurrent neural network
based language model. In: Interspeech. vol. 2, p. 3 (2010)

17. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation.
In: EMNLP. vol. 14, pp. 1532–43 (2014)

18. Richardson, M., Burges, C.J., Renshaw, E.: Mctest: A challenge dataset for the open-domain
machine comprehension of text. In: EMNLP. vol. 3, p. 4 (2013)

19. Sachan, M., Xing, E.P.: Machine comprehension using rich semantic representations. In:
ACL (2016)

20. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language
with recursive neural networks. In: ICML. pp. 129–136 (2011)

21. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In: NIPS. pp.
2440–2448 (2015)

22. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
NIPS. pp. 3104–3112 (2014)

23. Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., Hinton, G.: Grammar as a foreign
language. In: Advances in Neural Information Processing Systems. pp. 2773–2781 (2015)

13

24. Vinyals, O., Le, Q.: A neural conversational model. arXiv preprint arXiv:1506.05869 (2015)
25. Wang, H., McAllester, M.B.K.G.D.: Machine comprehension with syntax, frames, and se-

mantics. ACL, Volume 2: Short Papers p. 700 (2015)
26. Weston, J.: Dialog-based language learning. arXiv preprint arXiv:1604.06045 (2016)
27. Weston, J., Bordes, A., Chopra, S., Rush, A.M., van Merriënboer, B., Joulin, A., Mikolov,

T.: Towards ai-complete question answering: A set of prerequisite toy tasks. arXiv preprint
arXiv:1502.05698 (2015)

28. Weston, J., Chopra, S., Bordes, A.: Memory networks. arXiv preprint arXiv:1410.3916
(2014)

	Reading Comprehension using Entity-based Memory Network
	Introduction
	Approaches
	Overview
	Entity-based Memory Network Model
	Implementation
	Data Annotation

	Memories in Deep Neural Networks
	Memory at Neuron Level (LSTM & GRU)
	Memory at Layer Level (Memory Network)

	Experiments
	bAbI
	Large Movie Review Dataset
	Machine Comprehension Test
	Analysis

	Conclusion

