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ABSTRACT
This paper proposes a neural language model to capture the inter-
action of text units of different levels, i.e.., documents, paragraphs,
sentences, words in an hierarchical structure. At each paralleled
level, the model incorporates Markov property while each higher-
level unit hierarchically influences its containing units. Such an
architecture enables the learned word embeddings to encode both
global and local information. We evaluate the learned word embed-
dings and experiments demonstrate the effectiveness of our model.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing – abstracting methods; I.2.7 [Computing Method-
ologies ]: Artificial Intelligence – Natural Language Processing

General Terms
Algorithms; Experimentation

Keywords
neural network; hierarchical model; distributed representations; word
embeddings

1. INTRODUCTION
Word embeddings represent words using real-valued, abstract

and condensed vectors. There are two main families for learn-
ing embeddings for words: The first family leverages document-
level word-occurrence statistics, such as LDA [Blei et al., 2003],
GloVe [JeffreyPennington and Manning, 2014], or matrix factor-
ization based approaches (e.g., LSA and SVD) given the intuition
that co-occurrent words are relevant. Those global co-occurrence
statistics based models neglect word order information about how
local meanings are formed by neighboring words. The second cate-
gory corresponds to local context window approaches (e.g.,[Bengio
et al., 2006, Collobert and Weston, 2008, Mikolov et al., 2013a]).
The downside of such models is that they poorly harness the global
information at document, paragraph or sentence level. Some at-
tempts try to bridge the gap between the two families: [Huang
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et al., 2012] proposes a document-level vector leveraged from tf-idf
into local learning process and paragraph vector [Le and Mikolov,
2014] makes word prediction with the help of the leveraged doc-
ument/paragraph/sentence level information. [Li et al., 2015b] ex-
plores hierarchical autoencoder for paragraph and document repre-
sentations. Their efforts prove useful for learning sentence, para-
graph and document representations. But they do not consider us-
ing the relations between different levels to improve the word em-
beddings which are the basis of all. Towards better word embed-
dings, we consider the intrinsic structure of text about how units
are arranged to form meaningful context:

(1) Horizontally: as we look at discourse theory in early days
(Mann and Thompson (1988)), in a coherent text, not only words,
but clauses, sentences, and larger multi-clause groupings are tightly
connected. Text units take their respective roles and interact with
units at the same level (token-to-token, sentence-to-sentence and
paragraph to paragraph) semantically, syntactically, and logically.

(2) Vertically: Words form the meanings of sentences; sentences
form paragraphs, and then paragraphs form documents, which or-
ganizes the arrangements into a tree structure vertically.

The importance of tree structures in sentence, paragraph and
document representation has been revealed by previous research
[Socher et al., 2013, Li et al., 2014, Li et al., 2015a]. Here we show
how they can be used to improve the word embeddings. The pro-
posed model captures the two aforementioned aspects of meanings
in a unified embedding learning framework which holds promise
to bridge the gap between the co-occurrence based and prediction
based embedding learning frameworks. Horizontally, we model
each level of units based on the Markovian manner, where neigh-
bouring unites are correlated based on the similar assumption we
make in language model. Vertically, each unit (e.g., sentence) ex-
erts its impact on its containing lower-level text units (e.g., words).
Unlike [Huang et al., 2012] where document-level information is
harshly incorporated, the proposed approach gently incorporates
the order information at paragraph level and sentence level, and
therefore preserves the semantic integrity of the contexts.

The adopted type of architecture arranges all text units in a uni-
fied structure, where influence of one unit is propagated to others
(the siblings and children), naturally bridging the gap of and tak-
ing the merits from the aforementioned two learning families. To
note, our approach is inspired by paragraph vector model [Le and
Mikolov, 2014] where models paragraph and tokens within it in
a two-level hierarchy where words are predicted given neighbours
and its resided paragraph.

The proposed architecture is ultimately grounded on the lowest
level of the hierarchical structure, words, by predicting the current
token, where the embeddings for neighboring tokens, and higher
levels text units are simultaneously updated. The proposed algo-



rithm is a general one and can be adjusted to currently prevailed
frameworks, e.g., skip-gram models, CBOW, recurrent neural mod-
els [Mikolov et al., 2010]. The system can be optimized by standard
strategies taken in embedding learning literature, either through
standard softmax, or others like hierarchical softmax, NCE or neg-
ative sampling.

Note that the proposed algorithm ends up with distributed rep-
resentations for documents, sentences and words, which could be
used as input for different applications for different levels of units.
But here we just keep the word embeddings for the proposed model
has not been optimized regarding to upper level text units. For these
large text units, it is still not clear how their meanings are made up
from their containing words. Though several composition based
neural network models [Tai et al., 2015, Zaremba and Sutskever,
2014, Socher et al., 2013] have been proposed and proved useful
in a range of tasks, none of them manage to achieve the expected
level of performance as word embedding models do.

We evaluate the learning frameworks on word analogy and word
similarity tasks, two basic tasks for word embedding evaluation.
Experimental results demonstrate that by harnessing the hierarchi-
cal structure of documents, we obtain better performances.

2. MODEL
Document D is comprised of a sequence of paragraphs D =
{P1, P2, .., PND}, paragraph P is comprised of a sequence of sen-
tences P = {S1, S2, ...SNP } and sentence S is comprised of a
sequence of words S = {w1, w2, ..., wNS}, where ND , NP and
NS respectively denote the number of correspondent children in
the document, paragraph and sentence. Each level text unit D, P ,
S, w is associated with a K dimensional embedding eD , eP , eS
and ew. All text units are therefore arranged in into a tree hierar-
chy with L = 4 levels. Let η denote any node in the tree, where η
could be document, paragraph, sentence or word with embedding
eη . parent(η), sibling(η) and kid(η) respectively denote the par-
ent, siblings and kids of η.

2.1 Revisit Distributed Neural Language Mod-
els

We first revisit the general neural learning framework for word
embedding widely adopted in existing research.

Consider a sequence of word tokens {w1, w2, ..., wN}. The con-
ditional probability of current word is given by:

p(wn|wn−1, ..., wn−k, wn+1, .., wn+k) =

f(en|g(en−1, ..., en−k, en+1, .., en+k),Θ)
(1)

where Θ denotes the parameter space involved in the probability
function f(). g() denotes the operation performed on neighboring
vectors. Many different types of g() have been explored such as av-
eraging neighboring embeddings (CBOW) [Mikolov et al., 2013a],
getting the dot product betweenwn and each of its neighbors (skip-
grams) [Mikolov et al., 2013a], concatenating neighboring vec-
tors and projecting the concatenating into a low-dimensional space
(e.g., [Collobert et al., 2011, Vaswani et al., 2013]), or convolv-
ing the preceding words using a recurrent network [Mikolov et al.,
2011].

Commonly used forms of f() include predicting current word
using a softmax function or contrastive sampling. Many alterna-
tives have been proposed for easy training, such as hierarchical
softmax [Mikolov et al., 2013b] and Noise-contrastive Estimation
[Vaswani et al., 2013, Mnih and Teh, 2012].

2.2 Joint Embedding Training from Hierar-
chical Structure

Our model take advantages of the hierarchitecture of text.

• Horizontally, we incorporate Markov property at each level
of the tree structure.

• Vertically, kid embeddings are influenced by their parent nodes.

The model extends standard embedding learning framework by sub-
sequently predicting embedding of every node η along the tree
structure given its parent and siblings:

p(η|parent(η), sibling(η))

= f(eη|g(eparent(η), {eη′,η′∈Sibling(η)},Θ)
(2)

Thus, the probability of the whole document is given by:

p(D|Θ, eD, {eP }, {eS}, {ew})

=
∏

η∈Tree

f(eη|g(eparent(η), {eη′,η′∈Sibling(η)},Θ) (3)

As can be seen, for two words that do not reside in the same sen-
tence, they will still distantly interact with each other as the influ-
ence is propagated up to the containing sentence embedding, para-
graph embedding and document embedding, and then down to the
other word. Therefore, the proposed model can to some extent cap-
ture global level statistics without losing the advantages of local
neural composition.

On the other hand, based on the Markov property along each
level of the trees, the meanings of adjacent text units interact with
each other and preserves the integrity of meanings at each level,
potentially leading to better representations at lower levels. Even-
tually these merits will be further propagated to word level predic-
tion, leading to better word level embeddings.

For illustration purpose, we assume g() takes the form the con-
catenation of sibling embeddings and parent embedding. f(·) takes
the form of sigmoid function at sentence/paragraph level and soft-
max at word level. Let P denote the the paragraph that sentence Si
resides in, and S denotes the sentence that word wi resides in, we
have:

p(eSi |·) = σ(eSi · g(eP , eSi−1 , ..., eSi−N )]

p(ewi |·) =
exp(ewi · g(eS , ewi−1 , ..., ewi−N ))∑
w exp(ew · g(eS , ewi−1 , ..., ewi−N ))

(4)

where σ(·) denotes sigmoid function.
Parameters Θ and embeddings are estimated by making MLE

estimation:

[Θ, eD, {eP }, {eS}, {ew}] =

argmax
Θ′,e′

D
,e′

P
,e′

S
,e′w

∏
D

p(D|Θ′, e′D, {e′P }, {e′S}, {e′w}) (5)

2.3 Details of Implementation
Parameters Θ and word embeddings are to be estimated from

the training corpus. Meanwhile we also estimate embeddings of
document, paragraph and sentence given containing words and the
correspondent embeddings. MLE estimation is implemented as is
the same with previous work. A similar strategy can be found in
[Le and Mikolov, 2014]. The estimated embeddings can be used as
feature for downstream applications.



Model WS-353 RG MC SCWS RW
Skp-Gram 68.7 78.1 71.5 58.1 37.2

Paragraph Vector 69.2 77.8 72.9 58.0 39.6
Joint Learning 71.2 78.6 73.8 57.9 41.7

CBOW 61.7 77.8 64.5 57.2 33.8
Paragraph Vector 62.4 79.1 65.8 56.9 34.2

Joint Learning 64.2 79.2 66.4 57.2 37.1
Concatenation 70.1 76.0 72.3 54.6 35.2

Paragraph Vector 70.0 77.1 72.5 57.2 37.9
Joint Learning 71.7 77.5 74.8 57.0 39.4

GloVe 68.6 77.5 77.2 52.7 39.2

Table 1: Spearman correlation results on word similarity tasks.
Dimensionality of vectors are set to 300. All reported results are
based on embeddings trained from the same Wiki2014 dataset.
For each subset, Paragraph Vector and Joint Learning use the
same f(·) and g(·) as the model at the top.

We employ three forms of operational functions.
(1) Skip-gram model [Mikolov et al., 2013a]:

f(eη|g(eparent(η), {eη′,η′∈Sibling(η)},Θ))

= σ(eη · eparent(η))
∏

η′∈Sibling(η)

σ(eη · eη′) (6)

(2) CBOW like model [Mikolov et al., 2013a] which first averages
the embeddings of parent and siblings and dot products with current
node embedding:

f(eη|g(eparent(η), {eη′,η′∈Sibling(η)},Θ))

= σ(eη · g(eparent(η), {eη′,η′∈Sibling(η)}))
g(eparent(η), {eη′,η′∈Sibling(η)}) =

1

1 + |Sibling(η)| (eparent(η) +
∑

η′∈Sibling(η)

eη′)

(7)

(3) Concatenation model which can takes sequence order informa-
tion by first concatenating embeddings of parent and siblings and
then projects the concatenated vector sharing same dimensionality
with current node embedding:

f(eη|g(eparent(η), {eη′,η′∈Sibling(η)},Θ))

= σ(eη · g(eparent(η), {eη′,η′∈Sibling(η)}))
g(eparent(η), {eη′,η′∈Sibling(η)}) =

tanh(W · [eS , ewi−1 , ..., ewi−N ])

(8)

where [·] denotes the concatenation of its containing vectors andW
denotes the (1 + N) × K dimensional convolutional matrix. For
concatenation approach, we use a dropout [Hinton et al., 2012, Sri-
vastava, 2013] rate of 0.5. The initialization of embeddings for sen-
tences, paragraphs and sentences are conducted by averaging em-
beddings for its containing tokens using tf-idf, similar as in [Huang
et al., 2012].

3. EXPERIMENTAL RESULTS

Word Similarity Evalution.
Word embeddings are evaluated in terms of standard word sim-

ilarity measures to see whether taking account text hierarchy can
improve those measures. We train our models using Wikipedia2014
dataset. We adopt a hierarchical softmax function for word predic-
tion. The window size is set to 11.

Model Accuracy
Skp-Gram 0.691

Paragraph-Vector 0.690
Joint Learning 0.714

CBOW 0.657
Paragraph-Vector 0.662

Joint Learning 0.678
Concatenation 0.702

Paragraph-Vector 0.706
Joint Learning 0.718

GloVe 0.716

Table 2: Results on word analogy task. Models are trained on
the same Wiki2014 corpus. Skip-Gram and CBOW are trained
on Word2Vec.

We employ standard ontology evaluation metrics include Tofel-
353 [Finkelstein et al., 2001], MC [Miller and Charles, 1991], RG
[Rubenstein and Goodenough, 1965], SCWS [Huang et al., 2012],
and RW [Luong et al., 2013]. Each dataset is comprised of pairs of
words with gold-standard human annotations, indicating the simi-
larity score between the pair of words. For example, “book, paper,
7.46" denotes the similarity score for word pair (book, paper) is
7.46. Standardly, we adopt cosine similarity. Spearman’s rank cor-
relation coefficient is then obtained between this score and human
judgement. Baselines include Skip-Gram, CBOW, Concatenation
paragraph vector [Le and Mikolov, 2014].

Word Analogy Task.
Word analogy evaluation aims at answering questions like “a is

to b as c is to what". Question types include semantic ones like
‘Beijing is to China like London to what" (captial) or syntactic
ones like “dance to dancing as fly to what" (tense). The dataset is
introduced in [Mikolov et al., 2013a] and contains 8,869 semantic
questions and 10,675 syntactic questions. We follow the protocols
described in [Mikolov et al., 2013c, JeffreyPennington and Man-
ning, 2014] that to answer questions “a is to b as c is to what", we
do the simple math by computing Eb −Ea +Ec, where E denotes
the embedding for current word, and find the word d with closest
representation based on cosine similarity.

Performances regarding different models are illustrated in Table
2. Similar phenomenon are observed as word similarity tasks where
better performances are observed when text structure are consid-
ered. The proposed model gives better performances than previous
models for word embeddings. Comparing with previous models,
we consider both the local and global information.

The sole aim of this paper is to use text structure to improve
word embeddings. We do generate embeddings for sentences, para-
graphs and documents. But we cannot expect them to produce sat-
isfying performances for a range of tasks without further improve-
ments, which is our future work.

4. CONCLUSION
We present a hierarchical neural network model for word embed-

dings learning. Experiments verify the effectiveness of the learned
word embeddings. As stated above, the learning of large text unit
embeddings remains a problem. In the future we will explore new
architectures to learn powerful embeddings for sentences, para-
graphs and documents.
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