
Recurrent Residual Network

2016/09/23

Abstract

This work briefly introduces the recurrent resid-
ual network which is a combination of the resid-
ual network and the long short term memory net-
work(LSTM). The residual network is featured
by residual blocks and the LSTM as a variant
of RNN, is featured by the recurrent structure
and long short term-memory cells. We modify
the LSTM by adding residual links between non-
adjacent layers. Experiments on several tasks
shows the effectiveness of combining two models
together.

1 Introduction

Dealing with inputs of variant lengths is a chal-
lenge for neural network models. The recurrent
neural network is develop as a ad-hoc technology
of processing such inputs. It essentially cuts in-
puts into short chunks of fixed length and turns
the problem of dealing with variant lengths to a
problem of dealing with fixed length inputs. The
recurrent network is widely employed since it is
proposed.

Researchers found there are some drawbacks
with RNN. One of them is the gradient vanish-
ing/exploding problem. In the back-propagation
of a recurrent neural network, the gradient is mul-
tiplied a large number of times (as many as the
number of time steps) by the weight matrix which
connects neighbouring layers in the model. This
means that, the magnitude of weights in the transi-
tion matrix can have a strong impact on the learn-
ing process. If the weights in this matrix are small,
or more precisely, if the leading eigenvalue of the
weight matrix is smaller than 1.0, it can lead to
the gradients vanishing problem, which means the
gradient signal gets so small that learning either
becomes very slow or just impossible. It can also
make more difficult the task of learning long-term
dependencies in the data. On the other hand, if the

weights in this matrix are large, or if the leading
eigenvalue of the weight matrix is larger than 1.0,
it can lead to a situation where the gradient sig-
nal is so large that it can cause learning to diverge.
This is often referred to as exploding gradients.

To address this problem, researchers
introduce the new long short-term mem-
ory cells in neural network models
[Hochreiter and Schmidhuber(1997)]. A mem-
ory cell is composed of four main elements:
an input gate, a neuron with a self-recurrent
connection, a forget gate and an output gate.
The input gate controls the impact of the input
value on the state of the memory cell and the
output gate controls the impact of the state of the
memory cell on the output. The self-recurrent
connection controls the evolution of the state
of the memory cell and the forget gate decides
whether to keep or reset the histories of the
memory cell’s states. These elements serve
different purposes and work together to make
LSTM cells much more powerful than previous
neural cells. LSTM is widely used in various
tasks in NLP and other machine learning fields
[Schmidhuber et al.(2002)Schmidhuber, Gers, and Eck,
Sundermeyer et al.(2012)Sundermeyer, Schlüter, and Ney,
Sutskever et al.(2014)Sutskever, Vinyals, and Le,
Dyer et al.(2015)Dyer, Ballesteros, Ling, Matthews, and Smith].

And there is another way of eas-
ing the problem of exploding gradients
as is shown by the deep residual network
[He et al.(2016)He, Zhang, Ren, and Sun] which
is regarded as an improvement of the recurrent
neural networks (RNN).

The deep residual network has two significant
characters compared with RNN. The first one is
the residual learning. In a neural network mod-
els, normally the data is passed from one layer
to the adjacent layer. In the residual network,
an additional layer is used to connect layers that
are far away. During the back propagation, errors
can be passed from a higher layer to lower layer

1



Figure 1: A LSTM memory cell

Figure 2: Operations in a LSTM Node

it = σ(Wixt + Uiht−1 + bi)

C̃t = tanh(Wcxt + Ucht−1 + bc)

ft = σ(Wfxt + Ufht−1 + bf )

Ct = itC̃t + ftCt−1

outt = σ(Woxt + Uoht−1 + VoCt + bo)

ht = outt ∗ tanh(Ct)

(1)

Here W∗, U∗, V∗ are weight matrices. b∗ are bias vectors. xt is the input and outputt is the output at time
t. f∗, h∗, C∗ are some internal states.

directly. It helps ease the vanishing gradient or
exploding gradient problem, which is widely be-
lieved to be a reason of its superb performances
[He et al.(2016)He, Zhang, Ren, and Sun]. Fig 3
shows a building block of deep residual network.
The second one is the depth of such models. A
typical residual network has hundreds of layers,
which is much deeper than most existing mod-
els. Thus the training of such a model becomes
a challenge. Besides, given the number of the lay-
ers, the number of parameters also exceeds most
networks. When trained on a small dataset, a
deep residual network may suffer from over-fitting
[He et al.(2016)He, Zhang, Ren, and Sun].

The residual neural network has been proved
useful in capturing information from images for
classification. A number of variants have been in-
troduced for a series of tasks. We do not go in to
the details due to the space limitation. In the fol-
lowing section, we will show how to employ the
residual network in the targeted task.

2 Recurrent Residual Network

A recurrent residual network is a combination two
of them together. To be specific, we add skip con-

Figure 3: A Residual Learning Block
[He et al.(2016)He, Zhang, Ren, and Sun].
Compared with a traditional MLP, The change is
that some layers that used to be non-adjacent are
connected.



nections in the LSTM model. In fact, the residual
connections can be combined with RNN/GRU or
some other models. Here we chose LSTM for it is
powerful than others in a series of tasks.

The proposed model is shown in Fig 4. The
right part shows the structure of a recurrent resid-
ual node which is constructed using a LSTM cell.
As stated, other neural nodes can also be employed
such as the simple perceptron or GRU. The left is
the same with the recurrent model except that here
each node represents a residual lstm node.

We do not elaborate the details as it is simple
and clear enough.

We compare this model with the original
LSTM. We firstly implemented the LSTM and
then add the skip connections and linear transfor-
mations. We want to exclude all the un necessary
impacts and make sure the results reflect the effec-
tiveness of the modifications.

3 Experiment

We compare the performances using a char-level
rnn 1. A char-level rnn is similar to an rnn except
that it is on the character level. One may doubt
the meaning of such a model. We will move to
morphemes and other tasks such as classification
or sequence-to-sequence tasks later. Here we fo-
cus on the performance comparison. We use the
program implemented using chainer 2.

Results are shown in the following tables.
The rrn contains 7 layers, (50,80), (80,80),

(80,160), (160,320), (320,800), (800,50), (50,50),
and in the lstm, the size of a node is set to be 50.

The results are reported on a GPU server with
the following specs:
CPU: Intel(R) Xeon(R) CPU E5-2695 v3 @
2.30GHz
GPU: Tesla K80 * 4 (12G) “reported by nvida-
smi”
Memory: 337G (Reported by “free”)
Chainer: 1.9.1

As we can see, the time cost of the proposed
model is about 5 times that of LSTM and the train
loss is reduced by about 4%.

4% =
Avg Loss(LSTM)−Avg Loss(RRN)

Avg Loss(LSTM)
(2)

1https://github.com/karpathy/char-rnn
2https://github.com/yusuketomoto/chainer-char-rnn

Table 1: Results of RRN
Iteration Results Time
423/22307 train loss = 2.4386780262 time = 1.48
424/22307 train loss = 2.41346979141 time = 1.48
425/22307 train loss = 2.36787247658 time = 1.46
426/22307 train loss = 2.38671374321 time = 1.48
427/22307 train loss = 2.35455560684 time = 1.49
428/22307 train loss = 2.38408517838 time = 1.46
429/22307 train loss = 2.38966989517 time = 1.48
430/22307 train loss = 2.39387822151 time = 1.48
431/22307 train loss = 2.38929510117 time = 1.46
432/22307 train loss = 2.4487323761 time = 1.49
433/22307 train loss = 2.40984630585 time = 1.49
434/22307 train loss = 2.3900475502 time = 1.49
435/22307 train loss = 2.4499399662 time = 1.47
436/22307 train loss = 2.35769629478 time = 1.49
437/22307 train loss = 2.30001759529 time = 1.49
438/22307 train loss = 2.38338518143 time = 1.46
439/22307 train loss = 2.36612725258 time = 1.49
440/22307 train loss = 2.30233669281 time = 1.49
441/22307 train loss = 2.36858820915 time = 1.46
442/22307 train loss = 2.43151712418 time = 1.48
443/22307 train loss = 2.3438103199 time = 1.49
444/22307 train loss = 2.46831035614 time = 1.46
445/22307 train loss = 2.39090275764 time = 1.48
446/22307 train loss = 2.40528726578 time = 1.48

Table 2: Results of LSTM
Iteration Results Time
423/22307 train loss = 2.50547766685 time = 0.30
424/22307 train loss = 2.46356320381 time = 0.30
425/22307 train loss = 2.46316218376 time = 0.30
426/22307 train loss = 2.49023270607 time = 0.30
427/22307 train loss = 2.46731638908 time = 0.30
428/22307 train loss = 2.47279858589 time = 0.31
429/22307 train loss = 2.4947271347 time = 0.30
430/22307 train loss = 2.50045156479 time = 0.31
431/22307 train loss = 2.44542241096 time = 0.32
432/22307 train loss = 2.50137901306 time = 0.30
433/22307 train loss = 2.48271608353 time = 0.30
434/22307 train loss = 2.48008418083 time = 0.30
435/22307 train loss = 2.51200246811 time = 0.31
436/22307 train loss = 2.48871541023 time = 0.30
437/22307 train loss = 2.40931391716 time = 0.30
438/22307 train loss = 2.45529794693 time = 0.30
439/22307 train loss = 2.47192335129 time = 0.30
440/22307 train loss = 2.4405977726 time = 0.31
441/22307 train loss = 2.47446131706 time = 0.30
442/22307 train loss = 2.49214029312 time = 0.31
443/22307 train loss = 2.46333169937 time = 0.30
444/22307 train loss = 2.5029528141 time = 0.30
445/22307 train loss = 2.46809458733 time = 0.30
446/22307 train loss = 2.42945790291 time = 0.30



Figure 4: A Recurrent Residual Network Node



4 Conclusion

The RRN is a good model if we were willing to
afford the time cost.

5 Acknowledgement

The char-rnn is from
http://karpathy.github.io/2015/05/21/rnn-
effectiveness/ and the LSTM
implementation comes from
https://github.com/yusuketomoto/chainer-
char-rnn. We thanks these authors for their
contributions.

References

[Dyer et al.(2015)Dyer, Ballesteros, Ling, Matthews, and Smith]
Chris Dyer, Miguel Ballesteros, Wang Ling,
Austin Matthews, and Noah A Smith. 2015.
Transition-based dependency parsing with
stack long short-term memory. arXiv preprint
arXiv:1505.08075 .

[He et al.(2016)He, Zhang, Ren, and Sun]
Kaiming He, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun. 2016. Deep residual learning for
image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition. pages 770–778.

[Hochreiter and Schmidhuber(1997)] Sepp
Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

[Schmidhuber et al.(2002)Schmidhuber, Gers, and Eck]
Jurgen Schmidhuber, Felix A Gers, and
Douglas Eck. 2002. Learning nonregular
languages: a comparison of simple recurrent
networks and lstm. Neural Computation
14(9):2039–2041.

[Sundermeyer et al.(2012)Sundermeyer, Schlüter, and Ney]
Martin Sundermeyer, Ralf Schlüter, and Her-
mann Ney. 2012. Lstm neural networks for
language modeling. In INTERSPEECH. pages
194–197.

[Sutskever et al.(2014)Sutskever, Vinyals, and Le]
Ilya Sutskever, Oriol Vinyals, and Quoc V
Le. 2014. Sequence to sequence learning

with neural networks. In Advances in neu-
ral information processing systems. pages
3104–3112.


	Introduction
	Recurrent Residual Network
	Experiment
	Conclusion
	Acknowledgement

