Building a Network Community Support System
on the Multi-Agent Platform Shine

Sen Yoshida, Koji Kamei, Takeshi Ohguro, Kazuhiro Kuwabara, and
Kaname Funakoshi

NTT Communication Science Laboratories
{yoshida,kamei,ohguro,kuwabara,kf}@cslab.kecl.ntt.co.jp

Abstract. An increasing number of applications have been developed
for supporting network communities. The authors have developed Com-
munity Organizer, which supports people in forming new network com-
munities by providing places where people sharing interests and concerns
can meet and communicate. The authors are also developing a platform
named Shine to reduce the tasks needed to implement a variety of net-
work community support systems such as Community Organizer. Shine
has a multi-agent architecture because it is effective for network commu-
nity support systems that have to adapt to dynamic changes in commu-
nity organizations. This paper explains both Community Organizer and
Shine, and then gives a description of building Community Organizer on
top of Shine.

1 Introduction

With the advance of public communication networks such as the Internet, a
new type of community, called a network community or a virtual community
[18], is beginning to emerge on the networks. Members in a network community
actively and intimately communicate with each other by using e-mail, electronic
chat rooms, bulletin board systems, and so on. Furthermore, a multitude of
projects are devoted to developing systems to support communications especially
in network communities [7]. These systems are called socialware [5].

The authors have developed Community Organizer to support people in
forming new network communities by providing places where people sharing
interests and concerns can meet and communicate.

The authors are also developing a platform named Shine [23] to reduce the
tasks needed to implement a variety of socialware application programs such as
Community Organizer. Shine has a multi-agent architecture because it is effective
for socialware that has to adapt to dynamic changes in community organizations.

We explain Community Organizer in Section 2 and Shine in Section 3. We
then give a description of building Community Organizer on top of Shine in
Section 4.

C. Zhang and V.-W. Soo (Eds.): PRIMA 2000, LNAI 1881, pp. 88—100, 2000.
©Springer-Verlag Berlin Heidelberg 2000

Building a Network Community Support System 89

Slide bars for
View panel changing the values of
the keyword vectors

PRTR HEa i UaD Jj’/s)

EEECNESE e s (=Y) /
= =
FEa— * =]

I =
Flamx ﬂzu‘;w’?_-)’c
NG
£ FLABATEE L, =
/ 51 FOFRBIERT L,
’—/ F-H & DFGERA LA TRIEEEL B > TEOIT L.
TH 4> 3FICAS TRY.
BROABIBYE LB, HATES L, -
= = 4 I
HEVITHT =1+
SEH: 3 WEINEB: 1 I—AY5ANEM: o
RETSEE: M. T, EEA -
oy b | =] ERil) | EEER T
T W LCATEED s Aiabesesaian ?
@y = ES BECa
¥ »

Message window

Fig. 1. Sample screenshot of Community Organizer (Japanese version)

2 Community Organizer

Unlike traditional communities where geographical and institutional properties
define the boundary of the community, most network communities are com-
munities of interest [6], which consist of people who share common interests.
Considering this characteristic of network communities, Community Organizer
regards people sharing interests as members of a potential community and pro-
vides them with a place where they can meet and communicate.

Figure 1 is a sample screenshot of Community Organizer. Community Orga-
nizer displays representations of potential community members and communi-
cations among them.

Community Organizer has as its main feature a view panel that visualizes
the relationships among users in real-time [5, 22]. A user is represented as an
icon in the view panel. Its placement in relation to others reflects the closeness
of users’ interests. A user’s interest is represented as a keyword vector, which
is a set of pairs of a keyword (e.g., ‘travel’ or ‘foods’) and a numerical value
(i.e., the degree of his/her interest in the keyword). The system calculates the
degree of closeness for each pair of keyword vectors from the cosine measure

90 S. Yoshida et al.

[19] and places icons on the view panel using a physically-based model adopted
from Ref. [1]. As a result, icons with similar keyword vectors are placed closer to
each other. By observing how icons are distributed, a user can envision potential
communities of interest.

The center point of the view can be set by the user. The center point has its
keyword vector too, and the user can determine its values by adjusting the slide
bars next to the view panel. The placement of the icons will change according
to the positions of the slide bars. This function enables users to look around the
display to find potential communities.

In addition, a user can easily express his/her interest to other users by placing
a new icon representing the user in the center of the view panel. The newly placed
icon has the same keyword vector as that of the center point. Consequently, it
will appear on the display of other users whose slide bars’ positions are similar to
those of the placing user. A user can place multiple icons on different positions,
which allows him/her to participate in multiple communities.

Community Organizer integrates a communication function with this visu-
alization function. This is done by providing an interface that allows a user to
attach his/her message to an icon. Other users can read the message by clicking
the icon, and reply to it by placing a new icon on a closer position and attach-
ing a reply message to it. This integration of the visualization function and the
communication function produces a utility that is quite suitable for members of
a community of interest.

We have conducted a psychological experiment to explore the effect of Com-
munity Organizer’s spatial representation [8]. The results indicate that this two-
dimensional representation enhances community feelings of the users more than
one-dimensional representation that simply displays a list of users in decreasing
order of the closeness.

3 Shine: A Multi-Agent Platform for Network
Community Support Systems

In this section, we explain Shine, a multi-agent platform for network community
support systems that the authors are developing [23].

It is easy to think of many applications for supporting network communi-
ties. There are applications that support exploitation of the merits of forming
communities. Such applications include:

— Circulation of information via word-of-mouth human networks, such as rec-
ommendations and collaborative filtering [20];

— Arrangement of informal, suggestive or creative conversations, such as brain-
storming sessions [4, 11];

— Establishment of efficient collaborations for developing resources such as
open source software or databases; and

— Arrangement of localized and informal economic activities like auctions [10]
and flea markets.

Building a Network Community Support System 91

There are also applications that support community formation, maintenance,
and evolution. For example:

— Arrangement of effective encounters and support for becoming aware of po-
tential communities [15, 22];

— Maintenance of intimacy and community feelings [17];

— Coordination of conversations [12, 13] and collaborations; and

— Planning for the establishment of individual identities in communities.

While we can think of a variety of network community applications, certain
functions are commonly required by these applications. These functions include:

— Dynamic adaptation to acquaintance relations or group formation;

— Analysis of each person’s features, role, and situation within a community;

— Analysis of a community’s comprehensive features;

— An interface that links a user’s community feeling to a system’s logical in-
formation; and

— Flexible communication utilities.

At present, however, there is no platform that can provide these common
functions. Consequently, most network community support systems are devel-
oped as independent systems. Therefore, there is no cooperation among applica-
tion programs or sharing and reuse of program components. For this motivation,
we are developing a platform named Shine as a common base for various network
community applications.

In the following subsections, we examine the design of the platform’s archi-
tecture.

3.1 Multi-agents for Network Community Applications

A network community has the advantage of providing communication capabili-
ties to an actual community that are open and free from geographical or temporal
constraints. However, this openness brings the difficulty of gate keeping. Because
people are unable to deal with too much information or too many other humans,
they tend to lose the proper perspective for acting or hesitate to act and end up
isolated in a huge mass of strangers.

Unfortunately, most of the network community support systems available
today do not attempt to tackle this gate keeping problem. They were designed
as client-server (CS) systems, which assume that a single host machine serves
thousands or millions of clients accessing from anywhere on the Internet. In this
architecture, the server program holds a huge database, in which the personal
information of all users is stored and from which it is retrieved. The quantity
of such a system’s users group is beyond the human capability to develop com-
munity feeling. Or otherwise, in case there were a lot of sites that serves small
number of people, each user’s chance to enlarge his/her acquaintance relation is
restricted.

In real society, people meet unknown others by mediating or introducing
themselves. Consequently, they flexibly change their acquaintance relations and

92 S. Yoshida et al.

.‘ Personal
agent

Fig. 2. Personal agents

reorganize their communities. Humans do these tasks of gate keeping in a quite
decentralized and cooperative way. This decentralized gate keeping mechanism
used in real society can also work efficiently in network communities. Therefore,
in Shine, we adopt a multi-agent architecture.

In our approach, the control mechanisms and data for human relations are
distributed to each person. Namely, the Shine system provides each user an agent
that is dedicated to the person’s social interactions as shown in Fig 2. A Shine
agent exchanges personal information with other agents, and they all collabo-
ratively perform the necessary actions such as mediation or self-introduction to
dynamically change community formation.

When we introduce mediation mechanism to Shine, we must consider privacy
control mechanism. For example, when agent a tells a private issue to agent b,
and a wants b not to tell the issue to anyone else, it must be forbidden for b to
tell it to anyone. Shine will provide this kind of privacy control mechanism in
future.

3.2 Internal Structure of a Shine Agent

Figure 3 shows an overview of a Shine agent’s internal structure. In a Shine
agent, there are several modules, i.e., Person Database, Planner, Post, and the
user interfaces of application programs.

Person Database The Person Database holds data on others and the user
whom the agent is associated with. These data are appropriately circulated via
communication among agents.

To analyze a person’s features, role, or situation in a community systemati-
cally, a network community application has to adopt a kind of user model. By
following a specific user model, the application can store data on the attributes
and status of a person into a database and then use the data for analysis.

One of a number of user models can be used depending on how it regards a
human. For example, when a user model considers a human to be a knowledge
source, it can describe the person in a knowledge representation language [16].

Building a Network Community Support System 93

user
A

y
Application
Interface
Planner other
agents
on the
network
. /
Post exchanging
personal
Person Database information

Fig. 3. Internal structure of Shine agent

To roughly represent a person’s interests, keyword vectors of the vector space
model are suitable [22]. In addition, there is a method that describes communi-
cation entities as state transition systems to model each person’s situation and
conversation flow [21].

Each current network community support system uses a suitable user model.
For Shine to achieve cooperation among application programs and the sharing
of software components in application development, it has a generic architecture
that can process various user models in a unified way. Moreover, it can handle
multiple user models simultaneously. An application programmer makes his/her
own user model in a style that Shine accepts and installs it in the Shine system.
Shine also provides a library of popular user models such as the vector space
model.

Practically speaking, Person Database is an object-oriented relational database
(Fig. 4). Persons are stored in a table, which has a number of attributes concern-
ing the user models used. For example, ‘agent id,” ‘name,’ ‘birth date,” ‘interest,’
etc. are thought of. Each line of the table represents a person and the agent that
the person is associated with.

Some attributes of the table are key attributes used for identifying a person
from a value. For instance, ‘agent id’ is a key attribute, and its values are used
as the addresses for inter-agent communication.

We adopt an object-oriented database so that we can store not only simple
strings or numeric values but also structured objects into a table. For example, we
can make an ‘interest’ attribute whose data are keyword vectors, i.e., sets of pairs
of a keyword string and a numeric value. We can also make a ‘mailbox’ attribute,
whose data are collections of mails received from corresponding persons.

94 S. Yoshida et al.
Application Planner
Interface
updating self _updati ng
information information
. A of others
linkage of getting list

/ community feeling

AN
for broadcast\

Person Database /
person set
_0_p--o
- _ - =
R Z ——=—=pointers
S s ==
e
= .
: : : : a?(calnt name té';g interest mailbox
1
e Sen keyword
| —*1ahc000] 19700820 i
i N ac YosTda '(vector) | (Mailbox)
ofiers0| e || (Vlor) | (it
| 0
. Takeshi i keyword .
+——ysusan| Gt (kil) (mailbox)
| Kazuhiro keyword .
— — -»xyz0023 Kuwabara - (vector) (mailbox)

Fig. 4. Person Database

Person Database has an event generation function. When an attribute value
of a person is added, changed, or removed, an event occurs. Other modules such
as Planner observe occurrences of these events, and do appropriate actions in
response to them. This event notification mechanism enables cooperation among
multiple modules and federation of multiple applications.

In most multi-agent systems, although an agent holds and handles informa-
tion on other agents, it isn’t conscious that a set of agents, or people whom
the personal agents are associated with, comprise a community. A network com-
munity support system, however, always uses information on the community.
Therefore, a Shine agent needs a flexible framework for dealing with information
on not only each agent but also a community of agents.

Building a Network Community Support System 95

Canbe HTTP, SMTP, or ORB

e

Agent Post

Fig. 5. Channel

To handle communities, a Shine agent defines for each community a person
set, and provides operations for dealing with a set of personal information. A
person set observes each member’s data stored in the table for adjusting to
dynamic changes in the organization of the real community.

When we use a network community support system to determine whom to
communicate with, especially when we want to broadcast a message to the mem-
bers of the community, it is essential that the communications adapt to all dy-
namic changes in the community formation and be linked to the community
feelings of users. Shine can provide a function that can flexibly determine the
range of group communication because it uses person sets of Person Database
as destination lists for broadcasting.

Post The Post module exchanges messages with other agents. It abstracts
lower-level communication procedures as an internal channel submodule (Fig. 5).
Specifically, it encodes and decodes messages to adjust the lower-level communi-
cation protocol, e.g., HTTP, SMTP, or ORB. The channel submodule is hidden
from other modules or application programmers.

The format of the messages is similar to KQML [2] or other agent commu-
nication languages. Each message has a message type, a user model indication,
and contents described following the indicated user model. A user model in Shine
corresponds to an ontology in KQML.

Planner The Planner decides the action of the agent. Figure 6 shows the struc-
ture of the Planner. The agent acts in response to external events such as mes-
sages received from other agents, inputs from the user, and changes of values
stored in the Person Database.

Each application has one or more plans, and the Planner executes them
concurrently. There are also plans provided by Shine that do fundamental or
common tasks. The Planner contains a message dispatcher, which dispatches
each incoming message to appropriate plans according to message type. Plans
can cooperate via Person Database: When a plan changes an attribute value of
a person, another plan can perceive the change by catching the event occurred
according to it.

96 S. Yoshida et al.

Planner notification of
Appl. A B - ~ am .
plan ’ S e
3 ,
Appl. B P Z =3 \
@) g Appl B g ". g
/ plan T3] Post
| Shine / 4
plan)
]
request for

sending
Person Database ‘ messages

Fig. 6. Planner

Application Interface The application interface connects the user with the
Person Database and the Planner. There can exist multiple applications on one
Shine agent, and each application has its own interface module.

A network community support system needs a user interface that allows users
to relate their feelings about acquaintances or communities to the system and
to understand intuitively the meaning of the logical information stored in the
Database in accordance with a user model. Therefore, Shine not only provides
popular user models but also interface libraries for those models. Such interface
libraries of user models include visualization mechanisms and other mechanisms
that use available human-computer interaction media.

The application interface also helps interactions between the user and the
Planner by providing dialogue messages and other aids.

3.3 Comparisons with Other Multi-agent Platforms

MINDS [14] is a multi-agent system for collaborative document retrieval. In this
system, each personal agent knows documents stored in its user’s workstation,
and also has metaknowledge about who possibly owns documents about what
topic. When a user asks his/her agent for retrieving documents about a topic,
the agent intelligently submits queries to other agents using this metaknowledge.
MINDS is one of pioneers in collaborative personal agents, but it’s domain is
limited to information retrieval.

KQML [2] specifies a message format and a set of message handling protocols
that are suitable for knowledge sharing among agents. There are a number multi-
agent platforms that implement this specification. KQML can transfer various
kinds of knowledges because it provides a function to select an ontology based
on the domain of each knowledge. However, in KQML framework, agents don’t
have capabilities to dynamically reorganize their social relation, for example by
mediation. To perform such a dynamic reorganization, an agent has to be able to
exchange not only knowledge about the application domain but also information

Building a Network Community Support System 97

about the agent itself or its acquaintances. Furthermore, this reorganization must
be linked to the change of the user’s community feeling. Therefore, Shine includes
human-computer interface libraries besides knowledge exchange functions.

The ADIPS Framework [9] is a platform for flexible distributed systems.
Several network applications such as a flexible video conference system, a flexible
asynchronous messaging system, and a system named CyberOffice have been
developed on top of the ADIPS Framework. The main feature of the ADIPS
Framework is that each node of an ADIPS application system can be flexibly
and dynamically reconfigured to adapt to changes in its environment such as
QoS or the user’s preference. To achieve this adaptability, each module of an
ADIPS system’s node is agentified.

The difference between ADIPS and Shine is the policy of agentification. The
ADIPS system agentifies the modules in a node to obtain adaptability to their
environment. On the other hand, we call a node of Shine an agent because it is
personalized and communicates with other personal agents to adapt to changes
in the user’s social situation.

4 Community Organizer on Shine

This section gives a description of revising Community Organizer by porting it
to the Shine platform. This revision brings certain advantages to Community
Organizer.

— The implementation of Community Organizer can make use of the libraries
of program components included in the Shine package. What we need to
make for Shine-based Community Organizer are only a plan installed to
the Planner, a user interface, and some additional attributes for the Person
Database.

— The architecture of the system changes from the conventional client/server
architecture to a more flexible multi-agent architecture.

— It is possible to integrate Community Organizer with other network commu-
nity applications by sharing data on people with those applications.

In the Community Organizer, each icon’s feature is represented as a keyword
vector. In other words, the Community Organizer adopts the vector space model
of an information retrieval technique as the user model. Because Shine provides a
library for this model, the program of the Community Organizer can make use of
prepared methods such as the cosine measure [19]. Furthermore, the user inter-
face of the Community Organizer can choose its visualization mechanism from
Shine’s community visualization library, which includes not only the physically-
based model but also other mechanisms such as the dual-scaling method [11].

As described in Sec. 3.1, Shine adopts a flexible multi-agent architecture.
When Community Organizer is ported to Shine, each client program is agenti-
fied. Such an agent exchanges personal information with other agents, and they
all collaboratively perform mediation or self-introduction to find potential com-
munities. The architecture of the Shine-based Community Organizer is shown in
Fig. 7.

98 S. Yoshida et al.

I user Self X
user
: Planner
[T Community| |2 Post
/.LOriganiziéri.i -~ é
....... § I /'I
3 | I\ g
/1
us Post ¥ |
|
N \.\ ‘
< Person Database \\
\!
A, "
agijznt name interest mailbox \
N Sen keyword i
§ o | T [Ee000 Yoshida (vector - Post
3@\‘ ijkoze | | SO (k\e}fe"ct"g:d) (mailbox)
\A

Fig. 7. Shine-based Community Organizer

In the current client/server version of Community Organizer, all data are
stored in one database of the server. A client program sends the center point’s
keyword vector reflecting the slide bars’ positions as a query. After receiving
the query keyword vector, the server program searches its database for other
keyword vectors close to the query’s one, and then responds to the query with
the found keyword vectors with corresponding icon images. Finally, the client
program places these icons on the view panel.

In contrast, the Shine-based Community Organizer has no central database
server. The queries are broadcasted to other personal agents. When an agent
receives a query, it seeks icons whose keyword vectors are closer to the query’s
one from the icons of the user who owns the agent and then responds to the
query with the found icons. Therefore, the computation of query processing is
distributed.

5 Conclusions

In this paper, we explained both Community Organizer and Shineand then de-
scribed how we built Community Organizer on top of Shine.

Building a Network Community Support System 99

Much work remains to be done, however. We are going to study the archi-

tecture of Shine in more detail. We will also provide an implementation of Shine
as a Java class library. We plan to do this work in parallel with the development
of several network community support systems such as Community Organizer
and Gleams of People [17]. There are also various other matters to deal with,
including a privacy control mechanism.

Acknowledgments. We thank Advanced Business Works at NTT Communi-
cations for the implementation of Community Organizer.

References

[1]

[10]

[11]

[12]

Matthew Chalmers and Paul Chitson. Bead: Explorations in information visu-
alization. In Nicholas Belkin, Peter Ingwersen, and Annelise Mark Pejtersen,
editors, Proceedings of the Fifteenth Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR Forum, pages
330-337. ACM Press, 1992.

Tim Finin, Rich Fritzson, Don McKay, and Robin McEntire. KQML — a language
and protocol for knowledge and information exchange. In Fuchi and Yokoi [3].
Kazuhiro Fuchi and Toshio Yokoi, editors. Knowledge Building and Knowledge
Sharing. Ohmsha and IOS Press, 1994.

Kunihiko Fujita and Susumu Kunifuji. A realization of a reflection of personal
information on distributed brainstorming environment. In Takashi Masuda, Yoshi-
fumi Masunaga, and Michiharu Tsukamoto, editors, Proceedings of the Interna-
tional Conference on Worldwide Computing and Its Applications 97, volume 1274
of Lecture Notes in Computer Science, pages 166—181. Springer-Verlag, 1997.
Fumio Hattori, Takeshi Ohguro, Makoto Yokoo, Shigeo Matsubara, and Sen
Yoshida. Socialware: Multiagent systems for supporting network communities.
Communications of the ACM, 42(3):55-61, 1999.

John Hagel ITI and Arther Armstrong. The real value of ON-LINE communities.
Harvard Business Review, 5—6 1996.

Toru Ishida, editor. Community Computing — Collaboration over Global Infor-
mation Networks. John Wiley & Sons, 1998.

Koji Kamei, Eva Jettmar, Kunihiko Fujita, Sen Yoshida, and Kazuhiro Kuwabara.
Community organizer: supporting the formation of network communities through
spatial representation. Submitted to the 2001 Symposium on Applications and
the Internet.

Tetsuo Kinoshita and Kenji Suganuma. ADIPS framework for flexible distributed
systems. In Proceedings of the First Pacific Rim International Workshop on Multi-
Agents (PRIMA’98), volume 1599 of Lecture Notes in Artificial Intelligence, pages
18-32. Springer-Verlag, 1998.

Stefan Klein. Introduction to electronic auctions. International Journal of Elec-
tronic Markets, 7(4):3-6, 1997.

Kenji Mase, Yasuyuki Sumi, and Kazushi Nishimoto. Informal conversation en-
vironment for collaborative concept formation. In Ishida [7], chapter 6, pages
165-205.

Shigeo Matsubara, Takeshi Ohguro, and Fumio Hattori. CommunityBoard: Social
meeting system able to visualize the structure of discussions. In Proceedings of
the Second International Conference on Knowledge-based Intelligent Electronic
Systems (KES’98), pages 423-428. IEEE, 1998.

100

[13]

[14]

[15]

(18]
[19]

[20]

[21]

[22]

23]

S. Yoshida et al.

Shigeo Matsubara, Takeshi Ohguro, and Fumio Hattori. CommunityBoard 2:
Mediating between speakers and an audience in computer network discussions. In
Oren Etzioni, Jorg P. Miiller, and Jeffrey M. Bradshaw, editors, Proceedings of
the Third Annual Conference on Autonomous Agents, pages 370-371. ACM Press,
1999.

Uttam Mukhopadhyay, Larry Stephens, Michael Huhns, and Ronald Bonnell. An
intelligent system for document retrieval in distributed office environments. Jour-
nal of the American Society for Information Science, 37:123—-135, 1987.
Yoshiyasu Nishibe, Ichiro Morihara, Fumio Hattori, Toshikazu Nishimura, Hiro-
fumi Yamaki, Toru Ishida, Harumi Maeda, and Toyoaki Nishida. Mobile digital
assistants for international conferences. In Ishida [7], chapter 8, pages 245-284.
Toyoaki Nishida and Hideaki Takeda. Towards the knowledgeable community. In
Fuchi and Yokoi [3].

Takeshi Ohguro, Sen Yoshida, and Kazuhiro Kuwabara. Gleams of People:
Monitoring the presence of people with multi-agent architecture. In Nideyuki
Nakashima and Chengqi Zhang, editors, Approaches to Intelligent Agents — Pro-
ceedings of the Second Pacific Rim International Workshop on Multi-Agents, vol-
ume 1733 of Lecture Notes in Artificial Intelligence, pages 170-182. Springer-
Verlag, 1999.

Howard Rheingold. The Virtual Community: Homesteading on the Electronic
Frontier. Addison-Wesley, 1993.

G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

Upendra Shardanand and Pattie Maes. Social information filtering: Algorithms
for automating “word of mouth”. In CHI ’95 Proceedings: Conference on Hu-
man Factors in Computing Systems: Mosaic of Creativity, pages 210-217. ACM
SIGCHI, 1995.

Terry Winograd and Fernando Flores. Understanding Computers and Cognition:
A New Foundation for Design. Ablex, 1986.

Sen Yoshida, Koji Kamei, Makoto Yokoo, Takeshi Ohguro, Kaname Funakoshi,
and Fumio Hattori. Community visualizing agent. In Proceedings of the Third In-
ternational Conference and Ezhibition on The Practical Application of Intelligent
Agents and Multi-Agent Technology (PAAM 98), pages 643—644. The Practical
Application Co. Ltd., 1998.

Sen Yoshida, Takeshi Ohguro, Koji Kamei, Kaname Funakoshi, and Kazuhiro
Kuwabara. Shine: a cyber-community application platform — a proposal —. In
Short Papers Proceedings of the Second Pacific Rim International Workshop on
Multi-Agents, pages 31-40, 1999.

