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Abstract—This paper presents a method for designing semisupervised classifiers trained on labeled and unlabeled samples. We

focus on a probabilistic semisupervised classifier design for multiclass and single-labeled classification problems and propose a hybrid

approach that takes advantage of generative and discriminative approaches. In our approach, we first consider a generative model

trained by using labeled samples and introduce a bias correction model, where these models belong to the same model family but have

different parameters. Then, we construct a hybrid classifier by combining these models based on the maximum entropy principle. To

enable us to apply our hybrid approach to text classification problems, we employed naive Bayes models as the generative and bias

correction models. Our experimental results for four text data sets confirmed that the generalization ability of our hybrid classifier was

much improved by using a large number of unlabeled samples for training when there were too few labeled samples to obtain good

performance. We also confirmed that our hybrid approach significantly outperformed the generative and discriminative approaches

when the performance of the generative and discriminative approaches was comparable. Moreover, we examined the performance of

our hybrid classifier when the labeled and unlabeled data distributions were different.

Index Terms—Generative model, maximum entropy principle, bias correction, unlabeled samples, text classification.

Ç

1 INTRODUCTION

STATISTICAL classifiers are generally trained by using
observed feature vectors with class labels, called labeled

samples. If we are to obtain better classifiers with a general-
ization ability, then we require a large number of labeled
samples. However, in practice, it is often fairly expensive to
collect many labeled samples because class labels are
manually assigned by experienced analysts. In contrast,
unlabeled samples can be easily collected. Therefore, effec-
tively utilizing unlabeled samples to improve the general-
ization performance of classifiers is a major research issue in
the fields of pattern recognition and machine learning, and
semisupervised learning methods that use both labeled and
unlabeled samples for training classifiers have been devel-
oped [1], [2], [3], [4], [5], [6], [7], [8] (see [9] for a
comprehensive survey). In this paper, we focus on designing
semisupervised classifiers for multiclass and single-labeled
classification based on probabilistic approaches.

Semisupervised learning algorithms based on probabil-
istic approaches have been proposed for generative and
discriminative classifiers. Generative classifiers learn the joint
probability model pðxx; yÞ of the feature vector xx and class
label y of a data sample and make their predictions by using
Bayes rule to compute P ðyjxxÞ and then taking the most

probable label y. For semisupervised learning of the classifier,
unlabeled samples are dealt with as a missing class label
problem and are incorporated in a mixture of joint probability
models [1]. One of the authors has presented an algorithm for
incorporating unlabeled sequential data with a mixture of
hidden Markov models and confirmed experimentally that
the algorithm was useful for improving their classification
performance [4].

By contrast, discriminative classifiers model class poster-
ior probabilityP ðyjxxÞ and learn mapping from xx to ydirectly.
Since pðxxÞ is not modeled in the discriminative approach,
some assumptions are required if we are to incorporate
unlabeled samples in the model. In [3], it is assumed that if
two feature vectors are close, then the class labels of both
samples should be the same. The minimum entropy regularizer
(MER) was recently introduced as another approach to
semisupervised learning [2]. In [2], by utilizing the knowl-
edge that unlabeled samples are beneficial for improving
classification accuracy when samples are well separated
among classes, an attempt was made to minimize the entropy
of the class posterior probabilities of unlabeled samples.

Semisupervised learning algorithms are desired when
there are insufficient labeled samples to obtain good super-
vised classifiers with a generalization ability. In supervised
learning cases, it has been shown that discriminative
classifiers often achieve better performance than generative
classifiers but that generative classifiers often provide better
generalization performance than discriminative classifiers
when trained with few labeled samples [10]. Therefore, we
explore a hybrid of generative and discriminative approaches
to benefit from their respective advantages and, thus, obtain
semisupervised classifiers with good performance.

Supervised classifiers based on the hybrid generative and
discriminative approaches have recently been proposed
[11], [12]. In [11], a restricted Bayes classifier modifies a Bayes
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optimal classifier based on maximum margin classification.
It was shown that the hybrid classifier improved the
generalization performance when the training set contained
samples with missing feature values, but the missing label
problem was not considered. In [12], for feature vectors
structured by R components, the joint probability of each
component is modeled individually, and these component
models are combined with weight determined by maximiz-
ing the class posterior likelihood. That is, their hybrid
classifier is constructed by a discriminative combination of
generative models. They showed experimentally that the
hybrid classifier performed better than or similar to pure
generative and discriminative classifiers.

We propose a hybrid approach to semisupervised
classifier design. In our formulation, a generative model is
trained by using labeled samples. When the number of
labeled samples is small, the class boundary provided by
the trained generative model is often far from being the
most appropriate one. That is, the trained generative model
often has a high bias that results from the small number of
labeled samples. To mitigate the effect of the bias associated
with the trained generative model on the classification
performance, we introduce a bias correction model that
belongs to the same model family as the trained generative
model. Then, by discriminatively combining these models
based on the maximum entropy (ME) principle [13], we
construct a classifier, called a hybrid classifier. The bias
correction model is trained by using unlabeled samples.

We presented the basic idea of the hybrid approach in [14],
[15], but we did not provide any explanation of the parameter
estimation method. In this paper, we present a refined
parameter estimation method for our hybrid classifier, where
the bias correction model is trained to maximize the sum of
the discriminative function values of unlabeled samples
provided by the classifier. We expect this training to reduce
the bias of the classifier that results from there being only a
few labeled samples. The parameter of the bias correction
model is estimated with the help of the EM algorithm. Then,
we confirm experimentally the effect of bias correction by
using unlabeled samples on the performance of our hybrid
classifier.

The organization of the paper is organized as follows: In
Section 2, we review conventional probabilistic generative
and discriminative approaches to a semisupervised classi-
fier design. In Section 3, we present our formulation for
designing a semisupervised classifier based on a hybrid
generative and discriminative approach. We also present a
method for applying our hybrid approach to text classifica-
tion problems by using naive Bayes (NB) models as the
generative and bias correction models. In Section 4, using
four test collections, we show experimentally that the
generalization ability of our hybrid classifier is improved
by using unlabeled samples for training and that our hybrid
approach is particularly useful when generative and
discriminative approaches exhibit comparable levels of
performance. We also show the usefulness of the hybrid
approach in terms of processing time. In Section 5, using an
artificial data set, we show experimentally the effect of a
massive number of unlabeled samples on the performance
of our hybrid classifier. We also show the effect of using
unlabeled samples whose distribution is different from that
of labeled samples. Section 6 provides the conclusion.

2 CONVENTIONAL APPROACHES

2.1 Semisupervised Learning

In multiclass (K classes) and single-labeled classification
problems, one of the K classes y 2 f1; . . . ; k; . . . ; Kg is
assigned to a feature vector xx by a classifier. In semisu-
pervised learning settings, the classifier is trained on both
labeled sample set Dl ¼ fðxxn; ynÞgNn¼1 and unlabeled sample
set Du ¼ fxxmgMm¼1. Let D ¼ fDl;Dug represent a training
sample set. Usually, M is much greater than N . We require
a framework that will allow us to incorporate unlabeled
samples without class labels y into classifiers. First, we
briefly review the conventional probabilistic approaches.

2.2 Generative Approach

Generative classifiers learn a joint probability model
pðxx; y; ��yÞ, where � ¼ f��kgKk¼1 is a set of model parameters
over all classes. The class posteriors P ðy ¼ kjxx; �Þ for all
classes are computed using Bayes rule after parameter
estimation. The class label of xx is determined as being y that
maximizes P ðy ¼ kjxx; �Þ. The joint probability model is
designed according to classification tasks, for example, as a
multinomial distribution model for text classification or as a
Gaussian model for continuous feature vectors.

In the probabilistic framework, unlabeled samples are
dealt with as the missing class labels in mixture models [16].
That is, xxm 2 Du is drawn from the marginal generative
distribution pðxx; �Þ ¼

PK
k¼1 pðxx; k; ��kÞ. Model parameter � is

computed by maximizing the posterior pð�jDÞ (maximum
a posteriori (MAP) estimation). According to Bayes rule
pð�jDÞ / pðDj�Þpð�Þ, the objective function of MAP estima-
tion is given by

J1ð�Þ ¼
XN
n¼1

log pðxxn; yn; ��ynÞ

þ
XM
m¼1

log
XK
k¼1

pðxxm; k; ��kÞ þ log pð�Þ:
ð1Þ

Here, pð�Þ is a prior probability distribution of �. The value
of � that maximizes J1ð�Þ is obtained by using the
Expectation-Maximization (EM) algorithm [16].

The estimation of � is affected by the number of unlabeled
samples used with the labeled samples. In other words, when
N �M, model parameter � is estimated as almost unsu-
pervised clustering because the second term on the right-
hand side of (1) becomes much more dominant than the first
term. This indicates that training the model by using
unlabeled samples might not be useful in terms of classifica-
tion accuracy if the mixture model assumptions are not true
for actual classification tasks. As previously reported [17],
using unlabeled samples can degrade the classification
performance when there is a large difference between actual
and assumed models. To mitigate the problem, a weighting
parameter � was introduced (EM-�), which reduces the
contribution of the unlabeled samples to the parameter
estimation [1]. The weighting parameter � 2 ½0; 1� is multi-
plied in the second term on the right-hand side of (1). The
parameter value is determined by a cross validation so that as
far as possible, the leave-one-out labeled samples are
correctly classified.
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2.3 Discriminative Approach

Discriminative classifiers directly model class posterior
probabilities P ðyjxxÞ for all classes. In multinomial logistic
regression (MLR) [18], the class posterior probabilities are
modeled as

P ðy ¼ kjxx;WÞ ¼ expðwwk � xxÞPK
k0¼1 expðwwk0 � xxÞ

; ð2Þ

where W ¼ fwwkgKk¼1 is a set of unknown model parameters.
wwk � xx represent the inner product of wwk and xx.

MER was introduced as one way of incorporating
unlabeled samples in discriminative classifiers [2]. This
method is based on the empirical knowledge that classes
should be well separated to take advantage of the unlabeled
samples because the asymptotic information content of
unlabeled samples decreases as classes overlap. Conditional
entropy is used as a measure of class overlap. By minimizing
the conditional entropy, the classifier is trained to separate
unlabeled samples as well as possible.

Applying MER to MLR, we estimate W to maximize the
following conditional log likelihood and regularizer

J2ðWÞ ¼
XN
n¼1

logP ðynjxxn;W Þ

þ�
XM
m¼1

XK
k¼1

P ðkjxxm;WÞ logP ðkjxxm;WÞ

þ log pðWÞ:

ð3Þ

Here, � is a weighting parameter and pðWÞ is a prior
probability distribution of W .

3 HYBRID APPROACH

As mentioned in Section 1, we propose a hybrid classifier
based on the discriminative combination of generative and
bias correction models. In this section, we present our
formulation of the hybrid classifier and our parameter
estimation method.

3.1 Generative Model and Bias Correction Model

We first design a class conditional generative model pðxxjk; ��kÞ
for data samples xx that belong to the kth class, where � ¼
f��kgKk¼1 denotes a set of model parameters over all classes. In
our formulation, the generative model is trained by using a set
of labeled samples Dl. � is computed using the MAP
estimation: �̂ ¼ arg max�flog pðDlj�Þ þ log pð�Þg. Assum-
ing that � is independent of class probability P ðy ¼ kÞ, we
can derive the objective function for � estimation as

Jð�Þ ¼
XN
n¼1

log pðxxnjyn; ��ynÞ þ log pð�Þ: ð4Þ

Here, pð�Þ is a prior probability distribution of �.
In semisupervised learning settings, the number of

labeled samples is often small. Then, the classifier obtained
by using the trained generative model often provides a class
boundary that is far from being the most appropriate. That
is, the trained generative model often has a high bias. To
obtain a classifier with a smaller bias, we newly introduce
another class conditional generative model, called the bias
correction model. The bias correction model belongs to the

same model family as the generative model, but the
parameter set � ¼ f  kgKk¼1 of the bias correction model is
different from �. We construct our hybrid classifier by
combining the generative and bias correction models to
mitigate the effect of the bias associated with the trained
generative model.

3.2 Discriminative Combination

We define our hybrid classifier by using the class posterior
probability distribution derived from a discriminative
combination of the generative and bias correction models.
The combination is provided on the basis of the ME
principle [13].

The ME principle prefers the most uniform probability
distributions that satisfy any given constraints. LetRðkjxxÞ be
a target distribution that we wish to specify using the ME
principle. A constraint is that the expectation of log likelihood
with respect to the target distribution RðkjxxÞ is equal to the
expectation of log likelihood with respect to the empirical
distribution p̂ðxx; kÞ ¼

PN
n¼1 IxxnðxxÞIynðkÞ=N of labeled sam-

ples as X
xx;k

p̂ðxx; kÞ log pðxxjk; �̂�kÞ

¼
X
xx;k

p̂ðxxÞRðkjxxÞ log pðxxjk; �̂�kÞ;
ð5Þ

where p̂ðxxÞ ¼
PN

n¼1 IxxnðxxÞ=N is the empirical distribution of
xx. Here, IxxnðxxÞ is an indicator function, where IxxnðxxÞ ¼ 1 if
xx ¼ xxn; otherwise, IxxnðxxÞ ¼ 0. The equation of the constraint
for log pðxxjk;  kÞ can be represented in the same form as (5).
We also restrictRðkjxxÞ so that it has the same class probability,
as seen in the labeled samples, such thatX

xx

p̂ðxx; kÞ ¼
X
xx

p̂ðxxÞRðkjxxÞ; 8k: ð6Þ

By maximizing the conditional entropy HðRÞ ¼ �
P

xx;k

p̂ðxxÞRðkjxxÞ logRðkjxxÞ under these constraints, we can obtain
the target distribution:

Rðkjxx; �̂;�;�Þ

¼ pðxxjk; �̂�kÞ�1pðxxjk;  kÞ�2e�kPK
k0¼1 pðxxjk0; �̂�k0 Þ

�1pðxxjk0;  k0 Þ�2e�k0
;

ð7Þ

where � ¼ ð�1; �2; f�kgKk¼1Þ is a set of Lagrange multipliers. �1

and �2 provide combination weights for the generative and
bias correction models, and �k provides a bias for the
kth class.

The distribution Rðkjxx; �̂;�;�Þ gives us the formulation
of a discriminative classifier that consists of the generative
and bias correction models. In a special case, Rðkjxx; �̂;�;�Þ
is reduced to the class posterior probability distribution
derived from the generative model pðxxjk; �̂�kÞ by using Bayes
rule. Actually, if �1 ¼ 1, �2 ¼ 0, and P ðkÞ ¼ e�k ; 8k, then
Rðkjxx; �̂;�;�Þ is consistent with P ðkjxx; �Þ / pðxxjk; �̂�kÞP ðkÞ.
We employ Rðkjxx; �̂;�;�Þ as the class posterior probability
distribution of our hybrid classifier.

According to the ME principle, the solution of � in (7) is
the same as the � that maximizes the log likelihood for
Rðkjxx; �̂;�;�Þ of labeled samples ðxxn; ynÞ 2 Dl [13], [19].
However, Dl is also used to estimate �. Using the same
labeled samples for both � and � may lead to the bias
estimation of �. Thus, a leave-one-out cross validation of the
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labeled samples is used for the estimation of �, as applied in
[12]. Let �̂ð�nÞ be the generative model parameter estimated
by using all the labeled samples except ðxxn; ynÞ. The
objective function of � then becomes

F ð�j�Þ ¼
XN
n¼1

logR ynjxxn; �̂ð�nÞ;�;�
� �

þ log pð�Þ: ð8Þ

Here, pð�Þ is a prior probability distribution of �. We used
the Gaussian prior [20] as

pð�Þ /
Y2

j¼1

exp �ð�j � ajÞ
2

2�2
j

( )YK
k¼1

exp � �2
k

2�2
k

� �
; ð9Þ

where aj, �j, and �k are hyperparameters in the Gaussian
prior. We can compute an estimate of � to maximize F ð�j�Þ
under a fixed � by using the limited memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [21], which is
a quasi-Newton method. In this computation, global con-
vergence is guaranteed, since F ð�j�Þ is a concave function of
�. In practice, we compute � to maximize F ð�j�Þ under the
constraint of �2 � 0 because �2 < 0 indicates the negative use
of information supplied by the bias correction model.

3.3 Learning of Bias Correction Model Parameter

In our formulation, the parameter � of the bias correction
model is trained with unlabeled samples to reduce the bias
that results from a small number of labeled samples.
According to Rðkjxx; �̂;�;�Þ, as shown in (7), the class
label y of a feature vector xx is determined as the k that
maximizes the discriminative function

gkðxx;  kÞ ¼ pðxxjk; �̂�kÞ�1pðxxjk;  kÞ�2e�k : ð10Þ

Here, when the gkðxx;  kÞ values for all classes are small, the
classification result for xx would not be reliable because
gkðxx;  kÞ is almost the same for all classes. Thus, we expect our
classifier to provide a large gkðxx;  kÞ difference between
classes for unseen samples by estimating � that maximizes
the sum of the discriminative functions of unlabeled samples

Gð�j�Þ ¼
XM
m¼1

log
XK
k¼1

gkðxxm;  kÞ þ log pð�Þ; ð11Þ

where pð�Þ is a prior probability distribution of �.
If � is known, then we can estimate � that provides the

local maximum of Gð�j�Þ around the initialized value of �
by using an iterative computation such as the EM
algorithm. Let �ðtÞ be the estimated � in the ðtÞth step.
Then, using �ðtÞ, we estimate � in the ðtþ 1Þth step �ðtþ1Þ

to maximize the Q function

Q �ðtþ1Þ;�ðtÞj�
� �

¼�2

XM
m¼1

XK
k¼1

R kjxxm; �̂;�ðtÞ;�
� �

log p xxmjk;  
ðtþ1Þ
k

� �

þ log p �ðtþ1Þ
� �

:

ð12Þ

We can obtain the estimate of � by iteratively performing
this update while Gð�j�Þ is hill climbing (see Appendix A
for the derivation of (12)).

However, � is also an unknown parameter that should be
estimated using (8), with � and � fixed. That is, the

estimations of � and � are mutually dependent. As a solution
to our parameter estimation, we search for the � and � that
maximize F ð�j�Þ and Gð�j�Þ simultaneously. For this
search, we compute � and � by maximizing the objective
functions shown in (12) and (8) iteratively and alternately.
After estimating � by using (4), we first provide an initialized
value �ð0Þ and estimate � by using (8) with �ð0Þ. Next, we
estimate �ð1Þ by using (12) with the estimate of �. Then, we
estimate � with �ð1Þ again. We update � and � iteratively
until a certain convergence criterion, dðtÞ < �, is met,

dðtÞ ¼
XK
k¼1

jj    ðtþ1Þ
k �     ðtÞk jj
jj    ðtÞk jj

þ jj�
ðtþ1Þ � �ðtÞjj
jj�ðtÞjj : ð13Þ

Here, k  ðtÞk k represents the level-2 (L2)-norm of   
ðtÞ
k . We

summarize the algorithm for estimating these model
parameters in Fig. 1.

Our learning algorithm shown in Fig. 1 estimates � and �
iteratively and alternately to maximize two objective func-
tions F ð�j�Þ and Gð�j�Þ simultaneously. In each step of the
iterative computation, � and � are updated alternately to
provide large objective function values. The value of �
providing a global maximum of F ð�j�Þ is computed easily
under an arbitrary fixed value in the � domain, since F ð�j�Þ
is a concave function of �. However, ifGð�j�Þ is not a concave
function of �, then there is no guarantee that such an alternate
gradient method as our learning algorithm can lead us to a
local optimal point in � and � from an initialized parameter
value. When the iterative computation performed by our
learning algorithm does not reach a local optimal point, the
computation may cause the parameter estimates to oscillate,
and thus the convergence criterion for our parameter
estimation would not be satisfied. To deal with this conver-
gence problem, we stopped the iterative computation when t
reached its upper limit in our experiments described in
Section 4. We observed such oscillation when training our
hybrid classifier on some experimental settings but con-
firmed that our hybrid performed better than other semi-
supervised classifiers.

3.4 Application of Hybrid Approach to Text
Classification

For text classification problems, we employed NB models as
the generative model pðxxjk; ��kÞ and bias correction model
pðxxjk;  kÞ by using the independent word-based represen-
tation known as the Bag-of-Words (BOW) representation.
Let xx ¼ ðx1; . . . ; xi; . . . ; xV Þ represent the feature vector of a
document, where xi denotes the frequency of the ith word
in the document, and V denotes the number of vocabulary
words included in a text data set. In an NB model, the
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probability distribution of document xx in the kth class is
regarded as a multinomial distribution

pðxxjk; ��kÞ /
YV
i¼1

ð�kiÞxi : ð14Þ

Here, �ki > 0, and
PV

i¼1 �ki ¼ 1. �ki is the probability that the
ith word appears in a document belonging to the kth class.
pðxxjk;  kÞ is also given the same distribution form as
pðxxjk; ��kÞ. When applying NB models to our hybrid
classifier, we used feature vectors normalized with vector
size jxxj ¼

PV
i¼1 xi.

For the MAP estimation of ��k, as the prior pð��kÞ in (4), we
use a Dirichlet prior pð��kÞ /

QV
i¼1ð�kiÞ

	k�1, where 	kð> 1Þ
represents a hyperparameter. A Dirichlet prior is also used
for pð�Þ in (11). Let fxxnkg

Nk

nk¼1 represent the normalized
feature vectors of labeled samples that belong to the kth class.
Then, the estimate of �ki is computed as

�̂ki ¼
PNk

nk¼1 xnki þ 	k � 1

Nk þ V ð	k � 1Þ : ð15Þ

The estimate of  ki in the ðtþ 1Þth step is computed as

 
ðtþ1Þ
ki ¼ �2

PM
m¼1 Rðkjxxm; �̂;�ðtÞ;�ðtÞÞxmi þ 
k � 1

�2

PM
m¼1 Rðkjxxm; �̂;�ðtÞ;�ðtÞÞ þ V ð
k � 1Þ

; ð16Þ

where 
k is a hyperparameter of Dirichlet prior pð�Þ.
To estimate ��k, we tune 	k to maximize the sum of the log

likelihood computed with a leave-one-out cross validation
of the labeled samples [22]

Lð	kÞ ¼
XNk

nk¼1

logP xxnk jk; �̂�
ð�nkÞ
k

� �

¼
XNk

nk¼1

XV
i¼1

xnki log �̂
ð�nkÞ
ki

ð17Þ

because we confirmed that this tuning was practically
useful for classification. Here, �̂�

ð�nkÞ
k ð�̂ð�nkÞki Þ is the estimate

of ��k ð�kiÞ computed by training samples except xxnk . This
tuning is executed with the help of the EM algorithm [16]
(see Appendix B for details).

4 EXPERIMENTAL EVALUATION USING REAL TEXT

DATA

4.1 Test Collections

To evaluate our proposed hybrid classifier empirically, we
used four test collections that have often been employed as
benchmark tests for classifiers in text classification tasks. The
first collection is the Reuters-21578 data set (Reuters), which
consists of 135 topic categories from the Reuters newswire
[23]. The 10 most frequently occurring categories have often
been used for benchmark tests, and thus, we constructed a
subset by selecting articles belonging to one of the 10 cate-
gories. For single-labeled classification tasks, we removed
multilabeled articles. Since two of the 10 categories contained
few articles, we used eight categories—acq, crude, earn, grain,
interest, money-fx, ship, and trade—that contained many single-
labeled articles. Reuters divides the articles into two groups
by point in time, and there were 6,182 earlier articles and
2,430 later articles in the subset. In our experiments, the later

articles were used for test samples, and the earlier articles
were selected as labeled or unlabeled samples. We removed
vocabulary words included either in the stoplist [24] or in only
one article. We used 11,822 vocabulary words to represent
feature vectors of articles in the data set.

The second collection is the WebKB data set (WebKB),
which contains Web pages from universities. This data set
consists of seven categories, and each page belongs to one of
the categories. Following the setup in [19], we used only four
categories: course, faculty, project, and student. There were
4,199 Web pages in these categories. We removed tags and
links from the pages, as well as vocabulary words in the same
way as for Reuters. We used 18,525 vocabulary words in the
data set.

The third collection is the 20 newsgroups data set
(20news), which consists of 20 different UseNet discussion
groups. Following the setup in [19], we used only five
groups: comp:�. There were 4,881 articles in the groups. We
removed vocabulary words in the same way as for Reuters.
We used 19,383 vocabulary words in the data set.

The fourth collection is the Cora data set (Cora),1 which
contains more than 30,000 summaries of technical papers, and
each paper belongs to one of the 70 groups. For our
evaluation, we used 4,240 papers included in seven groups:
/Artificial_Intelligence/Machine_Learning/*. Each paper con-
tains an abstract and a citation list. We removed vocabulary
words in the same way as for Reuters and removed works
cited by only one paper. We used 9,190 vocabulary words and
13,282 cited works in the data set.

To apply our hybrid approach to the Cora data samples
that consist of text and citation feature vectors xxt and xxc we
assumed the text and citations to be independent of each
other. Under this assumption, we designed the generative
model of xx ¼ ðxxt; xxcÞ in the kth class such as pðxxjk; ��kÞ ¼
pðxxtjk; ��tkÞpðxxcjk; ��ckÞ. Here, ��tk and ��ck represent the text and
citation model parameters, respectively. We employed NB
models individually aspðxxtjk; ��tkÞ and pðxxcjk; ��ckÞ.

4.2 Effect of Using Unlabeled Samples for Training

We examined the effect of using unlabeled samples for
training our hybrid classifier on its generalization ability. As
the evaluation measure for examining the performance of
trained classifiers, we employed classification accuracy,
which refers to how many test samples were correctly
classified. The classification accuracy AC is evaluated as
AC ¼ T=S, where T is the number of correctly classified test
samples, and S is the total number of test samples.

In multiclass and single-labeled classification problems,
the classification accuracy is equivalent to the microaveraged
F-measure [25], which has been used to evaluate classifiers in
binary or multilabeled classification problems (cf. [26]). The
microaveraged F-measure FM is evaluated as FM ¼
2=ð1=PRþ 1=REÞ, where PR and RE represent the micro-
averaged precision and recall such asPR ¼

PK
k¼1 Tk=

PK
k¼1 pk

andRE ¼
PK

k¼1 Tk=
PK

k¼1 rk. Here, Tk represents the number
of test samples whose true class labels are k and that were
predicted correctly by the classifier. pk represents the number
of test samples whose class labels are predicted as k by the
classifier. rk represents the number of test samples whose true
class labels are k. Since

PK
k¼1 pk¼

PK
k¼1 rk¼S and

PK
k¼1 Tk¼T
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in multiclass and single-labeled classification problems, FM
is reduced to FM ¼ T=S.

Fig. 2 shows the average classification accuracies of
10 experiments undertaken with our hybrid classifier trained
by usingM unlabeled samples withN fixed labeled samples.
In each experiment, the classification accuracies were exam-
ined using test samples that were different from the labeled
and unlabeled samples. The labeled, unlabeled, and test
samples were randomly selected from each data set. With
Reuters, 2,430 later articles were used as test samples. With
WebKB, 20news, and Cora, 1,000 samples were selected as
test samples. After selecting the test samples, we selected
labeled and unlabeled samples from the remaining samples
in each data set.

As shown in Fig. 2, the classification accuracies for a large
number of unlabeled samples tend to be higher than those for
a small number of unlabeled samples with a fixed number of
labeled samples, except N ¼ 512 on WebKB. Using a large
number of unlabeled samples for training our hybrid
classifier greatly improved the classification performance
when the number of labeled samples was small. We
confirmed that unlabeled samples were beneficial for training
with our hybrid approach, especially when the number of
labeled samples was insufficiently large to obtain good
classification performance.

4.3 Comparison with Generative and Discriminative
Approaches

4.3.1 Experimental Settings

We compared our hybrid classifier with conventional
semisupervised generative and discriminative classifiers:
an NB classifier with EM-� (NB/EM-�) [1] and an MLR
classifier with an MER (MLR/MER) [2]. We also compared
the hybrid classifier with two supervised classifiers: NB and
MLR classifiers [19]. NB and MLR were trained only on
labeled samples.

In our experiments, for NB/EM-�, the value of weighting
parameter � was set by maximizing the leave-one-out cross-
validation classification accuracy of the labeled samples,
following the method described in [1]. Note that in our
experiments, we selected the value from 14 candidate values

of {0.01, 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9,
1.0} to save computation time. However, these candidate
values were carefully selected via preliminary experiments.
We used a Dirichlet distribution for pð�Þ, and its hyperpara-
meter was set in a similar manner to �.

For MLR/MER, the value of weighting parameter � in (3)
was selected from 16 candidate values of ff0:1� 10�n; 0:2�
10�n; 0:5� 10�ng4

n¼0; 1g that were carefully selected via
preliminary experiments. For a fair comparison of the
methods, the value of � in MLR/MER should also be
determined using training samples, for example, using a
cross validation of labeled samples [2]. We determined the
� value that gave the best classification performance for test
samples to examine the potential ability of MLR/MER because
the computation cost of tuning�was very high. For both MLR
and MLR/MER, we fixed values for the hyperparameters in
the Gaussian prior that gave a high average classification
accuracy for the test samples to observe the potential ability of
the method.

To compare these classifiers, we employed the average
classification accuracies of 10 experiments. In each experi-
ment, 2,430 later articles from Reuters were used as the test
samples, and 1,000 test samples were selected randomly
from WebKB, 20news, and Cora. Four thousand five
hundred, 2,500, 2,500, and 2,000 unlabeled samples were
selected randomly from Reuters, WebKB, 20news, and Cora,
respectively. Various numbers of labeled samples were
selected randomly from the other samples for each data set.
With the random selection, we obtained 10 different sample
sets per sample number. For each classifier, we calculated
the average of 10 classification accuracies, which we
examined by using the different sample sets.

4.3.2 Classification Performance

Table 1 shows the average classification accuracies of
10 experiments with the five classifiers in Reuters, WebKB,
20news, and Cora. Each number in parentheses in the table
denotes the standard deviation of the 10 experiments.N and
M represent the number of labeled and unlabeled samples.
Asterisks show that the difference between the average
classification accuracies of our hybrid classifier and the
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Fig. 2. Classification accuracies (in percent) with our proposed hybrid classifier trained on M unlabeled samples with N fixed labeled samples.

(a) Reuters. (b) WebKB. (c) 20news. (d) Cora.



classifiers used for comparison is significant ðp < 0:05Þ in the
Wilcoxon test,which has beenusedforstatistical comparisons
of the abilities of classifiers (cf. [27]). We also examined the
classification accuracies of the NB and MLR classifiers trained
by using all the N þM samples as labeled samples and
confirmed the potentiality of unlabeled samples for improv-
ing classification performance. These results are shown in the
column headed “Full labeled” in Table 1.

In the supervised case, as reported in [10], generative
(discriminative) classifiers provided better classification
performance than the discriminative (generative) classifiers
when the number of labeled samples was small (large). In
our experiments using NB and MLR in supervised settings
on Reuters and WebKB, we obtained similar results as those
in [10].

However, in 20news and Cora, MLR outperformed NB,
even when the number of training samples was small,

which seems to be inconsistent with [10]. To investigate the
result further, we analyze the fit of NB models to real data
samples for each data set, since it was reported that the
difference between the assumed generative models and the
distribution of real data affected classification performance
[17]. We examined the normalized test perplexity (NTP) of the
trained NB model for each test collection. NTP is a measure
of how well the estimated model fits the test samples
fðxxs; ysÞgSs¼1 not used in the training and is defined by

NTP ¼ 1

V
exp �

PK
k¼1

PS
s¼1 IysðkÞ

PV
i¼1 xsi log �̂kiPS

s¼1

PV
i¼1 xsi

 !
; ð18Þ

where �̂ki is a parameter estimated using the training data,
and IysðkÞ is a class indicator (IysðkÞ ¼ 1 if k ¼ ys; otherwise,
IysðkÞ ¼ 0). A smaller NTP value means a better fit with the
test samples. NTP ¼ 1 for the random model, where
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TABLE 1
Classification Accuracies (in Percent) with Five Classifiers Trained on N Labeled Samples with M Fixed Unlabeled Samples

(a) Reuters. (b) WebKB. (c) 20news. (d) Cora.



�̂ki ¼ 1=V ; 8k; 8i. This means that the trained models, where
NTP < 1 ðNTP > 1Þ, fit the test samples better (worse) than
the random model. ForNTP in Cora, we examined the NTPs
of the NB models for text and citations and averaged their
perplexities with weights based on the dimensions of the
feature vectors for text and citations. As shown in Fig. 3, the
NTP values in 20news and Cora were significantly larger
than in Reuters and WebKB when the number of training
samples was less than 1,000. This indicates that the NB
generative model did not fit the test samples well when the
training data size was small on 20news and Cora. In other
words, if a smallerNTP had been obtained for a smallN , NB
would have outperformed MLR. Thus, in a supervised
setting, generative classifiers can outperform discriminative
classifiers when the test perplexities of the estimated
generative models are good enough in smallN settings. This
finding should be included in conventional discussions on
generative and discriminative classifiers in supervised
settings.

We examined NB/EM-�, MLR/MER, and our hybrid
approach in semisupervised cases. First, the classification
performance of NB/EM-� tended to be better (worse) than
that of MLR/MER for all data sets whenN was small (large).
That is, we confirmed that the characteristics of the generative
and discriminative approaches in supervised learning also
hold for semisupervised learning, which seems reasonable.

Second, we found that our hybrid approach outper-
formed NB/EM-� when MLR outperformed NB in super-
vised cases. This result indicates that our hybrid approach
takes advantage of the discriminative approach. However,
the classification performance of our hybrid approach was
slightly worse than that of NB/EM-� when there were a
small number of labeled samples for Reuters and WebKB.
In these cases, the labeled sample sets used for training
contained less than 1/10 of the vocabulary words of the
data sets. Our hybrid classifier would be more overfitted to
labeled samples existing in a small part of the feature space
by the discriminative training than the NB/EM-� classifier.

Finally, our hybrid approach outperformed MLR/MER,
except when there were many labeled samples for Reuters
and WebKB. This result is because the MLR/MER classifier
tends to be overfitted to a small number of labeled samples. In
contrast, our hybrid approach inherently has the character-
istics of the generative model, whereby such an overfitting
problem is mitigated. When many labeled samples are
available such that the overfitting problem can be overcome,

it would be natural for the discriminative approach to be
better than our hybrid approach.

Our comparison of the three semisupervised approaches
confirmed that our hybrid approach outperformed NB/
EM-� and MLR/MER when NB/EM-� and MLR/MER
performed similarly. Our hybrid approach was useful for
obtaining better classifiers, especially when the classifica-
tion performance of the generative and discriminative
approaches was comparable.

4.3.3 Processing Time

We examined the processing time needed for training the
three semisupervised classifiers, under the condition that
the hyperparameters of all the classifiers were determined.
Fig. 4 shows the average processing time for 10 experiments
with Reuters. For a fair comparison of the classifiers, we
estimated the processing time needed to determine � for
MLR/MER by using a leave-one-out cross validation of the
labeled samples and plotted it in Fig. 4.

To train our hybrid classifier, we computed � and �
alternately and iteratively until dðtÞ < 10�5 or t ¼ 200. The
size of � is the product of the number of classes K and the
dimension of the feature vectors, V . The size of � is larger
than that of �, which is 2þK. In our experiments, an average
of 170 (66) iterative computations for estimating � and �
were required when N ¼ 16 ðN ¼ 1; 024Þ. The average
number of iterative computations required for a small
number of labeled samples was larger than that for a large
number of labeled samples. As shown in Fig. 4, our hybrid
classifier required a long training time when the number of
labeled samples was small. This processing time would be
the result of the iterative computations required for the
parameter estimation.

In NB/EM-�, � is estimated with the EM algorithm,
under a fixed value of weight parameter �. � is the same size
as � in our hybrid approach. In our experiments, � was
computed iteratively until fJ1ð�ðtþ1ÞÞ � J1ð�ðtÞÞg=J1ð�ðtÞÞ <
10�4 or t ¼ 200. An average of about 10 (4) iterative
computations were required for estimating � when
N ¼ 16 ðN ¼ 1; 024Þ. The average number of iterative
computations required for a large number of labeled
samples was smaller than that for a small number of labeled
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Fig. 3. NTPs of NB models trained on N labeled samples for four test
collections.

Fig. 4. Processing time for parameter estimation using N labeled

samples and 4,500 fixed unlabeled samples on Reuters.



samples. These iterative computation results suggest that
the computation cost of NB/EM-� with a fixed � is smaller
than that of our hybrid approach. In our preliminary
examination, we confirmed experimentally that estimating
� for NB/EM-� under a fixed � required a shorter
processing time than estimating � and � for our hybrid
classifier. However, � is also a parameter that should be
determined using training samples. To determine �, we
need to compute the estimates of � per � candidate by using
resampling techniques. When we employ a leave-one-out
cross validation of labeled samples as the resampling
technique, we need C �N estimations of �, where C
represents the number of candidates for �. Therefore, as
shown in Fig. 4, the NB/EM-� processing time tended to be
proportional to the number of labeled samples N . This is
why the repeated estimation of � to determine � would lead
to a longer processing time with NB/EM-� than with our
hybrid approach.

W for MLR/MEL is the same size as � for NB/EM-�.W is

also computed with a fixed value for weight parameter �. To

determine �, we need to estimate W by using a cross

validation of labeled samples with each � candidate as with

� for NB/EM-�. In our experiments, MLR/MER required a

longer processing time than NB/EM-�. This suggests that

learning with the MER may generally require a large number

of training iterations due to its relatively high nonlinearity.

4.4 Effect of Bias Correction Model

In Section 4.3.2, we confirmed that our hybrid classifier

outperformed the NB classifier with EM-�. However, the

number of generative model parameters used for our hybrid

classifier was larger than that of the NB classifier, and this

might have affected their classification performance. To

confirm the effect of introducing a bias correction model,

we also examined the classification performance of Mixture

of Experts (MoE) classifiers [28]. In the MoE formulation,

we design joint probability models fpðxx; k; �ÞgKk¼1 by using

a mixture of multiple conditional probability models

fpðxxjj; ��jÞgJj¼1 belonging to the same model family such as

pðxx; k; �Þ ¼
XJ
j¼1

P ðkjjÞpðxxjj; ��jÞP ðjÞ; 8k: ð19Þ

In our experiments, we examined MoE classifiers where

J ¼ 2K, since our hybrid classifier was designed by

the combination of the 2K probability models that

were generative and bias correction models fpðxxjk; ��kÞ;
pðxxjk;  kÞgKk¼1. We compared our hybrid approach with

MoE by using the same number of generative model

parameters.
For MoE classifiers, we employed two models described in

[28]: The partitioned mixture (PM) and the generalized

mixture (GM) models. We call MoE classifiers with GM

(PM) MoE-GM (MoE-PM). The GM model is represented as

shown in (19). In the PM model, P ðkjjÞ in (19) are fixed for

each j such thatP ðkjjÞ ¼ 1 for one class andP ðkjjÞ ¼ 0 for the

other classes. We designed an MoE-PM classifier, where each

class had two probability models pðxxjj; ��jÞ. NB models were

employed as the probability models in MoE-PM and MoE-

PM. The joint probability models in MoE-GM and MoE-PM

were trained by using EM-�, because EM-� provided better

classification performance than the EM algorithm in our

preliminary experiments.
Table 2 shows the average classification accuracies for

10 experiments undertaken with our hybrid approach, MoE-
PM, and MoE-GM. We ran the experiments using the
10 different sample sets described in Section 4.3.1. Each
number in parentheses in the table denotes the standard
deviation of the 10 experiments. N and M represent the
number of labeled and unlabeled samples, respectively.
Asterisks show that the difference between the average of our
hybrid classifier and the classifiers used for comparison is
significant ðp < 0:05Þ in the Wilcoxon test.

As shown in Table 2, our hybrid approach outperformed
MoE-PM and MoE-GM. This result indicates that the good
classification performance of our hybrid approach was not
caused simply by adding different generative model
parameters. In our hybrid approach, we introduce bias
correction models to incorporate global data distribution by
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TABLE 2
Classification Accuracies (in Percent) with Hybrid

and MoE Classifiers Trained on N Labeled Samples
with M Fixed Unlabeled Samples

(a) Reuters ðM ¼ 4; 500Þ. (b) WebKB ðM ¼ 2; 500Þ. (c) 20news
ðM ¼ 2; 500Þ. (d) Cora ðM ¼ 2; 000Þ.



using unlabeled samples. Then, the bias correction models
are combined discriminatively with generative models. We
think that this formulation for the bias correction models
was effective in improving classification performance.

5 EXPERIMENTS USING DIFFERENT UNLABELED

SAMPLE SETTINGS

We compared the performance of our hybrid classifier with
those of generative and discriminative classifiers for four
test collections and confirmed the usefulness of our hybrid
approach experimentally. In this section, we show the effect
of using a massive number of unlabeled samples on the
performance of our hybrid classifier. We also show the
performance of the hybrid classifier obtained by using noisy
and biased unlabeled sample sets, where the distribution of
unlabeled samples is different from that of labeled samples.
These settings would be used in actual semisupervised
classification tasks. For experiments using these settings, we
employed a sparse artificial data set such as text.

5.1 Artificial Data Set

The artificial data set that we used consisted of 20 classes.
Each data sample was generated by using one of the 20 NB
models fpðxxjk; ��kÞg20

k¼1. The NB models were obtained by
using all the articles included in the 20news data set. The
vocabulary size of the NB models was 52,647. Words included
in a data sample were selected independently from each other
and with the probabilities provided by one of the NB models.
An average of about 19 words was included in each data
sample.

We selected five classes based on comp:� to consider a
five-class classification problem. Labeled and test samples
were selected from data samples belonging to the five
classes. Data samples belonging to the other classes were
used to obtain a noisy unlabeled sample set whose
distribution was different from that of labeled samples.

5.2 Effect of Massive Number of Unlabeled Samples

We examined the performance of our hybrid classifier trained
by using various numbers of labeled and unlabeled samples
to confirm the effect of using a massive number of unlabeled

samples. For this examination, we used unlabeled samples

collected from the same distribution as the labeled samples.
In each experiment, labeled, unlabeled, and 10,000 test

samples were selected randomly from samples whose true

class labels were one of the five classes.
Fig. 5 shows the average classification accuracies of

10 experiments with our hybrid classifier trained by using

M unlabeled samples with N fixed labeled samples. As

shown in this figure, the classification accuracies obtained by
using a massive number of unlabeled samples tended to be

higher than those obtained by using a small number of
unlabeled samples with a fixed number of labeled samples.

When N ¼ 50; 100; and 1; 000, the classifier trained by using
more than 104 unlabeled samples provided a classification

accuracy of more than 98 percent.
We also show the classification accuracies at a constant

ratio N=M as a function of M in Fig. 6. The classification
performance of our hybrid classifier with a small N=M was

much worse than that with a large N=M when there were a

small number of unlabeled samples. By contrast, a high
classification accuracy was obtained for a small N=M when

there were a massive number of unlabeled samples. These
results indicate the usefulness of a massive number of

unlabeled samples for improving the classification perfor-

mance when the unlabeled samples came from the same
distribution as the labeled samples.

5.3 Effect of Noisy and Biased Unlabeled Sample
Sets

We evaluated the performance of our hybrid classifier trained
by using noisy and biased unlabeled sample sets, where the

distribution of the unlabeled samples was different from that

of the labeled samples. For the evaluation, we compared the
performance of our hybrid classifier with four semisuper-

vised classifiers based on NB/EM-�, MLR/MER, MoE-PM,
and MoE-GM used for the experiments described in

Sections 4.3 and 4.4. The performance of these classifiers
was examined for five-class classification problems in the

artificial and real 20news data sets.
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Fig. 5. Classification accuracies (in percent) with our proposed hybrid

classifier trained on M unlabeled samples with N fixed labeled samples

for an artificial data set.

Fig. 6. Classification accuracies (in percent) with our proposed hybrid

classifier trained on M unlabeled samples with a fixed ratio for the

numbers of labeled and unlabeled samplesN=M for an artificial data set.



5.3.1 Noisy Unlabeled Sample Set

We examined the performance of our hybrid classifier and the
four other semisupervised classifiers when they were trained
by using noisy unlabeled sample sets, which contained
samples unrelated to the target classes in the classification
problems. The unrelated samples were collected from the
fifteen classes that were not used for selecting labeled and test
samples. We made noisy unlabeled sample sets by blending
samples related and unrelated to the target classes. In each
experiment, 10,000 and 1,000 test samples were collected
randomly from the artificial and real 20news data sets,
respectively, and labeled and unlabeled samples were
selected randomly from the remaining samples.

Table 3 shows the average classification accuracies of
10 experiments with the five semisupervised classifiers
trained by using N labeled samples and M unlabeled
samples. � (in percent) represents the ratio of unrelated
samples in an unlabeled sample set. Each number in
parentheses in the table denotes the standard deviation of
the 10 experiments. Asterisks show that the difference
between the average classification accuracies of our hybrid
classifier and the classifiers used for comparison is significant
ðp < 0:05Þ in the Wilcoxon test.

Our hybrid approach outperformed NB/EM-�, MoE-PM,
and MoE-GM in all cases for the real 20news data set. The
classification performance of our hybrid approach was not
always worse than that of NB/EM-�, MoE-PM, and MoE-GM
when � ¼ 50 and 90 for the artificial data samples, where the
classification performance of our hybrid approach was worse
than NB/EM-� when � ¼ 0. We confirmed that our hybrid
approach was useful for obtaining a better classifier from
noisy unlabeled sample sets, especially when the perfor-
mance of our hybrid classifier trained on unlabeled sample
sets not containing unrelated samples was better than that of

classifiers based on NB/EM-�, MoE-PM, and MoE-GM. The
good classification performance of NB/EM-� for the artificial
data set would be reasonable because the artificial data
samples were generated by using NB models and NB/EM-�
trained NB models to fit them into the artificial data samples.

Our hybrid approach did not outperform MLR/MER
when N ¼ 20 and 100 and � ¼ 90 for the real 20news data
set. In these cases, we cannot expect to improve the
classification performance greatly by using an unlabeled
sample set because an unlabeled sample set contains a small
number (250) of samples related to target classes. In
supervised cases, MLR outperformed NB, as shown in
Table 1c. These conditions would have caused the results
whereby our hybrid approach employing NB models did
not always outperform MLR/MER.

5.3.2 Biased Unlabeled Sample Set

We also evaluated the performance of our hybrid classifier
and the four other semisupervised classifiers obtained by
using biased unlabeled sample sets, whose feature
distribution was different from that of labeled sample sets.
The effect of labeled and unlabeled sample sets with
different feature distributions on classification performance
was also examined in [29]. For the evaluation, only samples
whose true class labels were one of the five target classes
were used as labeled, unlabeled, and test samples. In each
experiment, 10,000 and 1,000 test samples were selected
randomly from the artificial and real 20news data sets,
respectively. To obtain biased training sets, the remaining
samples, except for the test samples, were divided into two
subsets by using a spherical K-means clustering algorithm
[30], which was developed for dividing high-dimensional
and sparse data such as text. Then, N labeled samples and
M unlabeled samples were selected from the different
subsets. We also obtained unbiased training sets by
selecting labeled and unlabeled samples randomly from
the remaining samples except for the test samples.

Table 4 shows the average classification accuracies of
10 experiments with the five semisupervised classifiers
obtained by using the biased and unbiased training sample
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TABLE 3
Classification Accuracies (in Percent) with Semisupervised

Classifiers Trained by Using an Unlabeled Sample Set
Containing � Percent Noise Samples

(a) Artificial Data Set ðM ¼ 10; 000Þ. (b) Real 20news Data Set
ðM ¼ 2; 500Þ.

TABLE 4
Classification Accuracies (in Percent) with Classifiers Trained

by Using Biased (B) and Unbiased (UB) Training Sets

(a) Artificial Data Set ðM ¼ 10; 000Þ. (b) Real 20news Data Set
ðM ¼ 2; 500Þ.



sets. Table 5 shows the average class distributions of the
labeled and unlabeled sample sets used for the 10 experi-
ments. Table 6 summarizes the numbers of vocabulary words
included in the labeled and unlabeled sample setsWl andWu

and included in both the labeled and unlabeled sample sets
Wl^u to show the difference between the feature distributions
of labeled and unlabeled samples. As shown in Table 6, the
Wl^u=Wl values for biased training sets were smaller than
those for unbiased training sets. This indicates that a feature
space shared by labeled and unlabeled samples was smaller
for the biased training sets.

When biased training sets were used, the classification

performance of our hybrid approach, MoE-PM, and MoE-

GM was better than that of NB/EM-� for the artificial and real

20news data sets. Our hybrid approach, MoE-PM, and MoE-

GM employed 2K NB models to constructK-class classifiers,

whereas NB/EM-� used K NB models. Using many NB

models might be effective for fitting classifiers into labeled

and unlabeled samples whose feature distributions are

different.

Our hybrid approach outperformed MoE-PM and MoE-

GM when using unbiased training sets for both data sets.

However, when biased training sets were used, our hybrid

approach provided worse classification performance than

MoE-PM and MoE-GM for the artificial data set and when

N ¼ 1; 000 for the real 20news data set. As shown in Table 6,

the number of vocabulary words included in the biased

labeled sample sets was smaller than that in the unbiased

labeled sample sets. The discriminative training in our

hybrid approach would have overfitted classifiers to labeled

samples existing in a small part of the feature space.

6 CONCLUSION

We proposed a new approach to semisupervised classifier
design based on a hybrid formed from the generative and
discriminative approaches. The main idea is to introduce a

bias correction model with different parameterization to
correct the bias associated with a generative model trained on
labeled samples.

In our experiments, we employed four actual data sets
for text classification problems and confirmed that the use of
a large number of unlabeled samples for training our hybrid
classifier greatly improved the classification performance
when the number of labeled samples was insufficiently
large to obtain good classification performance. We com-
pared our hybrid approach with conventional generative
and discriminative approaches. Our approach greatly out-
performed both these approaches when their classification
performance was comparable. In other words, we can
suggest that our hybrid classifier is useful when the
discriminative classifier performs similarly to the generative
classifier. We also confirmed that our hybrid approach had
an advantage over the generative and discriminative
approaches in terms of processing time. Moreover, we
examined the performance of our hybrid classifier when the
labeled and unlabeled samples had different distributions.

Future work will involve applying our hybrid approach to
other data, where different generative models are employed,
to confirm that the hybrid generative and discriminative
approach is useful for designing semisupervised classifiers
for various types of data.

APPENDIX A

DERIVATION OF Q-FUNCTION FOR PARAMETER

ESTIMATION OF BIAS CORRECTION MODEL

We derive the Q-function Qð�ðtþ1Þ;�ðtÞj�Þ shown in (12)
from Gð�j�Þ shown in (11). We define

zmkð�Þ 	
gkðxxm;  kÞPK

k0¼1 gk0 ðxxm;  k0 Þ
; ð20Þ

G0ð�j�Þ 	
XM
m¼1

log
XK
k¼1

gkðxxm;  kÞ: ð21Þ
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TABLE 6
The Numbers of Vocabulary Words Included in Labeled and
Unlabeled Sample Sets Wl and Wu Included in Both Labeled

and Unlabeled Sample Sets Wl^u

(a) Artificial Data Set ðM ¼ 10; 000Þ. (b) Real 20news Data Set
ðM ¼ 2; 500Þ.

TABLE 5
Class Distribution of Biased (B) and

Unbiased (UB) Training Sets

(a) Artificial Data Set ðM ¼ 10; 000Þ. (b) Real 20news Data Set
ðM ¼ 2; 500Þ.



Then, the difference in G0ð�j�Þ between the ðtþ 1Þth and

ðtÞth steps is written as

G0
�

�ðtþ1Þj�
�
�G0

�
�ðtÞj�

�

¼
XM
m¼1

log

PK
k¼1 gk

�
xxm; �ðtþ1Þ

�
PK

k¼1 gk

�
xxm; �ðtÞ

�

¼
XM
m¼1

XK
k0¼1

"
zmk0

�
�ðtÞ

�
log

(PK
k¼1 gk

�
xxm;  

ðtþ1Þ
k

�
PK

k¼1 gk

�
xxm;  

ðtÞ
k

�

�
gk0
�
xxm;  

ðtþ1Þ
k0

�
gk0
�
xxm;  

ðtþ1Þ
k0

� gk0
�
xxm;  

ðtÞ
k0

�
gk0
�
xxm;  

ðtÞ
k0

�
)#

¼
XM
m¼1

XK
k0¼1

"
zmk0

�
�ðtÞ

�

� log

(
gk0
�
xxm;  

ðtþ1Þ
k

�
gk0
�
xxm;  

ðtÞ
k

� zmk0
�

�ðtÞ
�

zmk0
�

�ðtþ1Þ
�
)#

¼
XM
m¼1

XK
k¼1

zmk

�
�ðtÞ

�
log

p
�
xxmjk;  

ðtþ1Þ
k

��2

p
�
xxmjk;  

ðtÞ
k

��2

þ
XM
m¼1

XK
k¼1

zmk

�
�ðtÞ

�
log

zmk

�
�ðtÞ

�
zmk

�
�ðtþ1Þ

� :

ð22Þ

Here, the second term in (22) is the sum of Kullback-Leibler

divergence of zmkð�ðtÞÞ and zmkð�ðtþ1ÞÞ

XK
k¼1

zmk

�
�ðtÞ

�
log

zmk

�
�ðtÞ

�
zmk

�
�ðtþ1Þ

� � 0: ð23Þ

Defining Qð�ðtþ1Þ;�ðtÞj�Þ such as (12) by using zmkð�Þ ¼
Rðkjxx; �̂;�;�Þ and Gð�j�Þ ¼ G0ð�j�Þ þ log pð�Þ, we can

obtain the inequality

G
�

�ðtþ1Þj�
�
�G

�
�ðtÞj�

�
�Q
�

�ðtþ1Þ;�ðtÞj�
�
�Q

�
�ðtÞ;�ðtÞj�

�
:

ð24Þ

The inequality shows that Qð�ðtþ1Þ;�ðtÞj�Þ �Qð�ðtÞ;�ðtÞj�Þ
provides the lower bound of the improvement of Gð�j�Þ by

the update of �. Therefore, by computing �ðtþ1Þ to maximize

Qð�ðtþ1Þ;�ðtÞj�Þ, we can improveGð�j�Þ in the ðtþ 1Þth step.

By iteratively performing this update, we can obtain an

estimate of � that provides the local maximum of Gð�j�Þ
around an initialized value of �.

APPENDIX B

HYPERPARAMETER TUNING PROCEDURE

We explain the procedure for tuning hyperparameter 	k
by using a leave-one-out cross validation and the EM

algorithm, as mentioned in Section 3.4. According to a

MAP estimation, using training samples except xxnk , we

obtain �̂
ð�nkÞ
ki in (17) such as

�̂
ð�nkÞ
ki ¼

PNk

nk 0¼1 xnk 0i � xnki þ 	k � 1

Nk � 1þ V ð	k � 1Þ : ð25Þ

As with estimates of parameters smoothed by Lidstone’s

law (cf., [31]), we can express �̂
ð�nkÞ
ki by

�̂
ð�nkÞ
ki ¼ �ð�nkÞi þ ð1� �Þ 1

V
; ð26Þ

where

� ¼ Nk � 1

Nk � 1þ V ð	k � 1Þ ; ð27Þ


ð�nkÞ
i ¼

PNk

nk 0¼1 xnk 0i � xnki
Nk � 1

� 0: ð28Þ

Here, 0 
 � < 1, and
PV

i¼1 
ð�nkÞ
i ¼ 1. Therefore, we can view

�̂
ð�nkÞ
ki as a linear interpolation between

ð�nkÞ
i and 1=V . Since �

is independent of the training sample xxnk , we can regard

Lð	kÞ shown in (17) as a function of �

Lð�Þ ¼
XNk

nk¼1

XV
i¼1

xnki log �
ð�nkÞ
i þ ð1� �Þ 1

V

� �
: ð29Þ

We can use the EM algorithm for estimating � to maximize

Lð�Þ. In this estimation, global convergence is guaranteed,

since Lð�Þ is a concave function. Such an estimation of the

interpolation weight � with cross validation was also

employed in deleted interpolation [32]. Using the estimate of

� and (27), we obtain 	k to maximize Lð	kÞ shown in (17).
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