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Abstract. We often encounter situations in supervised learning where there exist
possibly groups that consist of more than two parameters. For example, we might
work on parameters that correspond to words expressing the same meaning, mu-
sic pieces in the same genre, and books released in the same year. Based on such
auxiliary information, we could suppose that parameters in a group have similar
roles in a problem and similar values. In this paper, we propose the Higher Or-
der Fused (HOF) regularization that can incorporate smoothness among parame-
ters with group structures as prior knowledge in supervised learning. We define
the HOF penalty as the Lovász extension of a submodular higher-order potential
function, which encourages parameters in a group to take similar estimated val-
ues when used as a regularizer. Moreover, we develop an efficient network flow
algorithm for calculating the proximity operator for the regularized problem. We
investigate the empirical performance of the proposed algorithm by using syn-
thetic and real-world data.

1 Introduction

Various regularizers for supervised learning have been proposed, aiming at preventing
a model from overfitting and at making estimated parameters more interpretable [1, 3,
16, 30, 31]. Least absolute shrinkage and selection operator (Lasso) [30] is one of the
most well-known regularizers that employs the `1 norm over a parameter vector as a
penalty. This penalty enables a sparse estimation of parameters that is robust to noise
in situations with high-dimensional data. However, Lasso does not explicitly consider
relationships among parameters. Recently, structured regularizers have been proposed
to incorporate auxiliary information about structures in parameters [3]. For example, the
Fused Lasso proposed in [31] can incorporate the smoothness encoded with a similarity
graph defined over the parameters into its penalty.

While such a graph representation is useful to incorporate information about pair-
wise interactions of variables (i.e. the second-order information), we often encounter
situations where there exist possibly overlapping groups that consist of more than two
parameters. For example, we might work on parameters that correspond to words ex-
pressing the same meaning, music pieces in the same genre, and books released in the
same year. Based on such auxiliary information, we naturally suppose that a group of
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parameters would provide similar functionality in a supervised learning problem and
thus take similar values.

In this paper, we propose Higher Order Fused (HOF) regularization that allows
us to employ such prior knowledge about the similarity on groups of parameters as
a regularizer. We define the HOF penalty as the Lovász extension of a submodular
higher-order potential function, which encourages parameters in a group to take similar
estimated values when used as a regularizer. Our penalty has effects not only on such
variations of estimated values in a group but also on supports over the groups. That is, it
could detect whether a group is effective for a problem, and utilize only effective ones
by solving the regularized estimation. Moreover, our penalty is robust to noise of the
group structure because it encourages an effective part of parameters within the group
to have the same value and allows the rest of the parameters to have different estimated
values.

The HOF penalty is defined as a non-smooth convex function. Therefore, a forward-
backward splitting algorithm [7] can be applied to solve the regularized problem with
the HOF penalty, where the calculation of a proximity operator [22] is a key for the
efficiency. Although it is not straightforward to develop an efficient way of solving
the proximity operator for the HOF penalty due to its inseparable form of the HOF
penalty, we develop an efficient network flow algorithm based on [14] for calculating
the proximity operator.

Note that Group Lasso (GL) [34] is also known as a class of regularizers to use
explicitly a group structure of parameters. However, while our HOF penalty encourages
the smoothness over parameters in a group, GL imposes parameters to be sparse in a
group-wise manner.

In this paper, we conduct experiments on regression with both synthetic and real-
world data. In the experiments with the synthetic data, we investigate the comparative
performance of our method on two settings of overlapping and non-overlapping groups.
In the experiments with the real-world data, We first test the predictive performances
about the average rating of each item (such as movie and book) from a set of users
who watched or read items, given user demographic groups. And then, we confirm the
predictive performance on a rating value from a review text given semantic and positive-
negative word groups.

The rest of this paper is organized as below. In Section 2, we introduce regularized
supervised learning and the forward-backward splitting algorithm. In Section 3, we pro-
pose Higher Order Fused regularizer. In Section 4, we derive a efficient flow algorithm
for solving the proximity operator of HOF. In Section 5, we review related work of our
method. In Section 6, we conduct experiments to compare our methods and existing
regularizers. We conclude this paper and discuss future work in Section 6.

2 Regularized Supervised Learning

We denote the number of observations as N and the number of variables as M . An
observed sample is denoted as {yn,xn} where yn ∈ Y is a target value and xn =
(x1, x2, · · · , xM ) ∈ RM is an explanatory variable vector. We denote a parameter vec-
tor as β = (β1, β2, · · · , βd) ∈ Rd where d is the total number of parameters. An object
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Algorithm 1 Forward-backward splitting algorithm with Nesterov’s acceleration

Initialize β0 ∈ Rd, set ζ0 = β0 and η0 = 1.
for t = 0, 1, · · · do

β̂t = ζt − L−1∇l(ζt).
βt+1 = proxL−1Ω β̂t.
ηt+1 = (1 +

√
4η2t + 1)/2.

λt = 1 + (ηt − 1)/ηt+1.
ζt+1 = βt + λt(βt+1 − βt).

end for

function of regularized supervised learning problem is:L(β) = 1
N

∑N
n=1 l(β; yn,xn)+

γΩ(β), where l(β; yn,xn) : Rd → R is an empirical risk, Ω(β) : Rd → R is a regu-
larizer, and γ is a hyper parameter of the regularizer. A problem of supervised learning
attains a solution: argminβ L(β). This formulation includes well-known regularized
supervised learning problems such as Lasso, logistic regression [17], elastic net [36],
and SVM [28].

When l is a differentiable convex function where its gradient ∇l is L-Lipschitz
continuous , i.e.,(

∀(β, β̂) ∈ Rd × Rd
)
‖∇l(β)−∇l(β̂)‖22 ≤ L‖β − β̂‖22, (1)

where L ∈ (0,+∞). And Ω is a lower semicontinuous function whose proximity oper-
ator is provided, a minimization problem of L can be solved by employing the forward-
backward splitting algorithm [6, 7]. Its solutions are characterized by the fixed point
equation.

β = proxγΩ
(
β − γ∇l(β)

)
, (2)

where proxγΩ : Rd → Rd is a proximity operator [6, 22] for Ω and γ ∈ (0,+∞). The
proximity operator utilizes the Moreau envelope [22] of the regularizer γΩ : Rd →
R : β̂ → minβ Ω(β) + 1/2γ‖β − β̂‖22, whose gradient is 1/γ-Lipschitz continu-
ous [5]. The forward-backward splitting algorithm is also known to the proximal gradi-
ent method. The convergence of the forward-backward splitting algorithm can achieve
O(1/t2) rate by utilizing Nesterov’s acceleration [25, 26] (the same idea is also pro-
posed in FISTA [4]), where t is the number of iteration counts, see Algorithm 1.

3 Higher Order Fused Regularizer

In this section, we define Higher Order Fused (HOF) regularizer through the Lovász
extension of the higher order potential function, called the robust Pn potential function,
and discuss the sparsity property in supervised learning with the HOF penalty.

3.1 Review of Submodular Functions and Robust Pn Potential

Let V = {1, 2, . . . , d}. A set function f : 2V→ R is called submodular if it satisfies:

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ), (3)
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for any S, T ⊆ V [8]. A submodular function is known to be a counterpart of a convex
function, which is described through a continuous relaxation of a set function called the
Lovász extension. The Lovász extension f̂ : RV→ R of a set function f is defined as:

f̂(β) =

d∑
i=1

βji (f({j1, . . . , ji} − f({j1, . . . , ji−1}) , (4)

where j1, j2, . . . , jd ∈ V are the distinct indices corresponding to a permutation that
arranges the entries of β in non increasing order, i.e., βj1 ≥ βj2 ≥ · · · ≥ βjd . It
is known that a set function f is submodular if and only if its Lovász extension f̂
is convex [21]. For a submodular function f with f(∅) = 0, the base polyhedron is
defined as:

B(f) = {x ∈ RV | x(S) ≤ f(S) (∀S ⊆ V ),x(V ) = f(V )}. (5)

Many problems in computer vision are formulated as the energy minimization prob-
lem, where a graph-cut function is often used as the energy for incorporating the smooth-
ness in an image. A graph-cut function is known to be almost equivalent to a second
order submodular function [13] (i.e., it represents a relationship between two nodes).
Meanwhile, recently several higher order potentials have been considered for taking into
account the smoothness among more than two. For example, Kohli et al. [18] propose
the robustPn model, which can be minimized efficiently with a network flow algorithm.
Let us denote a group of indices as g ⊂ V and a set of groups as G = {g1, g2, · · · , gK},
where K is the number of groups. We denote hyper parameters that are weights of pa-
rameters in the k-th group as:

ck0 , c
k
1 ∈ Rd≥0, ck0,i =

{
ck0,i if i ∈ gk,
0 otherwise

, ck1,i =

{
ck1,i if i ∈ gk,
0 otherwise

, (i ∈ V ). (6)

The potential can be represented in the form of a set function as:

fho(S) =

K∑
k=1

min
(
θk0 + ck0(V \ S), θk1 + ck1(S), θ

k
max

)
, (7)

where θk0 , θ
k
1 and θkmax ∈ R≥0 are hyper parameters for controlling consistency of

estimated parameters in the k-th group that satisfy θkmax ≥ θk0 , θkmax ≥ θk1 and, for all
S ⊂ V , (θk0 + ck0(V \ S) ≥ θkmax) ∨ (θk1 + ck1(S) ≥ θkmax) = 1.

3.2 Definition of HOF Penalty

As mentioned in [2,32], Generalized Fused Lasso (GFL) can be obtained as the Lovász
extension of a graph-cut function. This penalty, used in supervised learning, prefers
parameters that take similar values if a pair of them are adjacent on a given graph,
which is a similar structured property to a graph-cut function as an energy function.
Now, based on an analogy with this relationship between GFL and a graph-cut function,
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we define our HOF penalty, which encourages parameters in a groups to take similar
values, using the structural property of the higher order potential Eq. (7).

Suppose that a set of groups is given as described in the previous section. Then, we
define the HOF penalty as the Lovász extension of the higher order potential Eq. (7),
which is described as:

Ωho(β) =

K∑
k=1

 ∑
i∈{j1,...,js−1}

(βi − βjs)ck1,i + βjs(θ
k
max − θk1 )

+βjt(θ
k
0 − θkmax) +

∑
i∈{jt+1,··· ,jd}

(βjt − βi)ck0,i

 ,

(8)

where ck0 , c
k
1 , θ

k
0 , θ

k
1 , θ

k
max correspond to the ones in Eq. (7) and,

jks = min
{
j′ | θk1 +

∑
i∈{j1,··· ,j′} c

k
1,i ≥ θkmax

}
,

jkt = min
{
j′ | θk0 +

∑
i∈{j′,··· ,jd} c

k
0,i < θkmax

}
. (9)

The first term in Eq. (8) enforces parameters larger than βjs to have the same value
of βjs . The second and third terms can be rewritten as θkmax(βjs − βjt) − βjsθ

k
1 +

βjtθ
k
0 . θkmax(βjs − βjt) enforces all of parameters between βjs and βjt to have the

same value because parameters are sorted by the decreasing order and βjs = βjt can
be satisfied if and only if all parameters between βjs and βjt have the same estimated
value (see an example of parameters between s and t in Figure 1(b)). −βjsθk1 + βjtθ

k
0

encourages βjs and βjt to have larger and smaller estimated values, respectively. The
fourth term enforces parameters smaller than βjt to have the same value of βjt . The
HOF penalty is robust to noise of the group structure because it allows parameters
outside of (βjs , · · · , βjt) to have different estimated values and then it utilizes only an
effective part of the group and discard the others.

Proposition 1. Ωho(β) is the Lovász extension of the higher order potential Eq. (7).

Proof. We denoteUi = {j1, . . . , ji} and fkho(Ui) = min
(
θk0 + ck0(V \ S), θk1 + ck1(S), θ

k
max

)
,

then,

fkho(Ui) =


θk1 + ck1(Ui) (1 ≤ i < s)

θkmax (s ≤ i < t)

θk0 + ck0(V \ Ui) (t ≤ i ≤ d)
, (10)

and hence,

βji
(
fkho(Ui)− fkho(Ui−1)

)
=



βjic
k
1({ji}) (1 ≤ i < s)

βjs
(
θkmax − (θk1 + ck1(Us−1))

)
(i = s)

0 (s < i < t)

βjt
(
θk0 + ck0(V \ Ut)− θkmax

)
(i = t)

−βjick0({ji}) (t < i ≤ d)

, (11)
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1 s t d
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5

θmax
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(b) parameters sorted by the decreasing order

Fig. 1: (a) An example of fho where K = 1, c1,i = c0,i = 1 (i ∈ V ), θ1 = θ0 = 1,
and θmax = 8. The horizontal and vertical axes correspond to the index of parameters
and values of set functions, respectively. Red, Green, and Blue lines correspond to each
lines in Eq. (10), respectively. (b) Parameters β sorted by the decreasing order. The
horizontal and vertical axes correspond to the sorted index and values of parameters,
respectively.

where ck1(Ui) =
∑
i∈{j1,··· ,ji} c

k
1,i and ck0(V \ Ui) =

∑
i∈{ji+1,··· ,jd} c

k
0,i. As a result,

we have Ωho(β) by summing all of these from the definition of the Lovász exten-
sion Eq. (4).

Although the penalty Ωho(β) includes many hyper parameters (such as ck0 , c
k
1 , θk0 , θ

k
1

and θkmax), it would be convenient to use the same value for θk0 , θ
k
0 , θ

k
max for different

g ∈ G and constant values for non-zero elements in ck0 and ck1 , respectively, in practice.
We show an example of Eq. (10) in Figure 1(a), and parameters that minimizes the
potential in Figure 1(b). As described in [1], the Lovász extension of a submodular
function with f(∅) = f(V ) = 0 has the sparsity effects not only on the support of β
but also on all sup-level set {β ≥ α} (α ∈ R).3 A necessary condition for S ⊆ V to be
inseparable for the function g : A→ fho(S ∪A)− fho(S) is that S is a set included in
some unique group gk. Thus, Ωho as a regularizer has an effect to encourage the values
of parameters in a group to be close.

4 Optimization

4.1 Proximity Operator via Minimum-Norm-Point Problem

From the definition, the HOF penalty belongs to the class of the lower semicontinuous
convex function but is non-smooth. To attain a solution of the penalty, we define the

3 The higher order potential fho(S) can be always transformed by excluding the constant terms
θ0 and θ1 and by accordingly normalizing c0 and c1 respectively.
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proximity operator as:

proxγΩho
β̂ = argmin

β∈Rd

Ωho(β) +
1

2γ
‖β̂ − β‖22, (12)

and we denote a solution of the proximity operator proxγΩho
β̂ as β∗. By plugging

Ωho(β) = maxs∈B(fho) β
Ts [11] into Eq. (12), the proximity operator can be shown

as the following minimization problem on a base polyhedron [32].

min
β∈Rd

Ωho(β) +
1

2γ
‖β̂ − β‖22 = min

β
max

s∈B(fho)
βTs+

1

2γ
‖β̂ − β‖22

= max
s∈B(fho)

−1

2
‖s− γ−1β̂‖22 +

1

2γ
‖β̂‖22

(
∵ argminβ β

Ts+ 1
2γ ‖β̂ − β‖22 = β − γs

)
↔ min

s∈B(fho)
‖s− γ−1β̂‖22. (13)

Let t = s− γ−1β̂ and, with the basic property of the base polyhedron of a submodular
function, the proximity operator goes equal to a minimal point problem,

min
s∈B(g)

‖s− γ−1β̂‖22 = min
t∈B(fho−γ−1β̂)

‖t‖22. (14)

From the derivation, it follows that β∗ = −γt∗ where t∗ is the solution of Eq. (14).
In general, the problem in Eq. (14) can be solved with submodular minimization

algorithms including Minimum-Norm-Point (MNP) algorithm proposed by [12]. How-
ever, the time complexity of the fastest algorithm among existing submodular mini-
mization algorithms is O(d5EO+ d6), where EO is a cost for evaluating the function.
Therefore, those algorithm are infeasible when the size of parameters d is large.

4.2 Network Flow Algorithm

We utilize a parametric property of MNP problem to solve the problem in Eq. (14). With
this property, we can apply a parametric flow algorithm that attains the exact solution
of the problem more efficiently than existing submodular minimization algorithms.

The set function h(S) = fho(S) − β̂(S) in Eq. (14) is submodular because the
sum of a submodular and modular functions are submodular [11]. Therefore, Eq. (14)
is a special case of a minimization problem of a separable convex function under sub-
modular constraints [23] that can be solved via parametric optimization. We denote a
parameter α ∈ R≥0 and define a set function hα(S) = h(S) − α1(S), (∀S ⊂ V ),
where 1(S) =

∑
i∈S 1. When h is non-decreasing submodular function, there exists

a set of r + 1 (≤ d) subsets: S∗ = {S0 ⊂ S1 ⊂ · · · ⊂ Sr}, where Sj ⊂ V ,
S0 =, and Sr = V , respectively. And there are r + 1 subintervals Qr of α: Q0 =
[0, α0), Q1 = [α1, α2), · · · , Qr = [αr,∞), such that, for each j ∈ {0, 1, · · · , r}, Sj
is the unique maximal minimizer of hα(S),∀α ∈ Qj [23]. The optimal minimizer of
Eq. (14) t∗ = (t∗1, t

∗
2, · · · , t∗d) is then determined as:

t∗i =
fho(Sj+1)− fho(Sj)

1(Sj+1 \ Sj)
, ∀i ∈ (Sj+1 \ Sj), j = (1, · · · , r). (15)
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We introduce two lemmas from [24] to ensure that h is a non-decreasing submodular
function.

Lemma 1. For any η ∈ R and a submodular function h, t∗ is an optimal solution to
mint∈B(h) ‖t‖22 if and only if t∗ − η1 is an optimal solution to mint∈B(h)+η1 ‖t‖22.

Lemma 2. Set η = maxi=1,··· ,d{0, h(V \{i})−h(V )}, then h+η1 is a non-decreasing
submodular function.

With Lemma 2, we solve

min
S⊂V

fho(S)− β̂(S) + (η − α)1(S), (16)

and then apply Lemma 1 to obtain a solution of the original problem. Because Eq. (16)
is a specific form of a min cut problem, we can be solved the problem efficiently.

Theorem 1. Problem in Eq. (16) is equivalent to a minimum s/t-cut problem defined
as in Figure. 2.

Proof. The cost function in Eq. (16) is a sum of a modular and submodular functions,
because the higher order potential can be transformed as a second order submodular
function. Therefore, this cost function is a F2 energy function [19] that is known to
be “graph-representative”. In Figure. 2, the groups of parameters are represented with
hyper nodes uk1 , u

k
0 that correspond to each group, and capacities of edges between

hyper nodes and ordinal nodes vi ∈ V . These structures are not employed in [32].
Edges between source and sink nodes correspond to input parameters like [32]. We
can attain a solution of s/t min cut problem via graph cut algorithms. We employ an
efficient parametric flow algorithm provided by [14] that run in O(d|E| log(d2/|E|))
as the worst case, where |E| is the number of edges of the graph in Figure 2.

5 Related work

Lasso [30] is one of the most well-known sparsity-inducing reguralizers, which em-
ploys a sum of `1 norm of parameters as a penalty: ΩLasso(β) =

∑d
i=1 ‖βi‖1. The

penalty is often minimized by the soft-thresholding that is a proximity operator of `1
norm. Fused Lasso (FL) is a one of the structured regularizers proposed by [31] to
utilize similarities of parameters. FL is also known as the total variation [27] in the
field of optimization. Generalized Fused Lasso (GFL) is an extension of FL to adopt a
graph structure into the structured norm. We denote a similarity between parameters i
and j as wi,j ∈ R≥0. Let us denote a set of edges among parameters, whose similari-
ties are not equal to zero as E = {(i, j)|wi,j 6= 0}. GFL imposes a fused penalty as:
ΩGFL(β) =

∑
(i,j)∈E wi,j‖βi−βj‖1. Because the penalty of GFL is not separable, ef-

ficient minimization for this penalty is a challenging problem. A flow algorithm for GFL
was proposed by [32] that showed significant improvement on a computational time of
proximity operator from existing algorithm. The computational time was reduced by
transforming the minimization problem into a separable problem under a submodular
constraint [23].
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u1
s u2

s uK
sUs
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V

v1

v2

... uK
tu2

tu1
t

βi − (γ − α)

(if βi < γ − α)

βi − (γ − α)

(if βi > γ − α)

vi

v3

v4

v5 v6

v7

· · ·
vd

ck1,i

ck0,i

θkmax − θk1

θkmax − θk0

Fig. 2: A minimum s/t-cut problem of Problem 16. Given a graph G = (V,E) for the
HOF penalty, capacities of edges are defined as: c(s, uk1) = θmax−θ1, c(uk1 , vi) = ck1,i,
c(vi, u

k
0) = ck0,i, c(u

k
0 , t) = θkmax − θk0 , c(s, vi) = zi − (γ − α) if zi > γ − α, and

c(vi, t) = (γ − α) − zi if zi < γ − α. Nodes uk1 and uk0 , k = (1, · · · ,K) are hyper
nodes that correspond to the groups. And s, t, and vi are source-node, sink-node, and
nodes of parameters, respectively.

Group Lasso was proposed by [34] to impose a group sparsity as a `1/`2 norm
on grouped parameters. The Group Lasso imposes a group-wise sparsity penalty as:
ΩGL(β) =

∑K
k=1 ‖β(gk)‖2. The penalty works as a group-wise Lasso that selects

feature groups effective to a problem. Group Lasso has been extended to groups having
overlaps, and efficient calculations of the proximity operator were proposed in [15, 33,
35]. [9] proposed the Sparse Group Lasso (SGL) which combines both the `1 norm and
`1/`2 norm imposed it as a regularizer. Group Lasso was extended to groups having
overlap by [35].

6 Experiments

In this section, we compared our proposed method with existing methods on linear re-
gression problems4 using both synthetic and real-world data. We employed the ordinary
least squares (OLS), Lasso 5, Sparse Group Lasso (SGL) [20], and Generalized Fused
Lasso (GFL) as comparison methods. We added the `1 penalty of Lasso to GFL and
our proposed method by utilizing a property: proxΩLasso+Ω = proxΩLasso

◦ proxΩ [10].
With GFL, we encoded groups of parameters by constructing cliques that connect edges
between whole pairs of parameters in the group.

4 where the number of variables and features are equal (m = d)
5 We used matlab built-in codes of OLS and Lasso.
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6.1 Synthetic Data

We conducted regression experiments with arfically synthesized data. We employed two
settings in which parameters had different group structures. In the first setting, parame-
ters had five non-overlapping groups. In the second setting, groups were overlapped.

With the first non-overlapping groups setting, we set the true parameters of features
within the group to the same value. With the second overlapping groups setting, we set
the true parameters of features having no overlap to the same value, and those of fea-
tures belonging to two groups to a value of either of the two groups. The explanatory
variables xn,i were randomly generated with the Gaussian distribution with mean 0 and
variance 1. Then, we obtained target values y from the Gaussian distribution where
its mean and variance are

∑d
i=1 βixn,i and 5, respectively. The size of the feature di-

mension d was 100 and the number of observed data points N was 30, 50, 70, 100, and
150. Hyper parameters were selected by 10-fold cross validation. The hyper param-
eters of regularizers γ were selected from {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. θkmax

was selected from 0.01, 0.1, and 1.0. ck0,i and ck1,i were set to have the same value that
was selected from 1.0 and 10.0. θk0 and θk1 were set to 0. We employed the follow-
ing Root Mean Squared Error (RMSE) on the test data to evaluate the performances:√

1
N

∑N
n=1 ‖yn − ŷn‖22.

The results are summarized in Table 1. In the first setting with non-overlapping
groups, our proposed method and GFL showed superior performances than SGL, Lasso,
and OLS. Errors of our proposed method and GFL were almost similar. The SGL and
Lasso fell in low performances since these methods had no ability to fuse parame-
ters. In the second setting with overlapping groups, our proposed method showed su-
perior performance than SGL, GFL, Lasso, and OLS. When N < d, existing methods
suffered from overfitting; however, our proposed method showed small errors even if
N = 30. GFL showed low performance in this setting because the graph cannot repre-
sents groups.

Examples of estimated parameters on an experiment (N = 30) are shown in Fig-
ures 3 and 4. In this situation (N < d), the number of observation was less than the
number of features; therefore, the problems of parameter estimation became undeter-
mined system problems. From Figure 3, we confirmed that our proposed method and
GFL successfully recovered the true parameters by utilizing the group structure. From
Figure 4, we confirmed that our proposed methods were able to recover true parameters
with overlapping groups. This is because our proposed method can represent overlap-
ping groups appropriately. GFL fell into an imperfect result because it employed the
pairwise representation that cannot describe groups.

6.2 Real-world Data

We conducted two settings of experiments with real-world data sets. With the first set-
ting, we predicted the average rating of each item (movie or book) from a set of users
who watched or read items. We used publicly available real-world data provided by
MovieLens100k, EachMovie, and Book-Crossing6. We utilized a group structure of

6 http://grouplens.org
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Table 1: Average RMSE and their standard deviations with synthetic data. Hyper pa-
rameters were selected from 10-fold cross validation. Values in bold typeface are statis-
tically better (p < 0.01) than those in normal typeface as indicated by a paired t-test.

(a) non-overlapping groups

N Proposed SGL GFL Lasso OLS
30 0.58± 0.32 174.40± 75.60 0.48± 0.29 189.90± 74.50 208.80± 119.00
50 0.56± 0.14 119.70± 40.80 0.57± 0.14 115.30± 54.10 260.40± 68.80
70 0.40± 0.19 128.10± 39.90 0.40± 0.19 125.00± 48.10 313.20± 42.40

100 0.47± 0.13 120.40± 42.00 0.47± 0.13 112.80± 45.60 177.10± 68.90
150 0.51± 0.08 106.80± 22.00 0.51± 0.08 79.40± 20.90 1.08± 0.13

(b) overlapping groups

N Proposed SGL GFL Lasso OLS
30 84.40± 76.40 156.20± 64.20 173.50± 67.30 162.10± 97.10 187.70± 108.30
50 40.90± 11.30 108.60± 43.80 103.20± 27.10 122.80± 57.70 246.40± 70.50
70 9.95± 9.22 119.40± 36.20 138.40± 54.10 138.80± 44.20 317.80± 36.60

100 3.19± 6.15 115.70± 38.20 149.20± 28.90 101.50± 37.70 208.50± 76.30
150 0.53± 0.06 104.50± 15.50 135.30± 21.00 12.30± 4.93 1.08± 0.13

Table 2: Summaries of real-world data. Nall, d and K correspond to a total number of
observations, a dimension of features, and a total number of groups, respectively.

Nall d K types of groups
MovieLens100k 1, 620 942 31 8 age, 2 gender, 21 occupation
EachMovie 1, 623 1, 000 21 11 age, 2 gender
Book-Crossing 1, 835 1, 275 41 12 age , 29 country

users, for example; age, gender, occupation and country as auxiliary information. The
MovieLens100k data contained movie rating records with three types groups including
ages, genders and occupations. The EachMovie data consisted of movie rating records
with two types groups including ages and genders. We used the 1, 000 most frequently
watching users. The Book-Crossing data was made up of book rating records with two
types of groups including ages and countries. We eliminated users and books whose
total reading counts were less than 30 from the Book-Crossing data. Summaries of
real-world data are shown in Table 2. To check the performance of each method, we
changed the number of training data N . ck0,i and ck1,i were set to have the same value
that was 1.0 if the i-th item belonged to the k-th group or 0.0 otherwise. In each ex-
periment, other hyper parameters were selected by 10-fold cross validation in the same
manner as previous experiments.

The results are summarized in Table 3. With the MovieLens100k data, our pro-
posed method showed the best performance on whole settings of N because it was able
to utilize groups as auxiliary information for parameter estimations. When N = 1600,
SGL and GFL also showed competitive performance. With the EachMovie and Book-
Crossing data, we confirmed that our proposed model showed the best performance.
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Fig. 3: Estimated parameters from synthetic data with five non-overlapping groups. Cir-
cles and Blue lines correspond to estimated and true parameter values, respectively.

SGL and Lasso showed competitive performance on some settings ofN . With the Each-
Movie and Book-Crossing data sets, estimated parameters were almost sparse therefore
SGL and Lasso showed competitive performance.

Next, we conducted another type of an experiment employing the Yelp data7. The
task of this experiment was to predict a rating value from a review text. We randomly ex-
tracted reviews and used the 1, 000 most frequently occurred words, where stop words
were eliminated by using a list8. We employed two types of groups of words. We at-
tained 50 semantic groups of words by applying k-means to semantic vectors of words.
The semantic vectors were learned form the GoogleNews data by word2vec9. We also
utilized a positive-negative word dictionary10 to construct two positive and negative
groups of words [29]. Other settings were set to be the same as the MovieLens100k
data.

The results are shown in Table 4. We confirmed that our proposed method showed
significant improvements over other existing methods with the Yelp data. GFL also
showed competitive performance when the number of training data N = 1, 000. The
semantic groups constructed by k-means have no overlap and overlap was only ap-
peared between semantic and positive-negative groups. WhenN is small, words having
overlap scarcely appeared in review texts. Therefore, GFL showed competitive perfor-
mance.

7 http://www.yelp.com/dataset challenge
8 https://code.google.com/p/stop-words
9 https://code.google.com/p/word2vec/

10 http://www.lr.pi.titech.ac.jp/˜takamura/pndic en.html
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Fig. 4: Estimated parameters from synthetic data with five overlapping groups. Circles
and Blue lines correspond to estimated and true parameter values, respectively.

We show estimated parameters of four semantic groups in Figure 5. Colors of
words corresponded to a sign of an estimated parameter value. Blue corresponds to
the plus (positive) value and red corresponds to minus (negative) value. The size of
words indicates absolute values of an estimated parameter value. As we have explained
in Section 3.2, to make our proposed method robust, our proposed method is designed
to allow inconsistency of estimated values within a group. This effect was confirmed
by those illustrations. In the top two figures, parameters of words attained almost the
same values. On the other hand, in the bottom two figures, parameters of words attained
different estimated signs and absolute values. We supposed that the first two semantic
groups of words were fitted for this regression problem. Therefore, consistency of es-
timated values was high. Whereas, the second two semantic groups of words were not
fitted, and then resulted in low consistency of estimated values. Those results indicated
that our proposed method was able to detect effective groups of words from given over-
lapping groups with Yelp data.

7 Conclusion

We proposed a structured regularizer named Higher Order Fused (HOF) regulariza-
tion in this paper. HOF regularizer exploits groups of parameters as a penalty in reg-
ularized supervised learning. We defined the HOF penalty as a Lovaśtz extension of
a robust higher order potential named the robust Pn potential. Because the penalty is
non-smooth and non-separable convex function, we provided the proximity operator
of the HOF penalty. We also derived a flow algorithm to calculate the proximity op-
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Table 3: Average RMSE and their standard deviations with real-world data sets. Hyper
Parameters were selected from 10-fold cross validation. Values in bold typeface are
statistically better (p < 0.01) than those in normal typeface as indicated by a paired
t-test.

(a) MovieLens100k

N Proposed SGL GFL Lasso OLS
200 0.30± 0.02 0.32± 0.02 0.33± 0.02 1.11± 0.71 3.81± 1.97
400 0.28± 0.02 0.32± 0.02 0.33± 0.02 0.82± 0.31 2718.00± 6575.00
800 0.27± 0.02 0.31± 0.02 0.33± 0.02 0.54± 0.21 134144.00± 370452.00

1200 0.27± 0.03 0.32± 0.03 0.33± 0.03 0.48± 0.31 4.19± 2.97
1600 0.27± 0.07 0.30± 0.09 0.31± 0.09 0.44± 0.45 1.01± 0.81

(b) EachMovie

N Proposed SGL GFL Lasso OLS
200 0.86± 0.03 0.86± 0.02 0.92± 0.02 1.24± 0.15 2.15± 1.17
400 0.83± 0.03 0.85± 0.02 0.90± 0.03 1.17± 0.09 3.20± 1.66
800 0.81± 0.03 0.84± 0.02 0.89± 0.03 1.09± 0.06 14.30± 14.70

1200 0.80± 0.05 0.84± 0.05 0.88± 0.05 1.06± 0.07 2479.00± 9684.00
1500 0.79± 0.09 0.83± 0.07 0.87± 0.09 1.01± 0.12 29.90± 29.60

(c) Book-Crossing

N Proposed SGL GFL Lasso OLS
200 0.71± 0.02 0.73± 0.02 0.82± 0.02 0.92± 0.14 3.98± 0.83
400 0.70± 0.02 0.72± 0.02 0.82± 0.02 0.79± 0.03 66.60± 109.20
800 0.68± 0.02 0.70± 0.02 0.81± 0.02 0.71± 0.02 34.00± 27.70

1200 0.67± 0.04 0.71± 0.04 0.82± 0.04 0.70± 0.03 551.00± 1532.00
1700 0.64± 0.07 0.68± 0.07 0.78± 0.08 0.66± 0.06 1.18± 0.12

(a) Positive group. (b) Negative group. (c) Positive dominant
group.

(d) Negative domi-
nant group.

Fig. 5: Estimated parameters of four semantic groups of words. Blue and Red corre-
spond to plus and minus of estimated parameters, respectively. The size of words cor-
respond to the absolute values of estimated parameters.

erator efficiently, by showing that the robust Pn potential is graph-representative. We
examined experiments of linear regression problems with both synthetic and real-world
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Table 4: Linear regression problems with Yelp data (d = 1, 000) and K = 52 (50
semantic groups and two positive and negative groups). Means and standard deviations
of the loss on the test data are shown. Parameters were selected from 10-fold cross
validation. Bold font corresponds to significant difference of t-test (p < 0.01).

N Proposed SGL GFL Lasso OLS
1000 1.23± 0.02 3.31± 0.20 1.24± 0.01 1.62± 0.11 135.60± 211.00
2000 1.20± 0.02 1.58± 0.05 1.23± 0.01 1.27± 0.02 1.61± 0.06
3000 1.13± 0.02 1.34± 0.07 1.22± 0.01 1.18± 0.03 1.35± 0.07
5000 1.10± 0.02 1.18± 0.03 1.22± 0.01 1.12± 0.02 1.18± 0.03

data and confirmed that our proposed method showed significantly higher performance
than existing structured regularizers. We also showed that our proposed method can
incorporate groups properly by utilizing the robust higher-order representation.

We provided the proximity operator of the HOF penalty but only adopted it to linear
regression problems in this paper. We can apply the HOF penalty to other supervised or
unsupervised learning problems including classification and learning to rank, and also
to other applicational fields including signal processing and relational data analysis.

Acknowledge This work was partially supported by JSPS KAKENHI Grant Num-
bers 14435225 and 14500801.

References

1. Bach, F.R.: Structured sparsity-inducing norms through submodular functions. In: Proc. of
NIPS. pp. 118–126 (2010)

2. Bach, F.R.: Shaping level sets with submodular functions. In: Proc. of NIPS. pp. 10–18
(2011)

3. Bach, F.R., Jenatton, R., Mairal, J., Obozinski, G.: Structured sparsity through convex opti-
mization. Statistical Science 27(4), 450–468 (2012)

4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

5. Chaux, C., Combettes, P.L., Pesquet, J.C., Wajs, V.R.: A variational formulation for frame-
based inverse problems. Inverse Problems 23(4), 1495 (2007)

6. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Fixed-
point algorithms for inverse problems in science and engineering, pp. 185–212. Springer
(2011)

7. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Mul-
tiscale Modeling & Simulation 4(4), 1168–1200 (2005)

8. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. Combinatorial Struc-
tures and Their Applications pp. 69–87 (1970)

9. Friedman, J., Hastie, T., Tibshirani, R.: A note on the group lasso and a sparse group lasso.
arXiv preprint arXiv:1001.0736 (2010)
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