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Abstract—Non-negative Tensor Factorization (NTF) is a
widely used technique for decomposing a non-negative value
tensor into sparse and reasonably interpretable factors. However,
NTF performs poorly when the tensor is extremely sparse, which
is often the case with real-world data and higher-order tensors.
In this paper, we propose Non-negative Multiple Tensor Factor-
ization (NMTF), which factorizes the target tensor and auxiliary
tensors simultaneously. Auxiliary data tensors compensate for
the sparseness of the target data tensor. The factors of the
auxiliary tensors also allow us to examine the target data from
several different aspects. We experimentally confirm that NMTF
performs better than NTF in terms of reconstructing the given
data. Furthermore, we demonstrate that the proposed NMTF
can successfully extract spatio-temporal patterns of people’s daily
life such as leisure, drinking, and shopping activity by analyzing
several tensors extracted from online review data sets.

I. INTRODUCTION

As the amount and variety of available data has grown
rapidly in recent years, there are many tensors consisting
of only non-negative data: e.g. ratings of users × shops ×
times, and social connections between users × friends × social
networking systems. To analysing such tensor data, we can
employ several techniques such as Non-negative Tensor Factor-
ization (NTF) [1] , which is a generalization of Non-negative
Matrix Factorization (NMF) [2]. NTF factorizes a target tensor
consisting of non-negative values into factor matrices under the
non-negative constraints. The non-negativity constraints yield
sparse and reasonably interpretable factorization results [3].
NTF has been applied and preforms well in various fields [4]–
[7]. An advantage of tensor data over conventionally studied
matrix data is its ability to represent observations with various
attributes. In fact, tensor factorization techniques have been
extended to collaborative filtering [8] and multi relational
networks [9] and have been proven effective in these problems.

In spite of these advantages, data sparseness and com-
putational costs have significantly hampered the application
of tensor factorization methods to real world problems. This
problem becomes more serious as the order of the tensor
becomes higher and degrades the predictive performance of
NTF. The problem of sparseness has also been a serious prob-
lem in matrix factorization [10]. To deal with this problem,
only a few solutions have been proposed in the context of
multiple data analysis [11], which have been developed based
on probabilistic matrix factorization [12]. To compensate for
the sparseness of the data matrix, these approaches augment
the target matrix by incorporating auxiliary matrices in the
analysis. Then the target matrix and the auxiliary matrices
are simultaneously factorized. Factorizing multiple matrices
simultaneously performs better than factorizing a single target

matrix. Employing auxiliary data also seems a promising way
to resolve the sparse issue for tensors. However, there have
been almost no attempts to validate the idea of factorizing
multiple tensors simultaneously. The only exceptions are de-
scribed in [13], [14], but we cannot apply those methods to
multimodal data sets including tensors of different sizes and
scales: this is very typical in commercial purchasing records
and social network data.

In this paper, we propose a novel tensor factoriza-
tion method called Non-negative Multiple Tensor Factoriza-
tion (NMTF), which naturally incorporates auxiliary data ten-
sors into standard tensor factorization. The auxiliary tensor
shares indices (axes) with the target tensors, thus NMTF is
able to merge information from auxiliary tensors and mitigates
the problem of sparseness. Furthermore, factorizing auxiliary
tensors simultaneously allows us to examine given data from
several different aspects, because we obtain factors from
auxiliary tensors as well. We can control the influence of
auxiliary tensors during the factorization by employing scaling
parameters. We show that the simultaneous tensor decomposi-
tion approach can be reformulated into the decomposition of
a larger (partially observed) tensor. NMTF is a generalization
of NTF and is reduced to NTF in the special case where all
scaling parameters are set at zero (no influence). In this paper,
we employ the generalized Kullback-Leibler (gKL) divergence
as the metric of NMTF, which is widely used in the context of
NMF/NTF [15]. Minimizing gKL divergence is known to be
equivalent to maximizing the Poisson distribution likelihood,
which fits particularly well if the data are discrete values. We
employ a three-way tensor in this paper but the extension of
NMTF to a N -way tensor is straightforward.

Empirical results showed that NMTF achieved better per-
formance than NTF in a quantitative way. The synthetic data
experiments revealed that the performance improvement of
NMTF compared with NTF become larger as the target tensor
become sparser. We also found that NMTF factorization results
are highly interpretable and suggestive for the analysis of real
world complex review data. NMTF reveals the detailed user
preferences of beers and spatio-temporal patterns of people’s
daily life such as leisure, drinking, and shopping activity from
online review data sets.

II. RELATED WORK

Non-negative Tensor Factorization (NTF) was first pro-
posed in [1], as a generalization of Non-negative Matrix
factorization (NMF) [2]. NTF is based on a CANDE-
COMP/PARAFAC (CP) decomposition [16] and imposes non-
negative constraints on tensor and factor matrices. There have
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Fig. 1. NTF factorizes a tensor X into factor matrices T ,U ,V

been a lot of NTF researches concerning sparse constraints
[6], [17] and acceleration techniques [7], [18]. As explained,
data sparsity becomes a serious problem for large or high order
tensors. However, there have been no study concerning the data
sparsity in NTF.

As we explained in the introduction, combining multiple
data matrices has proved effective in sparse matrix analysis
[11], [19]–[21]. Therefore combining multiple tensors is a
reasonable idea for solving the sparsity problem. A concate-
nating method for a collection of tensors is proposed in [13]. A
decomposing method for multiple tensors of exactly the same
size simultaneously is proposed in [14]. To the best of our
knowledge, there are currently no solutions to our sparse data
tensor problem.

III. NON-NEGATIVE TENSOR FACTORIZATION (NTF)

Let us denote a three-way tensor1 X = {xijk} ∈ R
I×J×K

with only non-negative values xijk ≥ 0, ∀ i, j, k. Figure 1
illustrates a concept of NTF. NTF factorizes a tensor X into
three matrices each of which consists of R factors and only
contains non-negative values. We denote the three matrices as
T = {tir} ∈ R

I×R, U = {ujr} ∈ R
J×R and V = {vkr} ∈

R
K×R. The r-th column vectors of each matrix correspond to

the r-th factor of the tensor.

Let us denote the reconstructed tensors of X with
T , U , V as X̂ = {x̂ijk} ∈ R

I×J×K . We define the elements

of X̂ as the sum of the linear products of the three matrices.

x̂ijk =
R∑

r=1

tirujrvkr. (1)

Let us denote a divergence between two tensors as D.
We employ an element-wise divergence d to measure the
divergence between X and X̂ . D(X|X̂) is written as:

D(X|X̂; Θ) =

I∑
i=1

J∑
j=1

K∑
k=1

d(xijk|x̂ijk), (2)

where Θ � {U, T, V }. Using the above notations, NTF is
formulated as follows:

min
T,U,V

D(X|X̂; Θ) subject to T ,U ,V ≥ 0. (3)

A. Generalized Kullback-Leibler Divergence

There are a number of candidate divergences for NTF
including Euclidean divergence, Itakura-Saito divergence and
generalized Kullback-Leibler divergence. Although there is no

1In this paper, we denote a tensor by a bold-face underlined capital letter,
a matrix by a bold-face capital letter, a vector by a bold letter and a scalar by
a plain letter.

definitive way of choosing the divergence. To this end, we
are interested in discrete value observations such as stars in
product reviews. For that purpose, we choose the generalized
Kullback-Leibler (gKL) divergence, which is formulated as
follows: d(p|q) = −p log q + q + p log p− p. It is known that
minimizing the gKL divergence is equivalent to maximizing
the log likelihood of the NTF model if we assume the obser-
vations are Poisson distributed, which is a natural choice for a
discrete value observation [3]. Please note that our algorithm
can be derived for other divergences in an analogous manner.

IV. PROPOSED METHOD

A. Non-negative Multiple Tensor Factorization (NMTF)

we propose Non-negative Multiple Tensor Factoriza-
tion (NMTF), which effectively combines multiple data tensors
under a non-negative constraint. NMTF eases the problem of
tensor sparsity and further allows us to examine given data
from several different aspects. In NMTF, we have a target
tensor and a few auxiliary tensors that share one or two indices
(axes) with the target tensor. We want to factorize these tensors
simultaneously in order to make use of available auxiliary
information.

Let us denote the target tensor as Y ∈ R
Iy×Jy×Ky . We

denote the n-th auxiliary tensors as A(n) ∈ R
In×Jn×Kn (n =

1, · · · , N). We set N = 3 in this paper for the convenience. We
define the three factor matrices of Y as Θy = {Ty, Uy, Vy}
where Ty ∈ R

Iy×R, Uy ∈ R
Jy×R, and Vy ∈ R

Ky×R. Let us
define the factor matrices of the n-th auxiliary tensor as Θ(n) =
{T (n), U (n),V (n)} where T (n) ∈ R

In×R, U (n) ∈ R
Jn×R,

and V (n) ∈ R
Kn×R. We define estimated (reconstructed)

tensor values based on factor matrix elements as follows:

ŷijk =
R∑

r=1

tyiru
y
jrv

y
kr, â

(n)
ijk =

R∑
r=1

t
(n)
ir u

(n)
jr v

(n)
kr . (4)

For simplicity, we assume that Y shares first indices with

A(1), second indices with A(2), and third indices with A(3),
respectively. Note that it is straightforward to extend our results
to cases where auxiliary tensors share two indices with the
target tensor. According to this assumption, we set I1 =
Iy, J2 = Jy and I3 = Ky . We set T (1) = Ty, U (2) = Uy

and V (3) = Vy .

The goal of our NMTF is to factorize the target tensor

Y with the auxiliary tensors A(n) (n = 1, · · · , N) simul-
taneously. To achieve this goal, we regard tensors Y and

A(n) (n = 1, · · · , N) as parts of a larger tensor X ∈
R

(Iy+I1+I2)×(J1+Jy+J3)×(Ky+K2+K1), and perform NTF on
this larger tensor (see Fig. 2).

We augment the target tensor Y into X as follows. First,
three axes are augmented by simply concatenating the indices
of the target tensor and auxiliary tensors. For example, the size
of the first axis is enlarged from I to Iy + I2 + I3. Given a
large empty tensor X , we place data tensors so as to match all
indices as in Fig. 2. Please recall that Iy = I1, Jy = J2, and
Ky = K3. As evident from Fig. 2, there are several blocks
with no observation, called undefined regions. To encompass
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Fig. 2. Y , A(1), A(2) and A(3) are included in X . Transparent elements
of X are undefined regions. Factor matrices Uy ,Ty ,Vy are shared among
the target tensor and additional tensors.

these regions, we introduce the following binary variable ωijk:

ωijk =

{
1 xijk is defined,

0 xijk is undefined.
(5)

Let Ω ∈ R
I×J×K be a tensor consisting of ωijk. We set

undefined regions in X using Ω. Let us denote sets Ωy

and Ω(n) (n = 1, · · · , N) consisting of indices of Y and

A(n) (n = 1, · · · , N).

ωijk =

⎧⎨
⎩
1 if {i, j, k} ∈ Ωy

η̂(n) if {i, j, k} ∈ Ω(n) (n = 1, · · · , N)

0 otherwise.

(6)

where η(n) ≥ 0 (n = 1, · · · , N) are scaling parameters of

A(n) (n = 1, · · ·N). The elements ωijk are set at 0 if the

indices do not indicate the observed values in Y or A(n) (n =
1, · · · , N). Let us denote D̂ as the divergence of Non-negative
Tensor Factorization with an undefined region.

D̂(X|X̂;Ω) =
I∑

i=1

J∑
j=1

K∑
k=1

ωijkd(xijk|x̂ijk) (7)

The reconstructed values of the elements x̂ijk are the same as
Eq. 1. Then we set T, U, and V as,

T =

⎛
⎝ Ty

T (2)

T (3)

⎞
⎠ , U =

⎛
⎝U (1)

Uy

U (3)

⎞
⎠ , V =

⎛
⎝ Vy

V (2)

V (1)

⎞
⎠ . (8)

Therefore D̂ is rewritten as,

D̂(X|X̂;Ω)

=

Iy∑
i=1

Jy∑
j=1

Ky∑
k=1

d(yijk|ŷijk) +
N∑

n=1

[ In∑
i=1

Jn∑
j=1

Kn∑
k=1

η(n)d(a
(n)
ijk |â(n)ijk)

]

= D(Y |Ŷ ; Θy) +
N∑

n=1

D(η(n)A(n)|η(n)Â(n)
; Θ(n))

= D(Y , η(n)A(n)|Ŷ , η(n)Â
(n)

; Θ̂, n = 1, · · · , N), (9)

where we set factorized matrices as Θ̂ � {Θy,Θ
(n), n =

1 . . . , N}. NMTF minimizes the divergence between the given

non-negative tensors {Y , A(n);n = 1, · · · , N} and those
estimated under the non-negative constraints.

min
Θ
D(Y , η(n)A(n)|Ŷ , η(n)Â

(n)
; Θ̂, n = 1, · · · , N)

subject to T ,U ,V ≥ 0. (10)

Note that if the scaling parameters η(1) = η(2) = η(3) = 0,
NMTF is reduced to the original NTF. And if the non-negative
constraints are removed, we can regard this model as a multiple
tensor version of CP factorization.

B. Multiplicative Update Rules

In this section, we derive multiplicative update rules for

NMTF, similar to those of NTF. Remember that we set t
(1)
ir =

tyir, u
(2)
jr = uy

jr and v
(3)
kr = vykr. We derive multiplicative

update rules for tyir, uy
jr, and vykr, as below:

tyir
(new)

=

tyir

∑Jy

j=1

∑Ky

k=1

[
yijk

ŷijk
uy
jrv

y
kr

]
+ η(1)

∑J1

j=1

∑K1

k=1

[
a
(1)
ijk

â
(1)
ijk

u
(1)
jr v

(1)
kr

]
∑Jy

j=1

∑Ky

k=1 u
y
jrv

y
kr + η(1)

∑J1

j=1

∑K1

k=1 u
(1)
jr v

(1)
kr

,

uy
jr

(new)
=

uy
jr

∑Iy
i=1

∑Ky

k=1

[
yijk

ŷijk
tyirv

y
kr

]
+ η(2)

∑I2
i=1

∑K2

k=1

[
a
(2)
ijk

â
(2)
ijk

t
(2)
ir v

(2)
kr

]
∑Iy

i=1

∑Ky

k=1 t
y
irv

y
kr + η(2)

∑I2
i=1

∑K2

k=1 t
(2)
ir v

(2)
kr

,

vykr
(new)

=

vykr

∑Iy
i=1

∑Jy

j=1

[
yijk

ŷijk
tyiru

y
jr

]
+ η(3)

∑J3

j=1

∑K3

k=1

[
a
(3)
ijk

â
(3)
ijk

t
(3)
ir u

(3)
jr

]
∑Iy

i=1

∑Jy

j=1 t
y
iru

y
jr + η(3)

∑I3
i=1

∑J3

j=1 t
(3)
ir u

(3)
jr

.

(11)

We can derive multiplicative update rules for other parameters

t
(n)
ir , u

(n)
jr , and v

(n)
kr in a similar way. Note that this algorithm

is stable. Let us focus on the update of tyir. The updated tyir is
always non-negative because all elements in the r.h.s. of the
update equations are non-negative.

The only concern regarding computational stability is the
case where some u and v take the value 0, then the r.h.s.
of the equation becomes 0

0 . But this will never happens if we
handle the data and the model initialization appropriately. First,

ensure that
∑Jy

j=1

∑Ky

k=1 yi,j,k > 0 and
∑J1

j=1

∑K1

k=1 ai,j,k > 0
for all i. This is easily accomplished by excluding the empty
index i′ that violates these conditions. Second, initialize the
model so that ∀ ŷ > 0 and ∀ â > 0 hold. If yi,j,k = 0 or
ai,j,k = 0, then we can simply skip the summation for the
corresponding elements and speeding up computational times.
Details of deriving update rules and a proof of convergence at
local minima are to be published.

C. NMTF as Probabilistic Generative Model

We mentioned that a generalized Kullback-Leibler diver-
gence is equal to a negative log likelihood of Poisson distribu-
tion. NMTF could be interpreted as a probabilistic generative
model. Let us denote a Poisson distribution with a parameter
ζ as p(ξ|ζ) = Poisson(ξ|ζ) . From the definition, a negative
log likelihood of the Poisson distribution is approximately
equal to a generalized Kullback-Leibler divergence as below:
− log p(ξ|ζ) = dgKL(ξ|ζ)+ const. We denote a log likelihood
of a tensor X as:

log p(X|X̂) =
I∑

i=1

J∑
j=1

K∑
k=1

log p(xijk|x̂ijk). (12)
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Finally, the probabilistic generative model of NMTF can be
written as:

log p(X|X̂) = log p(Y |Ŷ ) +
N∑

n=1

log p(η̂(n)A(n)|η̂(n)Â(n)
)

= −D(Y , η(n)A(n)|Ŷ , η(n)Â
(n)

; Θ̂, n = 1, · · · , N) + const. .
(13)

Eq. (13) indicates that minimizing the divergence in NMTF
(Eq. (10)) is approximately equivalent to maximizing the
Poisson log likelihood of the probabilistic model.

V. EXPERIMENTS

A. Evaluation Measure

In our experiments, almost all the tensor elements are equal
to zero. Thus, we focus on the predictive log likelihood for the
non-zero elements to evaluate the performance of the factoriza-
tion results. We split the elements of the target tensor for 5-fold
cross validation. We employ the average log likelihood of non-
zero elements in the test sets. A higher average log likelihood
results in the better modeling performance. We define the

average log likelihood as: 1
M

∑M
m=1 log p(xm|θ), where M

is the number of non-zero elements in the test sets and θ is
the estimated parameter of a model.

B. Synthetic Data Experiment

In this experiment we evaluate the performance of NTF
and NMTF in terms of the average test log likelihoods on a
synthetic data set. Data sets are stochastically sampled from the
probabilistic model. We set the sizes of the tensors at Iy =
Jy = Ky = 100 and I(n) = J (n) = K(n) = 100 (n =
1, · · · , N), respectively. The number of factors is set at R =
5, 10, and 20. We set the sparseness of the auxiliary tensors
at 90% (i.e., 90% of all the tensor elements have zero values).
We set the scaling parameters at η(1) = η(2) = η(3) = 1.

In the first experiment, we evaluated the model perfor-
mance on the sparseness of the target tensor. We exam-
ined cases where the sparseness of the target tensor was
90%, 99%, 99.9% and 99.99%. In the second experiment,
we also evaluated the effect of using auxiliary tensors. We ex-
amined NMTF with different numbers of auxiliary tensors, N .
The scaling parameters were determined by cross-validation.
The sparseness of Y is set at 99%. Note that NMTF reduces
to NTF when no auxiliary tensors are available (N = 0).

Table I shows the results of the first experiment evaluat-
ing the effect of different data sparseness. The numbers of
bases R was set at 5, 10, and 20, respectively. The average
log likelihoods for test sets worsens as the data sparseness
increases. We confirmed that NMTF significantly outperforms
the original NTF especially when the target tensor is extremely
sparse. Table II also shows the results of the second experiment
evaluating the effects of the number of available auxiliary
tensors. It is evident that the average log likelihoods improve
as the number of auxiliary tensors increase. This improvement
indicates that NMTF successfully integrates the auxiliary ten-
sor and target tensor information into factors.

TABLE I. SYNTHETIC DATA EXPERIMENT : THE AVERAGE TEST LOG

LIKELIHOODS FOR DIFFERENT SPARSENESS OF THE TARGET TENSOR Y .

Sparseness NTF NMTF

90% −1.72± 0.01 −1.97± 0.02
99% −4.16± 0.28 −4.44± 0.19
99.9% −56.65± 49.61 −6.12± 0.59
99.99% −273.65± 237.86 −8.18± 3.80

(a) R = 5

Sparseness NTF NMTF

90% −3.23± 0.05 −3.48± 0.06
99% −8.74± 0.38 −8.22± 0.22
99.9% −92.34± 23.32 −12.53± 0.75
99.99% −628.25± 514.51 −13.61± 5.24

(b) R = 10

Sparseness NTF NMTF

90% −6.20± 0.05 −6.33± 0.06
99% −18.82± 0.48 −14.65± 0.12
99.9% −250.02± 43.43 −25.44± 1.25
99.99% −628.25± 514.51 −13.00± 4.92

(c) R = 20

TABLE II. SYNTHETIC DATA EXPERIMENT: THE AVERAGE TEST LOG

LIKELIHOODS OF THE TARGET TENSOR Y FOR DIFFERENT NUMBERS OF

AUXILIARY TENSORS.

Training set NMTF (R = 5) NMTF (R = 10) NMTF (R = 20)

Y (= NTF) −56.65± 49.61 −92.34± 23.32 −250.02± 43.43

Y + A(1) −44.47± 2.91 −77.10± 16.64 −168.08± 7.16

Y +
∑2

n A(n) −6.49± 0.52 −13.17± 0.98 −26.08± 1.79

Y +
∑3

n A(n) −6.12± 0.59 −12.53± 0.75 −25.44± 1.25

TABLE III. REAL-WORLD DATA SETS: THE AVERAGE TEST LOG

LIKELIHOODS ON THE TARGET TENSOR Y .

Yelp MovieLens

R NTF NMTF NTF NMTF

10 −22.30± 0.39 −17.72± 0.32 −23.96± 0.09 −23.74± 0.12
20 −30.69± 0.69 −18.38± 0.30 −27.16± 0.30 −24.31± 0.12
50 −62.97± 1.94 −21.00± 0.37 −39.54± 0.44 −26.68± 0.37

C. Real Data Experiments

In this section, we evaluate NMTF and NTF with three
public data sets provided by Yelp and MovieLens2. These
data sets include the user’s reviews of, for example, places,
and movies with various auxiliary data such as time-stamp,
geolocation, and check-in counts.

The Yelp data set is a collection of real-world reviews
about numerous business places (e.g. restaurants, department
stores, etc) in the greater Phoenix area, Arizona. We construct a
target tensor Y containing 1, 228 users, 1, 860 business places,
and 7 days of weeks. An element yijk represents the user
ij who reviewed the business places jy on the day ky . We
prepared two auxiliary tensors for the Yelp data set. The first

auxiliary tensor A(1) consists of users 1, 228 user, 235 business

categories, and 92, 052 words. An element x
(1)
ijk denotes the

term-frequency of the word k(1) about the business category

j1 in reviews by user iy . The second auxiliary tensor A(2)

contains 63 geolocation grids and 1, 860 business places, and
(24 ∗ 7) = 186 hours of weeks. We assume an approximately

10km × 10km geolocation grid. An element x
(2)
ijk represents

the check-ins count of at the business place jy within the
geolocation grid i(2) on the hour-time k(2). We eliminate

2http://www.yelp.com, http://www.movielens.org
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business places and users whose total numbers of reviews with

fewer than 30. Y is 99.9963% sparse and A(1) is 99.9729%
sparse, and A(2) is 99.4265% sparse. The numbers of bases are
determined at R = 10, 20, and 50 in preliminary experiments.

The MovieLens data set is a famous collection of commer-
cial movie reviews. We construct a target tensor Y containing
101, 970 movies, 2, 113 users, and 590 weeks. The element
yijk represents the rating user jy rating the movie iy posted

in the week ky . An auxiliary tensor A(1) consists of 101, 970
movies, 186 locations of movies, and 20 genres. An element

x
(1)
ijk is set at 1 if a location j(1) is included in meta-data about

the shooting location of a movie iy , and also the genre k(1)

is tagged to the movie. Y is 99.9933% sparse and A(1) is
99.9320% sparse. The numbers of bases are set at R = 10, 20,
and 50 by preliminary experiments.

D. Results

1) Quantitative analysis: Before closely examining the
learned bases from the real-world data, we conduct numerical
evaluations. The average test log likelihoods for the the Yelp
data set and the MovieLens data set are shown in Table III.
The scaling parameters are set at η1 = 0.1, η2 = 0.001 on the
Yelp data set and η1 = 0.01 on the MovieLens data set by 5-
fold cross-validation. As with the synthetic data experiments,
NMTF performed better than the original NTF with real-world
sparse tensor data.

2) Qualitative analysis of Yelp data set: We constructed
three tensors from the Yelp data set including an auxiliary
tensor of geolocations and check-in counts. The number of
bases are set at R = 50.

Fig. 3 show the extracted factors
Uy, Vy, T (1), V (1), T (2), and V (2) of bases learned
from the Yelp data set. The colors in the figures corresponds
to the colors of the factors in Fig. 2. The blue bars in the
top left show the 10 highest values in Uy with corresponding
the names of business places. The green and pink lines in
the top right show the estimated check-in counts per hour on
each day of the week, namely V (2). The green lines indicate
weekday responses while the pink lines indicate those of
weekends. The red bars placed in the middle left present
the 10 highest values in T (1) with corresponding business
categories. The red bars in the middle right show the 10
highest values in V (1) with corresponding words. The blue
circles in the bottom left show the locations in Phoenix city,
Arizona in Iy , and the circle size indicates the estimated
values in Uy .

Fig. 3a shows decomposed factors for a specific learned
base (r = 1). Zoo, museum, and a few parks are selected as
representative business places. The estimated check-in counts
hit peaks in the mornings on weekends, which is a reasonable
pattern for these business places. Top categories and words are
also easily interpretable in this base. Moreover, it is easy to see
that the selected business places are located across the map.
From this evidence, we can imagine that dining and drinking
behavior on weekdays can be extracted in this basis.

Fig. 3b shows another extracted basis (r = 2). Restaurants,
bars and pubs are the top-valued business places. The check-in
pattern is vary different from the previous basis: there are many

check-in counts on weekday evenings and weekend mornings.
The selected categories and words match these business places.
The business places are densely located in the central area of
Phoenix. We see that the going out and drinking patterns of
users on weekdays are mainly extracted in this factor.

Fig. 3c shows yet another basis (r = 3). IKEA, Apple store,
a toy store, a gardening store, and a pet shop achieve higher
values for the place factor. Users checked into these business
places most frequently at 5 p.m. on Sundays. The 10 highest
categories and words include “shopping”, “food”, “store”, and
“IKEA”. A place with a very large location weight is situated
in the outer area of the city, but many other business places
are located in the central downtown area. Our understanding of
this basis is that it shows daily purchasing behavior downtown
and occasional shopping on the periphery.

Finally, we present an interesting and completely different
pattern in Fig. 3d (r = 4). The listed business places serve
typical Asian foods such as sushi and noodles. The check-in
counts do not very greatly between weekdays and weekends.
The categories and words are also related to Asian foods such
as “Sushi Bar”, “Japanese”, “roll”, and “fish”. The patterns
of users enjoying these typical foods are extracted in this
basis. NMTF revealed expressive patterns with geolocation and
check-in counts in this experiment.

VI. CONCLUSION

In this paper, we proposed a novel tensor factorization
technique called Non-negative Multiple Tensor Factoriza-
tion (NMTF). We formulated NMTF as a generalization of
NTF and NMTF includes NTF as a special choice of scaling
parameters. We adopted the generalized Kullback-Leibler di-
vergence as the distance metric between tensors and we derived
a method for parameter estimation based on the multiplicative
update rule. We evaluated NMTF and the original NTF on
both synthetic and real-world data sets. The performance of
NMTF was quantitatively better than that of NTF. We also
confirmed that NMTF successfully extracted informative and
understandable factors from multiple tensors.

In this paper, we considered a case where each auxiliary
tensor shares only one axis with the target tensor. One natural
extension of this work is to allow the tensor to the share
multiple axes. Decomposing different orders of tensors should
allow us to model more complex and rich data set, for example,
factorizing matrices and three-way tensors or factorize more
higher 4 or 5-way tensors simultaneously. Other choices of
divergence such as Euclidean distance are also important topics
to investigate. Finally, we remark on the choice of the number
of factor bases R. Determining appropriate R is an unsolved
issue in NTF including the proposed NMTF. Though there are
no definitive ways, this is also an important task to investigate.
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