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Abstract

Non-negative Matrix Factorization (NMF) is a tra-
ditional unsupervised machine learning technique
for decomposing a matrix into a set of bases and co-
efficients under the non-negative constraint. NMF
with sparse constraints is also known for extracting
reasonable components from noisy data. However,
NMF tends to give undesired results in the case
of highly sparse data, because the information in-
cluded in the data is insufficient to decompose. Our
key idea is that we can ease this problem if comple-
mentary data are available that we could integrate
into the estimation of the bases and coefficients.
In this paper, we propose a novel matrix factoriza-
tion method called Non-negative Multiple Matrix
Factorization (NM2F), which utilizes complemen-
tary data as auxiliary matrices that share the row
or column indices of the target matrix. The data
sparseness is improved by decomposing the target
and auxiliary matrices simultaneously, since auxil-
iary matrices provide information about the bases
and coefficients. We formulate NM2F as a gen-
eralization of NMF, and then present a parameter
estimation procedure derived from the multiplica-
tive update rule. We examined NM2F in both syn-
thetic and real data experiments. The effect of the
auxiliary matrices appeared in the improved NM2F
performance. We also confirmed that the bases
that NM2F obtained from the real data were intu-
itive and reasonable thanks to the non-negative con-
straint.

1 Introduction

Non-negative matrix factorization (NMF) [Lee and Seung,
1999] is a matrix factorization method that is widely used
in various fields including audio processing [Smaragdis and
Brown, 2003], text mining [Xu et al., 2003], image anal-
ysis [Lee and Seung, 1999; Hoyer, 2004] and brain signal
analysis [Cichocki et al., 2009]. The non-negative constraint
of NMF is known to reveal intuitive and reasonable factor-
ization results in many applications. NMF with sparse con-
straint [Hoyer, 2004; Cemgil, 2009] provides good perfor-
mance for decomposing noisy data [Abdallah and Plumb-

ley, 2004; Dikmen and Févotte, 2012]. In general, however,
matrix factorization methods including NMF perform poorly
when the data to be factorized are very sparse and not suffi-
ciently informative [Aharon er al., 2006].

Recently, the variety of sensored data and human gener-
ated data is increasing greatly. An event can be observed
as, for example, sounds, movies, geo-locations, text mes-
sages, annotations, and action histories. These features can
often be high dimensional, and the problem of data sparse-
ness is not negligible [Blei et al., 2003; Koren et al., 2009;
Lin et al., 2011]. One convincing solution for this problem is
to combine a different set of data and analyze them simulta-
neously. We expect these different data to be correlated with
each other because they are different representations of real
world events. Thus the analysis of these data could be im-
proved by utilizing another set of data as complementary in-
formation, and vice versa.

Our key idea is that the factorization of the target data could
be improved if complementary data are available. Actually,
the effectiveness of this approach has been confirmed in item
recommendation tasks based on collaborative filtering. In that
field, matrix factorization methods have been used in many
studies such as [Koren et al., 2009]. To deal with sparsity,
some researchers (e.g. [Ma et al., 2008; Wang and Blei, 2011;
Purushotham et al., 2012]) increase the available information
for factorization by adding auxiliary data related to the tar-
get data matrix. These methods improved recommendation
accuracy, however, these previous studies ignored the non-
negative constraint. As described above, the non-negative
constraint plays an essential role for obtaining intuitive and
understandable data decomposition results.

In this paper, we propose a novel matrix factoriza-
tion method called Non-negative Multiple matrix factor-
ization (NM2F) that utilizes complementary data for non-
negative matrix factorization. NM2F integrates complemen-
tary data as auxiliary matrices that share rows or columns
with the target data matrix. NM2F decomposes all matri-
ces simultaneously, and this greatly improves the decompo-
sition performance under sparse data scenarios. In contrast
to previous work on collaborative filtering, NM2F is formu-
lated under the non-negative constraint. Therefore we can
expect more intuitive and understandable decomposition re-
sults. In this paper, we formulate NM2F as a generalization
of the original NMF and derive parameter estimation rules to



obtain a local optimal solution. Moreover, we study deeper
interpretations of NM2F as a probabilistic model and NMF
with undefined regions. Experimental results revealed the
good performance of the proposed NM2F under sparse data
situations, both in synthetic and real-world data sets.

The rest of this paper is organized as follows. After re-
viewing related work in Section 2, we formulate our problem
and introduce the proposed model in Section 3. In Section 4,
we evaluate the experimental results of our proposed method,
and Section 5 concludes the paper.

2 Related Work

Non-negative Matrix Factorization (NMF) [Lee and Seung,
1999] is an unsupervised matrix factorization method. NMF
is designed to minimize the loss (distance) between a non-
negative observed data matrix and its low rank decomposi-
tion. In this decomposition, the observed data matrix is rep-
resented as the weighted linear sum of bases with a non-
negative constraint. The non-negative constraint of decom-
posed bases and coefficients make the parameter estimation
non-convex. Instead, we obtain sparse bases and coefficients
that enable us to easily understandable their meaning in many
applications.

There are many kinds of loss employed in NMF such as
Euclidean distance, generalized Kullback-Leibler divergence,
and Itakura-Saito distance [Cichocki et al., 2009] which
belong to the B divergence family. NMF with generalized
Kullback-Leibler divergence has been proved to be equal
to Probabilistic Latent Semantic Analysis (pLSA)[Hofmann,
1999; Ding et al., 2006]. There are also a number of model
estimation methods yielding a local optima of NMF, such as
the multiplicative update rule [Lee er al., 2000], Alternat-
ing Least Squares (ALS) [Cichocki ef al., 2007], and Gibbs
sampling [Schmidt et al., 2009]. Non-parametric Bayes ex-
tensions of NMF have also been proposed including Ga-P
NMF [Hoffman et al., 2011] and iFiHMM [Nakano et al.,
2011]. In many applications, NMF exhibits good perfor-
mance and extracts understandable patterns thanks to its non-
negativity [Cai et al., 2011; Liu er al., 2012]. Further-
more, the calculation could be safely accelerated with dis-
tributed processing [Liu et al., 2010] and online learning
methods [Cao ef al., 2007; Wang et al., 2011]. In this paper,
we formulate NM2F as the parameter estimation of general-
ized Kullback-Leibler divergence. We show a multiplicative
rule for NM2F that guarantees the convergence of local op-
tima.

Many matrix factorization techniques have been used in
item recommendation tasks (e.g. [Koren et al., 2009]).
Among them, the Probabilistic Matrix Factorization (PMF)
method developed by [Salakhutdinov and Mnih, 2008] has
become a seminal technique in the field. PMF has been ex-
tended in two ways. One incorporates topic information us-
ing LDA [Wang and Blei, 2011]. The other augments PMF
using link information available from social networks [Ma et
al., 2008; Mei et al., 2008; Noel et al., 2012]. In one re-
cent paper [Purushotham et al., 2012] the authors combine
both ingredients in their model. Also, related models have
been used in the document analysis research [Steyvers ef al.,
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Figure 1: The target matrix X is factorized to the bases W
and the coefficients H with the row wise auxiliary matrix Y
and the column wise auxiliary matrix Z.

2004]. Our model is closely related to these researches in a
technical sense. However, the target domains and goals are
very different. As explained in Section 1, these recommenda-
tion studies often ignore the non-negative constraint. In this
paper, we propose a matrix factorization method with auxil-
iary matrices under the non-negative constraint for intuitive
and reasonable decomposition results.

3 Non-negative Multiple Matrix Factorization

3.1 Problem Formulation

Before describing the model, let us explain data structure, no-
tations, and an overview the problem.

Our proposed method defines three matrices called the tar-
get matrix, row wise auxiliary matrix and column wise auxil-
iary matrix. Let us denote an index of features as i € {1 -- -1}
and an index of dataas j € {1,--- , J}. Let x; ; be the observed
value of feature i in the j-th data. Then let X = {x; ;} € R/
be the target matrix. Let us denote an index of auxiliary fea-
tures as n € {1,--- ,N}. Then y,; denotes the auxiliary ob-
served value of feature n in the j-th data. Then we denotes
Y = {y,;} € RV as the row-wise auxiliary matrix. Let us
denote an index of auxiliary data as m € {1,--- , M}. Let z;
be the observed value of feature i in the m-th auxiliary data.
Then let Z = {z;,,} € R*M be the column-wise auxiliary
matrix. Figure 1 shows matrices X, Y, and Z.

The aim of this paper is to estimate appropriate bases and
coefficients. Our method takes auxiliary matrices Y and Z
into account when seeking bases and coefficients. Further-
more, our method simultaneously estimates patterns of Y and
Z. For example, in Section 4, we undertake an experiment to
factorize a matrix X consisting of the number of users lis-
tening artists with Y comprising tags annotated on the artists
and Z consisting of information about a user’s network of
friends.

3.2 Proposed Framework

This subsection describes our proposal, Non-negative Mul-
tiple Matrix Factorization (NM2F). NM2F factorizes the ob-
served matrix into a set of bases and coefficients. This method
requires the data, the bases and the coefficient matrix to be
non-negative. Non-negative constraints yield sparse solutions
for the bases and the coefficient matrix, which are preferable
for interpretation.



The key idea of our method is to augment the available in-
formation by employing auxiliary matrices. NM2F employs
two types of auxiliary data in order to factorize target data
X. The row-wise auxiliary matrix Y is assumed to share co-
efficients matrix H with X, and the column-wise auxiliary
matrix Z is assumed to share bases matrix W with X.

Let K be the number of bases. Let w;; be the value of the
feature i in the k-th basis. We denote W = {w;;} € RXK ag
the basis matrix. Let / ; be the coefficient of the k-th basis in
the j-th data. We denote the coefficient matrix as H = {i; ;} €
RXX/ " Let a,; be the value of the k-th basis for auxiliary
feature n. We denote A = {a,,;} € RY*K as the auxiliary basis
matrix. Let by, be the coefficient of the k-th basis in the m-
th auxiliary data. We denote auxiliary coeflicient matrix as
B = {bk,m} € RIEXM'

NM2F minimizes the divergence between the given ma-
trices {X,Y, Z} and their factored matrices {W, H, A, B}
with scaling parameters «, S3:

min DX,Y,Z\W,H, A, B;a,f)
W.H,AB

st W.H,A,B2>0, a,8>0, (D

where D is a divergence. Let us denote £; ;,9,, ;, and Z; ,, as the
approximated values of x; j, y, ;, and z;,, obtained from sums
of bases weighted by coefficients:

K K K
Xij= Z Wikhi j, Pnj = Z anihicjs Zim = Z Witbim. (2)
=l oy =1

Then a divergence between the model and data is defined as
D(X,Y,Z\W,H, A, B;a,p)
=DX|W,H)+aD(Y|A, H) + BD(Z\W, B)
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where a and g satisfying @ > 0, § > 0 are scaling pa-
rameters to balance three divergences, and d(-) specifies
an element-wise divergence. We employ the generalized

Kullback-Leibler divergence (dgky) in our model.
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The generalized Kullback-Leibler divergence is widely ap-
plied to NMF, but other distances such as the Euclidean dis-
tance and Itakura-Saito distance could be used as alternatives.

3.3 NMF Framework

The goal of NMF is to seek a basis matrix W and a coeffi-
cient matrix H that minimize the distance between the esti-
mated parameters W, H and the target matrix X, subject to
W.,H >0.

min DX|W,H)st. W,H>0 5)
W.H
If we set @ = 0,8 = 0in Eq. (3), we have
D(X,Y,ZIW,H,A,B;a,p) = DX|W,H). (6)
Therefore, NMF is regarded as a special case of NM2F.

3.4 Parameter Estimation

We derive multiplicative update rules of NM2F, similar to
the case of NMF. The derivations of the parameter estimation
method are detailed in Appendix A. In summary, we obtain
the local minimum of Eq. (4) by iterating update rules of W,
H, A, and B as shown below:
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For speeding up the calculation, let us denote 7 as sets of
indices of non-zero entries on the j-th column. Let J;, M;,
N similarly as sets of indices of non-zero entries on the i-th
row in X, the i-th row in Z and the j-th row in Y. We denote
Jicz, as to sum up only non-zero entries of the j-th column,
and so on. If @ = 8 = 0, the update rule of NM2F is the same
as that of NMF.

3.5 NMZ2F as Probabilistic Generative Model

We can rewrite NM2F with generalized Kullback-Leibler di-
vergence as a probabilistic generative model with a Poisson
distribution, as with NMF. The log likelihood of NM2F can
be rewritten as

Inp(X,aY,BZ\W, H,GA,jB)

= Inp(X,|W, H) + Inp@Y|H,&A) + In pBZ|W,3B)
1

J N
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~-D(X,Y,Z\WW,H, A, B;a,p) (10)

!
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where p denotes the Poisson distribution, @ = a/(NJK), and
B = B/(IMK). Minimizing Eq. (4) is equivalent to maximiz-
ing the log likelihood of probabilistic generative models. The
graphical model of NM2F is shown in Figure 2.

3.6 NM2F as NMF with Undefined Region

Let us consider the problem of factorizing a matrix with an
undefined (don’t care) regions. Let T' € RY*™WX*M) aq an
observation matrix with undefined regions. We denote the
bases matrix as U € RY™ K and the coefficients matrix as
V e RFVM We let w;; be the flag of undefined element.
0 ¢ ;is undefined,
Wij = { 1 tij is deﬁnjzd : an
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Figure 2: Graphical model of Non-negative Multiple Matrix
Factorization. X and Z are generated from the same bases
W but different coefficients H and B. Y is generated from
bases A and coefficients H shared by X.
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Let 2 € RY™U*™ be 3 matrix consisting of w;j. We as-
sume a case below.

/0
wij = 1

Let us denote D as the loss of NMF with an undefined region.

ifi>1andj>J,

otherwise (12)
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where O € RY*M is any non-negative matrix. Then D could
be written as:

DT, QT, V)
1 J N J 1 M
= D> dlsi @ ) D dulin) + B Y dinliin)
i=1 j=1 n=1 j=1 i=1 m=1
=D(X,Y,Z\W,H, A, B;a,p). (16)

According to these equations, NM2F is a special case of NMF
with an undefined region. By adopting an appropriate unde-
fined region, it is possible to factorizing more than three ma-
trices simultaneously in NM2F frameworks.

4 Experiments

In this section, we present experimental validations of the
proposed method on synthetic data set and real world data
set.

4.1 Evaluation Measures

Though our primal objective is to obtain intuitive decomposi-
tion of the data matrix, a quantitative measure would help us
understand and compare behaviors of several models. In the
sparse data scenario, we are often only interested in non-zero
entries of the data matrix, as well non-zero highest values
in decomposed bases and coefficients. Therefore, modeling
precision of non-zero entries is a reasonable measure for the
factorization models.

Specifically, we employ the average log likelihood for a
test set, randomly picked up from non-zero entries of the tar-
get data matrix X as our quantitative measure. We define the
average log likelihood as:

| u

7 Zl log p(xulf), (17)
where m = (1,---, M) is a number of non-zero elements in
the test set and 6 is estimated parameters of a model. Model
parameters were estimated by a 5-fold cross validation. A
higher average test log likelihood indicates better modeling
of the data structure.

4.2 Synthetic Data Experiment

This experiment evaluates the performance of NMF, VB-
NMF (NMF with sparse constraint) [Cemgil, 2009],
PMF [Salakhutdinov and Mnih, 2008] and NM2F. These
models are examined for several sparseness data sets. We
also conducted a grid search for @ and S8 to assess the effect
of the scaling parameters « and 3,

A synthetic data set was obtained from the probabilistic
model with Poisson distribution shown in Section 3.5. We
set the size of matrices X, Y, A,and BasI =J = N =
M = 100. We used values of 0%, 0.9%, 9%, and 99% for the
sparseness of the synthetic data set. We compared the means
of the average test log likelihood for each model. The param-
eters @ and 8 were set to at the values that present the highest
log likelihood for the training set. Before the verification,
we iterated the parameter estimation 50 times. Note that, if
a = 8 = 0 then NM2F is reduced to the original NMF.

Results:
The average test log likelihood values are presented in Ta-
ble 1. As is evident from these results, the proposed model
improved the average test log likelihood for all data sets.
The results in Table 1 confirm that NM2F achieves good
performance by making use of auxiliary matrices. Figure 3
shows the result of grid searches over @ and 8. With a dense
X (0% sparse), the scaling parameters « and § scarcely con-
tributed to the improvement of the log likelihood. This result
means that if X is dense then auxiliary matrices are not so
useful for improvement. On the other hand, the log likeli-
hood is affected by the choice of scaling parameters as the
target data become more sparse. Therefore we conclude that
when the observed matrix is highly sparse, auxiliary matrices
and appropriate scaling parameters yield better factorization.

4.3 Real Data Experiment

Next, we evaluate the proposed model on two real data sets.
VBNMF and PMF are omitted from these experiments due to
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Figure 3: The average test log likelihood versus the scaling parameters « (horizontal) and g (vertical).

X (NMF)

Sparse | NMF VBNMF PMF NM2F
0% | —1.24+£0.21 -272+003 -247+0239 —1.03=E0.09
9% | -1939+£282 -849+060 —-13.00+£274 —0.99+0.08
9% | -4245+630 -1455+140 -1625+605 —1.07=+0.25

99.9% | —4325+3345 -1530+630 -12.85+1120 —0.86+0.55

Table 1: Comparison on the average test log likelihood of
non-zero entries among different sparseness. Means and one
standard deviations of four data sets are presented.

their high computational costs.

Last.fm Data Set

The Last.fm data set is provided by Hetrec 2011'. This data
set consists of the user action history of the Last.fm service:
it includes the user’s listening history, tag information about
artists and friend link information among users.

The data set contains 1, 892 unique users, 17,632 unique
artists and 11,946 unique tags. We denote the indices of
users, artists, tags and friend users as i, j, n, and m, respec-
tively. Let x;; be a count of the listening of user i to the
artist j. Let X € Ri,892><17,632 be the target matrix. Let y,
denote the count of tags n appearing for the j-th artist. Let
Y € Ril’g%xn'“ % be the column-wise auxiliary matrix. Then
Zi,m denotes the link state between the ith user and the m-th
user, if users are friends then z;,, = 1 else z;, = 0. Let
Z € RI¥PI2 pe the row-wise auxiliary matrix. We evalu-
ated the performance of NMF and NM2F by factorizing X.
Note that the data set is highly sparse: only 0.25% (3, 687 el-
ements) of x; ; are non-zero. The number of bases was set to
K = 20 based on preliminary experiments.

Social Curation Data Set

In this experiment, we employ a data set of the curating ser-
vice Togetter® that was established for summarizing Twit-
ter messages into a story [Duh er al., 2012; Ishiguro et al.,
2012]. In Figure 4, we present an example of a curated story.
This story is entitled “20110311 JAPAN MEGA QUAKE
MS.8 -ENGLISH NEWS TL”, and includes multiple Twit-
ter messages. Words related to the title such as “quake” and
“tsunami” appear several times. Multiple Twitter users are
mentioned in the story; some of them appear multiple times
(multiple posts are included in this story). Our goal with this

Thttp://ir.ii.uam.es/hetrec2011/
Zhttp://togetter.com/

experiment was to detect structures of users and stories with
auxiliary information.

The data set contained 1, 823, 184 unique users, 235, 086
stories including 23,859,294 tweets, and 165,046 unique
words. Let us denote the indices of users, stories, words,
and auxiliary features as i, j, n, and m, respectively. Let x; ;
be the count of the appearances (equivalently, a number of

.. ; 1,823,184x235,086
messages) of user i in a story j. Let X € Ry
be the core matrix of user story observation. Let y,; de-
note the count of word n appearing in the j-th story. Let

165,046x 1,823,184 . ., :

Y e R, be the row wise auxiliary matrix. We
additionally utilize the Twitter based features of each user.
One is the number of followers and the other is the number
of Lists. We scale these features Z by z = log(Z + 1). Let z;,,

be a score of the user i in a feature m. Let Z € R>308602
be a column-wise auxiliary matrix. Note that only 0.0018%
(7,714, 891 elements) of x; ; are non-zero in the data set. Fur-
thermore, the data set is very large, but parameter estima-
tions of NM2F can be processed in hours by utilizing data set
sparseness. K was fixed to 200 based on preliminary experi-
ments.

Results:

The computed average test log likelihood values of non-zero
entries are presented in Table 2. It is noteworthy that these
two data sets are heavily long-tailed; dynamic ranges of ob-
served data values are extremely wide. Combined with the se-
vere sparseness, predicting non-zero entries is a difficult task.
As evidenced from these results, however, we confirmed that
NM2F achieved better performance than NMF for both data
sets. Auxiliary data and appropriate scaling parameters surely
contributed to improving the validation scores. Though our
primal objective is intuitive decomposition, these scores indi-
cate the modeling capability of the proposed NM2F.

Figures 5, 6, and 7 present three bases estimated in each
experiment. We show the top 10 highest valued artists W
and tags A, and users W and words A in the figures. The
bars in the figures present the value of each basis.

In Figure 5, we present bases extracted from the Last.fm
data set by NM2F. We can confirm that reasonably related
artist names and tags appear in the same basis. For exam-
ple, basis #1 includes popular women singers such as Britney
Spears and Lady Gaga. In basis #2, classic rock musicians
are included. Rap and hip-hop singers are presented in basis
#3. For comparison, we present extracted based by NMF in
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Friday, March 11, 2011 at 02:46:23 PM at epicenter
Magnitude 8.9
http://earthquake.usgs.gov/earthquakes/recenteqsww/Quakes/usc0001xgp.php
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Figure 4: Example of a Togetter story shortened by authors.

DataSet |  NMF VBNMF _PMF

Lastfm | —-6.90 +0.03 N/A N/A
Togetter | —27.27 +0.23 N/A N/A

NM2F

—6.17 £ 0.03
—12.97 £0.48

Table 2: Comparison of average test log likelihood of non-
zero entries among different data sets. Scores are divided by
x1073

Figure 6. All presented bases include highest valued artists of
bases in Figure 5. The basis #1 is almost identical to that of
#1 in Figure 5, which includes popular women singers. In the
bases #2 and #3 of NMF, different kinds of musicians are in-
cluded in a single NMF base. In contrast, the bases #2 and #3
of NM2F consist of musicians in similar genres. This result
clearly illustrates how our NM2F make factors more inter-
pretable and comprehensible by factorizing multiple matrices
simultaneously.

Figure 7 shows examples of learned bases of So-
cial Curation data set. Basis #l consists mass me-
dia accounts (Asahi_Shakai, nhk_tokuho), government offi-
cial (pref_iwate), military officials (US7thFlt, JGSDF _pr) and
a Twitter original account. In basis #2, professional program-
mers and open source contributors are extracted. Finally, ba-
sis #3 includes various accounts (from amateurs to profes-
sionals) who post feeds about the Arab Spring headline. This
result indicates that NM2F is able to extract meaningful bases
from the highly sparse data.

w X #1 #2 #3
Britney Spears| The Beatles| Eminemn|
Lady Gaga| Pink Floyd] Nine Inch Nails|
Christina Aguilera| The Rolling Stones| Nas|
Madonna] The Doors| 50 Cent|
Katy Perry David Bowie 2Pag
Avril Lavigne The Who Jay-Z,
Miley Cyrus| Queen)] Lil' Wayne|
Kylie Minogue| John Lennon Mos Def]
Kelly Clarkson| Led Zeppelin| VNV Nation|
Taylor Swift| The Velvet Underground| Obie Trice]
A bop| classic rock]| industriall
female vocalists| 70: Tap)|
dance rock] hip-hop)|
female vocalist| british| ebm|
pop rock| soulf darkwave]
female] funk] futurepopj
singer-songwriter| 605 dark electro|
love| psychedelic hip hop
amazing| psychedelic rockf favorite]
sexy| oldies| german|

Figure 5: Artists and Tags with the highest values in bases of
NM2F for Last.fm data.

#1 #2 #3
Britney Spears| The Beatles| Iron Maiden|
Lady Gagal Arctic Monkeys| Metallica]
Kelly Clarksonjj Radiohead} Eminem|
Hilary Duff] Amy Winehouse| 50 Cent]
Kylie Minoguej Muse| Megadeth|
Ke$ha] The Strokes| Opeth|

Rihannaj Oasi Slaye:

Katy Perry] The Killers| Akon|
Christina Aguileraj Coldpla Pantera|
Demi Lovato| Kings of Leon| Dream Theater|

Figure 6: Artists with the highest values in bases of NMF for
Last.fm data.

w #1 #2 #3
toukubo repeatedly gjmorley]
pref iwate| Subaru nofrills|
Asahi_Shakai kmizu nakano|
nhk tokuho| kikairoya| HyoYoshikawa]
US7thFlt tanakh| thoton|
AmbassadorRoos cpp_akira| gloomynews|
JGSDF pr fadis_| shellvalley]
IBC online cocoatomo| kny187
SatoMasahisa shimizukawal sitesirius
CNF]| shomah4a] tokudasu|
A disaster] Python| Egypt]
earthquake write| Libyal
recovery vim people
escape language demonstration|
fatality]| class| revolution
support] Scal: Mubarak|
East Japan function| government
Tohoku code| Al Jazeera
Tsunami programming| Qaddafi
damage| Haskell Middle East

Figure 7: Users and Words with the highest values in bases
of NM2F for social curation data.



5 Conclusion

In this paper, we proposed Non-negative Multiple Matrix Fac-
torization (NM2F), which integrates auxiliary matrices in es-
timating bases and coefficients. Our key idea is to over-
come the sparseness of the target data with complementary
data. We derived a parameter estimation procedure as a mul-
tiplicative update rule. We presented NM2F with general-
ized Kullback-Leibler divergence as a probabilistic genera-
tive model with Poisson distributions. We also proved that
NM?2F is a special case of NMF with undefined regions.
We evaluated NM2F experimentally using a synthetic data
set and two real data sets, and confirmed that NM2F per-
forms better than existing factorization methods in a quanti-
tative measure. We also confirmed that the estimated bases of
NM2F are reasonably intuitive and easy to understand. As a
future work, we need to evaluate NM2F with other divergence
choices. Also, finding a way to realize the automatic tuning
of scaling parameters would be another interesting challenge.

A Parameter Update Rule Derivation

In this appendix, we provide details of the parameter estima-
tion procedure mentioned in Section 3.4. The objective of
the parameter estimation is to minimize the divergence in the

Eq. (4).
DX,Y,Z\W,H, A, B;a,p)
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Let us introduce three auxiliary variables as 7 jx, Sn ks timk
Crije = 1, Zpsnjre = 1, Zgtime = 1) . By Jensen’s
inequality, an upper bound # of D is derived as below:
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We have equality if and only if
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A partial differentiation of F for wy, is
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We set % = 0 then Eq. (21) could be rewritten as:

J M
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We obtain the multiplicative update rule of w;:

J Xi.' ka
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Wi = Wik — . @3)
2_,’:1 hk,j +B2m:1 bk

This update rule could be rewritten as below:

Zlejx hk o + ﬁ ZmeM Z:: bi,m)

Wik = Wik . (24)

Zj hk,j +B Zm bk,m

Further, the second order partial differential of ¥ for wy is
written as

azf ZJ:( rl”‘)+ﬁZ(z,m””’k)>0 (25)

J=

Eq. (25) indicates that 7 is biconvex with w; ;. Therefore, the
monotonous convergence at the local optimum is guaranteed.
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