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ABSTRACT
This paper presents a new activation function for an ICA
algorithm to process complex-valued signals, which is used
in frequency domain blind source separation. The new acti-
vation function is based on the polar coordinates of a com-
plex number, whereas the conventional one is based on the
Cartesian coordinates of a complex number and calculates
the real part and imaginary part separately. The new activa-
tion function eliminates an undesirable constraint occurred
by the conventional function. In experiments for separating
speech signals in a reverberant environment, we obtained
improved SNRs by using the new activation function.

1. INTRODUCTION

Blind source separation (BSS) is a technique to estimate
original source signals using only sensor observations that
are linear mixtures of the original signals. Independent com-
ponent analysis (ICA) [1–4] works very well for BSS, if the
mixture is instantaneous (non-convolutive). In a real room
environment, however, sounds are mixed in a convolutive
manner with reverberation, and longer reverberation makes
a BSS problem more difficult. Several methods have been
proposed for convolutive mixtures. One of the major meth-
ods is frequency domain BSS [5–14].

In frequency domain BSS, a convolutive mixture prob-
lem of the time domain is converted into multiple instanta-
neous mixture problems of the frequency domain. Then,
these instantaneous mixture problems are solved by ICA
in every frequency bin. Since the conversion is performed
by using a windowed discrete Fourier transform (DFT), we
have to deal with complex numbers. An activation function
for an ICA algorithm to process complex numbers was pro-
posed [5]. This function, however, imposes an additional
constraint that prevents a learning algorithm from converg-
ing. To avoid the additional constraint, another formula
to calculate a gradient of an ICA algorithm was proposed
[6, 7], and has been used in [8, 9, 13, 14].

In this paper, we propose a new activation function for
an ICA algorithm to process complex numbers. It is based

on the polar coordinates of a complex number, and elim-
inates the additional constraint discussed above. Experi-
mental results have shown that the new activation function
works well and SNRs (signal-to-noise ratios) are improved
over conventional methods. We discuss several reasons why
improved results were obtained, by looking into what hap-
pens in ICA algorithms.

In Section 2, we explain frequency domain BSS in de-
tail. The new activation function is proposed in Section 3.
In Section 4, we show and discuss experimental results. We
conclude this paper in Section 5.

2. FREQUENCY DOMAIN BSS

2.1. Problem Formulation

Suppose that there areN source signalssp(t); (1 � p �
N) that are mutually independent, and these signals are ob-
served atM microphones in a real room environment with
reverberation. The observed signals cab be written in a con-
volutive mixture form:

xq(t) =

NX

p=1

hqp � sp(t); (1 � q � M);

wherehqp represents the impulse response from sourcep to
microphoneq, and� denotes the convolution operator.

The goal of blind source separation is to separate ob-
served signalsxq(t) into N unmixed signalsyp(t); (1 �
p � N) that are mutually independent. The separation
has to be done without knowing impulse responseshqp nor
original source signalssp(t). The unmixing system can be
composed ofN �M FIR filters. The unmixed signals are
obtained by

yp(t) =

MX

q=1

wpq � xq(t); (1 � p � N);

wherewpq represents the coefficients of the FIR filters. Fig-
ure 1 shows a BSS system for the case ofN = M = 2.
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Fig. 1. Model of a BSS system

2.2. Framework of Frequency Domain BSS

A convolutive mixture in the time domain corresponds to an
instantaneous mixture in the frequency domain. Therefore,
we can apply an ordinary ICA algorithm in the frequency
domain to solve a BSS problem. AT -point windowed DFT
is used to convert time domain signalsxq(t) into frequency
domain time-series signals:

Xq(!;m) =

T�1X

t=0

e�j!t xq(t)win(t�mS);

(! = 0;
1

T
2�; : : : ;

T � 1

T
2�)

wherewin denotes a window function andS is the shifting
interval of the window. The frame lengthT of the window
is the same as the number of frequency bins, and also the
length of the FIR filterswpq composing the unmixing sys-
tem.

For each frequency!, an ICA algorithm is applied to
obtain an unmixingN � M matrixW (!) and frequency
domainN signalsY (!;m), which are estimations of the
source signals at the frequency:

Y (!;m) =W (!)X(!;m);

whereX(!;m) = [X1(!;m); : : : ; XM (!;m)]T . Then,
we can obtain FIR filterswpq of lengthT by applying the
inverse DFT to allW (!).

2.3. ICA algorithm

In an ICA algorithm, an unmixing matrixW is gradually
improved by the learning rule:

W i+1 =W i +�W i

based on the minimization of the mutual information ofY
[1, 2]. For the calculation of�W , the natural gradient [3]
is widely used:

�W = � [I � h�(Y )Y T i]W :
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Fig. 2. Hyperbolic tangenttanh(Y )

In this formula,� is a step size parameter that has an effect
on the speed of convergence,h�i denotes the averaging op-
erator, and�(�) is an activation function. The hyperbolic
tangent (Fig. 2)

�(Y ) = tanh(� � Y ) (1)

is widely used [1, 2] as a nonlinear activation function, where
� is a scaling parameter to control the nonlinearity of�.

In frequency domain BSS, the signals obtained by a DFT
are complex numbers. Thus, the calculations of�W and
�(�) has been extended for complex numbers [5]:

�W = � [I � h�(Y )Y Hi]W ; (2)

�(Y ) = tanh[� �re(Y )] + j � tanh[� �im(Y )]; (3)

whereY H represents the conjugate transpose ofY , and
re(Y ) and im(Y ) are the real and imaginary parts ofY ,
respectively.

Based on (2),W converges to a point that satisfies

h�(Yp)Y
�
q i = 0 (p 6= q); (4)

h�(Yp)Y
�
q i = 1 (p = q); (5)

whereY �
q is the complex conjugate ofYq . The first equa-

tion (4) concerns the mutual independence ofYp andYq .
The second equation (5) makes the average amplitude ofYp
converge to some value near 1 since the range of� is from
�1 to 1. Decomposing (5) into real and imaginary parts, we
have

h�[re(Yp)]re(Yp) + �[im(Yp)]im(Yp)i = 1 (6)

h�[im(Yp)]re(Yp)��[re(Yp)]im(Yp)i = 0 (7)

Equation (7) imposes an additional constraint thatre(Yp)
andim(Yp) should be mutually independent [7]. This con-
straint is too strong since there may be a case thatre(Yp)
andim(Yp) are not mutually independent.
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Fig. 3. Hyperbolic tangenttanh[abs(Y )] for a complex
numberY

To avoid constraint (7), another formula was proposed
[6, 7] and has been used in [8, 9, 13, 14]:

�W = � [diag(h�(Y )Y Hi)� h�(Y )Y Hi]W : (8)

According to this formula,W converges to a point that sat-
isfies only (4), and the amplitudes ofY do not change much
during ICA.

3. A NEW ACTIVATION FUNCTION

In this section, we propose a new activation function that
solves the problem of constraint (7) caused by activation
function (3). The new function is based on the polar coordi-
nates of a complex number:

�(Y ) = tanh[� �abs(Y )] � ej�angle(Y ); (9)

whereabs(Y ) andangle(Y ) are the absolute values and
the angles ofY , respectively. It consists of two parts: am-
plitude parttanh[� � abs(�)] and phase partej�angle(�). The
amplitude part changes the amplitudes ofY . Figure 3 shows
function values oftanh[� � abs(Y )] for a complex number
Y . The phase part concerns the phases of�(Y ), and main-
tains the phases equal to the phases ofY . We can see that
the new activation function is a natural extension of ordi-
nary function (1), and produces the same value as (1) for a
real number.

If we use this activation function, constraint (7) does
not appear. Let� = angle(Yp). SinceY �

p is a complex
conjugate ofYp,

�(Yp)Y
�
p = tanh[� �abs(Yp)] � e

j� � abs(Yp) � e
�j�

= tanh[� �abs(Yp)] � abs(Yp):

Hence, the imaginary part ofh�(Yp)Y �
p i in (5) becomes 0.
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Fig. 4. Layout of a room used to record impulse responses

4. EXPERIMENTS AND DISCUSSIONS

To show the effectiveness of the new activation function,
we conducted experiments to compare the performance of a
BSS system using the following three combinations:

Polar-I using (9) for�(�) and (2) for�W ,

Cartesian-I using (3) for�(�) and (2) for�W ,

Cartesian-diag using (3) for�(�) and (8) for�W .

4.1. Conditions for experiments and overall results

Experiments were conducted for speech signals that were
convolved with impulse responses and then mixed. Fig-
ure 4 shows the layout of the room used to record the im-
pulse responses. The numbers of sources and observations
were both 2. The reverberation time of the room could be
changed. We used two sets of impulse responses whose re-
verberation times were 150 ms and 300 ms. We selected
two speech signals from the ASJ continuous speech corpus.
The lengths of the speech signals were about eight seconds,
and the entire eight seconds of the mixed data were used
for ICA. We used different frame lengthsT of a windowed
DFT depending on the reverberation time as shown in Table
1. Since the sampling rate was 8000 Hz, 150 ms and 300
ms correspond to 1200 points and 2400 point, respectively.

To avoid the permutation problem [8, 9] of frequency
domain BSS, we assumed that the first source signal came
from the left-hand side and the other came from the right-
hand side. Then, by using the technique of a null beam
former, we set the initial value ofW such that the first and
second rows of the matrix had steep null directivity patterns
towards60Æ and�60Æ, respectively. Amplitude ambiguities
were solved by the technique proposed in [8].

Table 1 shows results of SNRs for the three combina-
tions. The numbers are the averages of SNRs at two out-
puts. In the column “Ref”, SNRs measured with the speech
sounds used in learning are shown, and SNRs measured
with impulses [14] are shown in “Imp”. We can see that



TR = 150 ms TR = 300 ms
Ref Imp Ref Imp

Polar-I 18.3 19.7 12.7 16.3
Cartesian-I 17.9 19.4 12.3 15.6
Cartesian-diag 17.8 18.0 11.9 14.6

T = 1024 (TR = 150 ms); 2048 (TR = 300 ms)
S = 256, � = 0.1,� = 100, #iteration = 100
Ref: measured with speech sounds
Imp: measured with impulses

Table 1. SNRs (dB) for different activation functions and
different formulas for�W

the “Polar-I” case outperforms the others, and the results
of “Cartesian-diag” are not as good as others, especially in
“Imp”. The reasons of these results are discussed in the next
subsections.

4.2. Comparison between “Polar-I” and “Cartesian-I”

In order to see how the two�(�) functions behave, we plot
the values of�(Y ) in Figs. 5 and 6. These data were ob-
tained at the final learning step in the 200th (1554.7 Hz)
frequency bin for the 150 ms cases. We set� = 100, which
is the parameter to control the nonlinearity of�(�).

In the case of (3), many samples were put at one of the
four corners:1 + j, 1 � j, �1 + j, �1 � j. On the other
hand, in the case of (9), the samples were put on the unit
circle ej�. We can see that formula (9) represents more of
the information ofY , especially the phase information, than
formula (3). In addition, we can say that the entropy of
�(Y ) is larger in the case of (9) than in the case of (3). This
fact can be a reason why “Polar-I” outperforms “Cartesian-
I”.

Next, we discuss the additional constraint (7), which is
imposed in the “Cartesian-I” case. Figures 7 and 8 show the
absolute values and the imaginary parts of[I�h�(Y )Y Hi],
respectively, when using activation function (3). These data
were obtained in the 100th (773.4 Hz) frequency bin for the
150 ms cases. In Fig. 7, we see oscillations that hinder con-
vergence. These oscillations come from the imaginary parts
of the diagonals of[I � h�(Y )Y Hi] as shown in Fig. 8.

If we use activation function (9), we can eliminate such
oscillations as discussed in Section 3. Figure 9 shows ab-
solute values of[I � h�(Y )Y Hi] when using (9). We can
see smooth convergence. Clearly, the mutual information
amongY is well minimized in this case than in the case of
(3).

4.3. Comparison between “Polar-I” and “Cartesian-diag”

The main difference between the two is in the calculation of
�W . As discussed in Section 2, formula (2) makes the av-
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Fig. 6. Values of activation function (9)

erage amplitude ofYp approach some value near 1, whereas
formula (8) does not change the amplitude much. The ini-
tial value of the average amplitude ofYp differs consider-
ably from frequency to frequency, since given signals are
not generally flat in frequency.

Now, we discuss how the average amplitudes ofY af-
fects the speed of convergence in the case of “Cartesian-
diag”. SinceY (m) = WX(m), the amount of change of
Y in a learning step is

�Y (m) = �WX(m)

= � [diag(h�(Y )Y Hi)�h�(Y )Y Hi]Y (m).

Thus, the amount of change of eachYp is

�Yp(m) = �
X

q 6=p

h�(Yp)Y
�
q iYq(m):

Here,h�(Yp)Y �
q i is approximately proportional to the aver-

age amplitude ofYq if the mutual information betweenYp
andYq is the same. Therefore, the average amplitude accel-
erates the convergence speed if it is large, and inversely, it
reduces the speed if it is small.
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Based on the discussion above, the convergence speed
for each frequency differs considerably in the case of (8),
whereas the speed is gradually normalized in the case of (2).
Figure 10 shows convergence speeds for the 300 ms cases.
We can see that more iterations are needed to reach a point
of convergence in the case of “Cartesian-diag” than in the
case of “Polar-I” and “Cartesian-I”. To accelerate the con-
vergence speed in “Cartesian-diag”, we could set a larger
value for step size�. However, the larger� might be too
large to converge smoothly for a frequency bin with large
energy. Therefore, some normalization of step size in each
frequency bin would be needed for the case of “Cartesian-
diag”.
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5. CONCLUSIONS

We have proposed a new activation function for a complex-
valued ICA algorithm. The function eliminates constraint
(7), and enables us to use original gradient formula (2) with-
out oscillations that hinder convergence. Another gradient
formula (8) has been used to avoid the oscillation prob-
lem. This formula, however, exhibits irregular convergence
speeds among frequency bins in our experiments. We ob-
tained improved SNRs and good convergence characteris-
tics by using the new activation function with the original
gradient formula.
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