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Abstract
Blind source separation (BSS) for convolutive mixtures
can be performed efficiently in the frequency domain,
where independent component analysis (ICA) is applied
separately in each frequency bin. However, frequency-
domain BSS involves two major problems that must be
solved. The first is the permutation problem: the permu-
tation ambiguity of ICA should be aligned so that a sep-
arated signal in the time-domain contains the frequency
components of the same source signal. The second prob-
lem is the circularity problem: the frequency responses
obtained separately by ICA should be constrained so that
the corresponding time-domain filter does not rely on the
circularity effect of discrete frequency representation. This
paper discusses these two problems and presents our meth-
ods for solving them. The effectiveness of the BSS method
is shown by experimental results for the separation of up
to four sources in a reverberant environment.

1. Introduction
Blind source separation (BSS) [1, 2] is a technique for
estimating original source signals solely from their mix-
tures at sensors. Its potential audio signal applications
include teleconferences, voice control and hearing aids.
In such applications, signals are mixed in a convolutive
manner with reverberations. This makes the BSS prob-
lem much more difficult to solve than the instantaneous
mixture problem. Let us formulate the convolutive BSS
problem. Suppose that N source signals sk(t) are mixed
and observed at M sensors

xj(t) =
∑N

k=1

∑
l hjk(l)sk(t− l),

where hjk(l) represents the impulse response from source
k to sensor j. The goal is to obtain N output signals y i(t),
each of which is a filtered version of a source sk(t). If we
have enough sensors (M ≥ N ), a set of FIR filters wij(l)
of length L is typically used to produce separated signals

yi(t) =
∑M

j=1

∑L−1
l=0 wij(l)xj(t− l)

at the outputs, and independent component analysis (ICA)
[3, 4] is generally used to obtain the FIR filters wij(l).
We can classify the BSS methods into two types based
on how we apply ICA to convolutive mixtures.

The first is time-domain BSS, where ICA is applied
directly to the convolutive mixture model [5, 6]. It pro-

vides good separation once the algorithm converges, and
is easy to extend to more than two sources. However, if
the algorithm starts from an initial solution far from the
final one, it takes many iterations and much time to con-
verge because filter coefficients wij(l) are interdependent
in the algorithm.

The other approach is frequency-domain BSS, where
complex-valued ICA for an instantaneous mixture is ap-
plied in each frequency bin [7–11]. The merit of this ap-
proach is that the ICA algorithm can be performed sep-
arately at each frequency, and the convergence of each
ICA is fast. However, frequency-domain BSS involves
two major problems that must be solved. The first is
the well-known permutation problem. Although various
methods have been proposed for overcoming the permu-
tation problem, most of them are applicable only to two
sources or their performance deteriorates as the number
of sources increases. Section 3 of this paper presents a
method for solving the permutation problem robustly and
precisely. It is based on direction of arrival (DOA) esti-
mation and also the inter-frequency correlation of signal
envelopes. The method performs well even when there
are more than two sources.

However, just solving the permutation problem does
not provide good separation performance. We need to
solve the second problem, namely the circularity prob-
lem, which originates with the circularity effect of dis-
crete frequency representation. This problem is not as
well known as the permutation problem. We discuss the
influence and the reason for this problem and present an
approach for its solution in Sec. 4. By solving these two
problems, the frequency-domain BSS effectively sepa-
rates many sources in a reverberant environment with low
computational cost. The effectiveness of the presented
methods is shown by experimental results for up to four
sources in Sec. 5.

2. Frequency-domain BSS

This section describes frequency-domain BSS whose flow
is shown in Fig. 1. First, time-domain signals xj(t) at
sensors are converted into frequency-domain time-series
signals Xj(f, t) by short-time Fourier transform (STFT),
where t is now down-sampled with the distance of the
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Figure 1: Flow of frequency-domain BSS

frame shift. Then, the frequency responses W ij(f) of fil-
ters wij(l) are obtained by complex-valued ICA

Y(f, t) = W(f)X(f, t),
where W(f) is a separation matrix whose elements are
Wij(f), X(f, t) = [X1(f, t), . . . , XM (f, t)]T and Y(f, t)
= [Y1(f, t), . . . , YN (f, t)]T. Any complex-valued ICA
algorithm can be used in this scheme.

The ICA solution in each frequency bin has permuta-
tion and scaling ambiguity: even if we permute the rows
of W(f) or multiply a row by a constant, it is still an ICA
solution. The permutation ambiguity should be fixed
so that Yi(f, t) at all frequencies correspond to the same
source si(t). Thus, the rows of W(f) are permuted by a
permutation Πf : {1, . . . , N} → {1, . . . , N} obtained by
a method, such as those discussed in Sec. 3. The scaling
ambiguity is solved by the frequency-domain version of
the minimal distortion principle, W(f)← diag[W(f)−1]
W(f), to make Yi(f, t) as close to Xi(f, t) as possible
[5, 9]. Then, we solve the circularity problem by the spec-
tral smoothing described in Sec. 4. Finally, time-domain
separation filters wij(l) are obtained by applying inverse
DFT to Wij(f).

3. The permutation problem

Various methods have been proposed for solving the per-
mutation problem. Let us begin with the direction of ar-
rival (DOA) approach, where the DOAs of source sig-
nals are estimated to align permutations. The methods
described in [10, 11] plot the directivity patterns formed
by a separation matrix, and estimate the direction of a
source as the minimum of a directivity pattern. In prac-
tice, the methods only work for two sources since the di-
rectivity patterns become too complicated to analyze for
more than two sources.

We have proposed another way of estimating direc-
tions that works for any number of sources [12]. It first
calculates the inverse H(f) = W(f)−1 of the separa-
tion matrix W(f) obtained by ICA. Then, the direction
θi of a source corresponding to the i-th row of W(f) is
calculated by

θi = arccos
arg(Hji/Hj′i)

2πfc−1(dj − dj′ )
, (1)

where Hji is the element of the j-th row and i-th column
of H(f), c is the propagation velocity, and dj is the po-
sition of sensor j. The scaling ambiguity of the ICA so-
lution is eliminated by taking the ratio Hji/Hj′i of two
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Figure 2: DOA estimations for four sources using ICA

elements from the same column. Figure 2 shows DOA es-
timations for mixtures of four sources obtained with (1).
We see that directions are well estimated and permuta-
tion can be aligned by sorting the estimated directions
at each frequency. However, at some frequencies (espe-
cially low frequencies), estimations are not obtained or
are inaccurate. Therefore, the DOA approach alone does
not provide a highly precise solution as shown at “D” in
Fig. 6.

We also employ the correlation approach [8, 9] to align
permutations more precisely. We use the envelope v f

i (t) =
|Yi(f, t)| of a separated signal Yi(f, t) to measure corre-
lation. The correlation between two signals x(t) and y(t)
is defined as cor(x, y) = (µx·y − µx · µy)/(σx · σy),
where µx is the mean and σx is the standard deviation
of x. Envelopes have high correlation at neighboring fre-
quencies if separated signals correspond to the same sig-
nal. A simple criterion for deciding the permutation Πf

of frequency f is to maximize the sum of the correlations
between neighboring frequencies within distance δ:

Πf = argmaxΠ

∑
|g−f |≤δ

∑N
i=1 cor(vf

Π(i), v
g
Πg(i)),(2)

where Πg is the permutation at frequency g. This crite-
rion is based on local information and has a drawback in
that mistakes in a narrow range of frequencies may lead
to the complete misalignment of the frequencies beyond
the range. As shown at “C” in Fig. 6, the correlation ap-
proach alone does not provide a robust solution.

Our method effectively integrates these two approaches
to solve the permutation problem robustly and precisely
[12]. First, we decide permutations for frequency bins
where the confidence of the DOA estimation is sufficiently
high. LetF be the set of frequency bins where the permu-
tation is already decided. Then, we apply (2) to frequency
bins that are close neighbors with f ∈ F . This procedure
can avoid a consecutive misalignment. However, the per-
mutations at low frequencies are not usually decided at
this stage because the DOA estimations are unreliable as
shown in Fig. 2. To decide permutations for these fre-
quencies, we utilize the harmonic structure of a signal.
If the signals are speech, there is a strong correlation be-
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Figure 3: Periodical time-domain filter represented by
frequency responses sampled at L = 2048 points (above)
and its one-period realization (below).

tween the envelopes of a frequency f and its harmonics
2f, 3f and so forth. Thus, we decide the permutation at
frequency f with high confidence, if the sum shown be-
low can be clearly maximized:

Πf = argmaxΠ

∑
g=2f,3f,...

∑N
i=1 cor(vf

Π(i), v
g
Πg(i)).

Finally, we apply (2) again for frequencies where the per-
mutation is not yet decided.

4. The circularity problem

The frequency-domain BSS described in Sec. 2 is influ-
enced by the circularity of discrete frequency represen-
tation. The circularity refers to the fact that frequency
responses sampled at L points with an interval fs/L (fs:
sampling frequency) represent a periodical time-domain
signal whose period is L/fs. Figure 3 shows two time-
domain filters. The upper one is a periodical infinite-
length filter represented by frequency responses W ij(f)
calculated by ICA at L points. Since this filter is unreal-
istic, we usually use its one-period realization shown in
the lower part.

However, such one-period filters may cause a prob-
lem. Figure 4 shows impulse responses from a source
sk(t) to an output yi(t):

uik(l) =
∑M

j=1

∑L−1
τ=0 wij(τ)hjk(l − τ).

Those on the left u11(l) correspond to the extraction of
a target signal, and those on the right u14(l) correspond
to the suppression of an interference signal. The upper
responses are obtained with the infinite-length filters, and
the lower ones with the one-period filters. We see that the
one-period filters create spikes, which distort the target
signal and degrade the separation performance.

Here, we consider two reasons for these spikes. One
is that the frequency responses are under-sampled and the
corresponding time-domain filter has an overlap with an-
other period. ICA solutions separately obtained in fre-
quency bins generally require the time-domain filters to
be longer than L. The other reason is that adjacent pe-
riods work together to perform some filtering even if the
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Figure 4: Impulse responses uik(l) obtained with the pe-
riodical filter (above) and with its one-period realization
(below).

first problem is solved. The effect of the second problem
can be mitigated if the amplitude of the filter coefficients
around both ends is small. It might be thought that a suf-
ficiently large L would solve these problems. However,
an excessively long STFT frame results in fewer samples
at each frequency and worse ICA solutions [13].

Our approach to this problem involves controlling the
frequency responses Wij(f) so that the corresponding
time-domain filter wij(l) fits length L and has small am-
plitude around the ends. This is carried out by window-
ing wij(l)·g(l) with a window g(l) that tapers smoothly
to zero at each end, such as a Hanning window. With
this operation, frequency responses W(f) obtained by
ICA are smoothed as W(f)←∑fs−∆f

φ=0 G(φ)W(f−φ),
where G(f) is the frequency response of g(l) and ∆f =
fs/L. If a Hanning window is used, the frequency re-
sponses are smoothed as W(f)← [W(f−∆f)+2W(f)
+W(f +∆f)]/4. The windowing successfully eliminates
the spikes. However, it changes the frequency response
obtained by ICA and causes an error. Thus, we minimize
the error by adjusting the scaling of the ICA solution be-
fore windowing. See [14] for the details of the error and
how to minimize it.

5. Experimental results
We performed experiments to separate speech signals in
an environment whose conditions are summarized in Fig. 5.
We tested cases of two, three and four sources whose
positions are indicated in Table 1. The sensors were ar-
ranged linearly, and the number of sensors used was the
same as the number of sources. We used filters of length
L = 2048 because this length performed the best un-
der the conditions. The ICA algorithm we used was the
complex-valued version of FastICA [4].

The results shown in Table 1 are the average of eight
combinations of 7-second speeches. The signal to inter-
ference ratio (SIR) at output i is calculated as the ratio of
the power of a target component

∑
l uii(l)si(t−l) and in-
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Figure 5: Experimental conditions

Table 1: Overall results
#sources / position 2 / a c 3 / a b d 4 / a b c d
Spectral smoothing no yes no yes no yes

SIR (dB) 18.4 21.2 13.3 16.5 9.4 11.6
Execution time (s) 4.1 4.1 7.5 7.6 12.3 12.5

terference components
∑

k �=i

∑
l uik(l)sk(t− l). We see

that the spectral smoothing discussed in Sec. 4 improves
the average SIR with every setup. The short execution
time, as shown in Table 1, enables the BSS system to per-
form in real-time if the number of source signals is not
very large.

Figure 6 shows SIRs for three and four sources with
the different methods for solving the permutation prob-
lem discussed in Sec. 3: “D” is the DOA approach alone,
“C” is the correlation approach alone, “D+C+Ha” is the
proposed method, and “Optimal” is the optimal solution
obtained by utilizing the information of sk(t) and hjk(l).
The performance of “D” was stable but insufficient. The
performance of “C” was unstable and very poor for four
sources. The proposed method “D+C+Ha” performed
very well and was close to “Optimal” even when the num-
ber of sources was more than two.

6. Conclusion
This paper presented effective methods for overcoming
the two major problems of frequency domain BSS. We
succeeded in separating many sources mixed in a real en-
vironment with a short execution time. The results shown
here were for up to four sources with linearly arranged
sensors. We have also separated six sources with a planar
array of eight sensors based on similar techniques [15].
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