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Abstract

In this paper, we propose a new network growth model and its learning algorithm to more precisely model such a real-world growing

network as the Web. Unlike the conventional models, we have incorporated directional attachment and community structure for this purpose.

We show that the proposed model exhibits a degree distribution with a power-law tail, which is an important characteristic of many large-

scale real-world networks including the Web. Using real Web data, we experimentally show that predictive ability can be improved by

incorporating directional attachment and community structure. Also, using synthetic data, we experimentally show that predictive ability can

definitely be improved by incorporating community structure.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The World-Wide Web provides a vast repository of

information and continues to grow as an important new

medium of communication. From the scientific and

technological points of view, investigating the Web has

become an important and challenging research issue (Albert

& Barabási, 2002; Chakrabarti et al., 1999; Dorogovtsev &

Mendes, 2002; Kleinberg & Lawrence, 2001; Strogatz,

2001). The Web data set is huge, combines many kinds of

features, and changes over time. When mining and

modeling this rich collection of data, various problems for

learning can be posed. Namely, the Web can provide an

interesting new genre of learning problems and also

establish a new research field of complex intelligent

systems. Therefore, investigating the Web is drawing the

attention of the research community involved in Neural

Networks as well (Pal, Talwar, & Mitra, 2002).

The pages and hyperlinks of the Web can be viewed

as nodes (vertices) and links (edges) of a network

(directed graph). This network (graph) structure is useful

from various points of view. For example, several

algorithms for identifying ‘authoritative’ or ‘influential’

pages from hyperlink structures have been proposed to

improve Web search engines (Brin & Page, 1998;

Kleinberg, 1998; Ng, Zheng, & Jordan, 2001). Also, Web

hyperlink structures can be viewed as social networks.

Thus, from the viewpoint of the social science, it is

important to analyze these social networks and understand

the ecology of the Web, since these investigations can

elucidate, for example, communications among members

of a group and economic transactions among corporations

(Wasserman & Faust, 1994). On the other hand, the Web

constantly grows through the addition of new pages and

hyperlinks created by users with their particular interests,

and hence it has become a growing network. Recently,

considerable attention has been devoted to exploring real-

world complex networks, and modeling the growth

processes of those networks is becoming one of the most

important research issues (Albert & Barabási, 2002;

Dorogovtsev & Mendes, 2002; Strogatz, 2001). In this

paper, we propose a new network growth model and its

learning algorithm to more precisely model such a real-

world growing network as the Web. Unlike the conven-

tional models, we have incorporated directional attachment

and community structure for this purpose.
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In Section 2, we briefly review the previous work on

growing network models and give an overview of the basic

idea of the proposed model with a description of the related

work. In Section 3, we discuss probabilistic models of

growing networks and explain the conventional models

in detail. In Section 4, we describe the proposed model in

detail, and formally show that the proposed model also

exhibits a degree distribution with a power-law tail, which

is one of the most notable characteristics of the graph

structures observed in many real-world growing networks

including the Web. This result is also numerically confirmed

in one of the experiments in Section 6. In Section 5, we give

a learning algorithm for the proposed model. In Section 6,

we experimentally show that both directional attachment

and community structure are quite effective for modeling

such a growing network as the Web.

2. Overview

2.1. Previous work

A fundamental characteristic of any network is the

degree distribution FðdÞ; which represents the fraction of the

number of nodes that have d links in the network. Empirical

results show that for many large-scale real-world networks

including the Web, the degree distributions do not follow

Poisson distributions, which the classical random graph

theory of Erdös and Rényi expects, but possess power-law

tails (Albert & Barabási, 2002; Barabási & Albert, 1999;

Broder et al., 2000; Dorogovtsev & Mendes, 2002).3 These

facts suggest that the growing network model for the Web

must at least satisfy the following conditions.

† Its growth process must not be completely random but

obey certain self-organization principles.

† After it has sufficiently grown, the degree distribution of

the resulting network must have a power-law tail.

Barabási and Albert (1999) discovered a growing network

model satisfying these conditions. The principal ingredient

of their model is a mechanism of preferential attachment, in

which the probability that an existing node gains a new link is

proportional to the number of links it currently has. Some

variants of the Barabási–Albert (BA) model have been

presented (see, e.g. Albert & Barabási, 2002; Dorogovtsev &

Mendes, 2002). In particular, by introducing mixtures of

preferential and uniform attachment, Pennock, Flake,

Lawrence, Glover, and Giles (2002) more accurately

accounted for the degree distributions of the networks of

category-specific Web pages, the Web as a whole, movie

actor collaborations, the western United States electrical

power grid, and scholarly citations than the BA model. Since

a system with a power-law is known to have a scale-free

nature, these growing network models are generally referred

to as scale-free models.

2.2. The basic idea of the proposed model

With the aim of constructing a more precise model of

such a real-world growing network as the Web, we propose

a new network growth model that incorporates

† directional attachment

† community structure

into an existing scale-free model.
When a new link is created, the following four cases can

happen (cf. Fig. 1). It is attached from an old node to an old

node (case 1), from an old node to a new node (case 2), from

a new node to an old node (case 3), or from a new node to a

new node (case 4). Each growing network has its own bias

Fig. 1. Example of the four cases of new link creation. Filled circles,

unfilled circles, solid arrows, and dashed arrows, respectively, indicate old

nodes, new nodes, old links, and new links in a growing network. Cases 1,

2, 3, and 4, respectively, indicate the cases where a new link is created from

an old node to an old node, from an old node to a new node, from a new

node to an old node, and from a new node to a new node.

Fig. 2. Example of a network with community structure. In this network,

there are two communities whose nodes are, respectively, indicated by

circles and squares. Solid lines indicate the undirected links of the network.

This example illustrates that communities are subsets of nodes within

which the undirected links are dense, but between which the undirected

links are less dense.

3 Other structural characteristics of the Web graph are also reported (see,

e.g. Albert & Barabási, 2002; Dorogovtsev & Mendes, 2002). For example,

the distribution of the number of pages per site exhibits a power-law

(Huberman & Adamic, 1999), and the average shortest-path length is

relatively small despite its huge size (Albert, Jeong, & Barabási, 1999;

Broder et al., 2000). However, in this paper, we focus on the characteristic

degree distribution since it is widely understood, and has a simple and

explicit expression.
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for these four cases. Namely, the probabilities that cases 1,

2, 3 and 4 happen can change depending on the growing

network to be modeled. For example, in citation networks, a

new link is always created from a new node to an old node.

The mechanism that appropriately biases these four cases in

a new link creation is referred to as directional attachment.

To precisely model given growing networks, it is necessary

to incorporate the directional attachment proper to them.

However, the existing scale-free models do not take into

account directional attachment.

A community is defined as a collection of nodes in which

each member node has more links to nodes within the

community than to nodes outside the community (Flake,

Lawrence, & Giles, 2000; Girvan & Newman, 2002;

Kleinberg & Lawrence, 2001). For example, communities

in a citation network might represent related papers on a

single topic. Namely, the community structure of a network

is defined by the decomposition of the set of its nodes

into the clusters that arise from its undirected graph structure

(cf. Fig. 2). One characteristic of the Web is the existence of

community structure, and the Web grows as various clusters

are formed (Chakrabarti et al., 1999; Eckmann & Moses,

2002; Flake et al., 2000; Girvan & Newman, 2002; Kleinberg

& Lawrence, 2001; Kumar, Raghavan, Rajagopalan, &

Tomkins, 1999). Namely, the following situation can often

be observed in its growth process: an increasing number of

links are created within each community while the links

between communities remain sparse (cf. Fig. 3). Incorporat-

ing community structure enables us to model this sort of

detailed growth process. However, the existing scale-free

models also do not take into account community structure.

In attempts to identify community structure, there have

been several investigations using graph-theoretic methods

(Eckmann & Moses, 2002; Flake et al., 2000; Girvan &

Newman, 2002; Kumar et al., 1999). Also, there have been

some investigations using latent variable models such as

PHITS (Cohn & Chang, 2000; Cohn & Hofmann, 2001),

provided that the definition of community might be slightly

changed. However, these investigations dealt with only static

networks, that is, the number of nodes and links were not

allowed to increase. Therefore, introducing community

structure to growing network models may be a promising

approach.

3. Scale-free models

Here, we discuss probabilistic models of growing

networks. We assume that nodes and links do not disappear

in the growth processes.4

At an arbitrary time t $ 0; a growing network is

represented by an adjacency matrix At whose ði; jÞ-element

Atði; jÞ is the number of links from node i to node j; where

the size of At is regarded as being large enough, and

Atði; jÞ ¼ 0 if node i or node j does not exist in the network at

time t: Let Nt denote the set of nodes in the growing

network at time t and Nt denote the number of elements of

Nt: For any v [ Nt; the degree DtðvÞ of v at time t is

defined by the number of the links attaching to v for the

growing network at time t; that is

DtðvÞ ¼
X

i[Nt

{Atðv; iÞ þ Atði; vÞ}:

For any t $ 1; we define the matrix DAt of the link

increments at time t as follows: if i; j [ Nt21; then the ði; jÞ-

element DAtði; jÞ of DAt is Atði; jÞ2 At21ði; jÞ; otherwise it is

Atði; jÞ:

We suppose that the growth process of a network is

described as a stochastic process PðDAtlAt21Þ; ðt $ 1Þ: Our

aim is to model the true growth process PðDAtlAt21Þ; ðt $ 1Þ

based on a time-sequence of observed adjacency matrices.

For this purpose, we first construct a network growth model

PðDAtlAt21; uÞ; where u denotes the set of model para-

meters. Next, we acquire an optimal model PðDAtlAt21; ûÞ

for the true growth process by learning the observed data.

In a scale-free model, given an adjacency matrix At21 at

time t 2 1; the probability PðDAtlAt21; uÞ that the matrix of

link increments at time t is DAt is assumed to be given by

Fig. 3. Example of a growing network with community structure. In this example, a growth process of a network with two communities is displayed. The

arrows indicate the time direction. As time goes on, the numbers of nodes and links increase. In particular, the links within each community increase while the

links between communities remain sparse. Thus, the network grows as two clusters are formed.

4 For example, this assumption is always true for citation networks. For

the Web, this assumption can also be regarded as almost true if we deal with

its short-term changes.
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the following multinomial distribution

PðDAtlAt21; uÞ /
Y
ut ;vt

Pð½ut; vt�lAt21; uÞ
DAtðut ;vtÞ; ð1Þ

where Pð½ut; vt�lAt21Þ indicates the probability that a new

link at time t; denoted by ½ut; vt�; from an originating node

ut to a target node vt is added to the network represented

by At21:

In the BA model (Barabási & Albert, 1999), at each time

t a new node is introduced and it immediately attaches to

some of the preexisting nodes. The probability PðvtlAt21Þ of

choosing node vt as a target node at time t given At21 is

defined by the fraction of the number of links that node vt

has at time t 2 1; that is

PðvtlAt21Þ ¼
Dt21ðvtÞX

i[Nt21

Dt21ðiÞ
:

This is a mechanism of preferential attachment. Then

Pð½ut; vt�lAt21Þ ¼ PðutlAt21ÞPðvtlAt21Þ;

and the probability PðutlAt21Þ of choosing node ut as an

originating node at time t given At21 is 1 iff ut is the new

node. Note that the BA model does not have any control

parameters and self-links are allowed.

In Pennock et al.’s (2002) (PFLGG) model, two

parameters, a and b (0 # a; b # 1), are introduced and

self-links are not allowed. At every time-step, a new node

and some new links are added to the current network, where

both endpoints of a new link are chosen according to a

mixture of preferential and uniform attachment. That is,

Pð½ut; vt�lAt21;a;bÞ is defined by

Pð½ut; vt�lAt21;a;bÞ ¼ PðutlAt21;aÞPðvtlut;At21;bÞ;

and PðutlAt21;aÞ is defined by

PðutlAt21;aÞ ¼ a
Dt21ðutÞX

i[Nt21

Dt21ðiÞ
þ ð1 2 aÞ

1

Nt

;

and Pðvtlut;At21;bÞ is defined by

Pðvtlut;At21;bÞ ¼b
Dt21ðvt;utÞX

i[Nt21\{ut}

Dt21ði;utÞ
þ ð12bÞ

1

Nt 21;

where Dt21ði; utÞ denotes the degree of node i for the

network obtained by eliminating node ut from the growing

network at time t 2 1; that is

Dt21ði; utÞ ¼
X

j[Nt21\{ut}

{At21ði; jÞ þ At21ðj; iÞ}:

4. The proposed model

We propose a network growth model incorporating two

new mechanisms, directional attachment and community

structure, into a scale-free model. From the existing scale-

free models, we borrow the following two ideas: one is the

idea of the BA model that new nodes are always introduced

with new links, and the other is the idea of the PFLGG

model that new links are generated according to a mixture of

preferential and uniform attachment. In the proposed model,

self-links are not allowed.5

4.1. Directional attachment

We incorporate the directional attachment by introducing

a set of control parameters, h ¼ {h00;h01;h10;h11}; as

shown in Table 1(a), where for a new link creation, h00

denotes the probability that both the originating and target

nodes are old, h01 denotes the probability that the

originating node is old and the target node is new, h10

denotes the probability that the originating node is new and

the target node is old, and h11 denotes the probability that

both the originating and target nodes are new. That is, we

introduce the fully correlated model (Table 1(a)) for

directional attachment. To clarify the effectiveness of

incorporating directional attachment, we also consider the

independent model shown in Table 1(b) for comparison (cf.

Section 6.3.2). That is, we consider the following special

case. For a new link creation, whether the target node is new

or old is independent of whether the originating node is

new or old. In Table 1(b), a0 indicates the probability that a

new node is chosen as the originating node of a new link,

and b0 denotes the probability that a new node is chosen as

the target.

In comparing the BA and PFLGG models for directional

attachment, they can be represented by the 2 £ 2 matirces of

probabilities shown in Table 2 at time t: For example, in the

BA model, the probability that a new link is attached from a

new node to an old node is one, and the other probabilities

are zero. Namely, the previous scale-free models have

smaller degrees of freedom than the proposed model for

directional attachment.

4.2. Community structure

Suppose that the set of community-labels is

{z1
;…; zK};

that is, there exist K communities, and each node belongs to

only one community without changing the community

during the studied period. We also assume that each

community has its own growth dynamics, and in the growth

process, the links within a community are more frequently

generated than those between different communities.

5 From the viewpoint of designing Web search engines, it is significant to

know the authoritative Web pages concerning a topic based on the link

structure (Brin & Page, 1998; Chakrabarti et al., 1999; Kleinberg, 1998). In

this respect, self-links should be neglected.
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We incorporate communities into a scale-free model as

latent variables.

Here, we introduce some notations. Consider a growing

network. We denote by At the adjacency matrix of the

growing network at time t: Let Nk
t denote the set of nodes

that belong to community zk in the growing network at

time t and Nk
t denote the number of elements of Nk

t : Note

that Nk
t and Nk

t depend on At: Let Dk
t ðvÞ denote the degree

of node v for community zk in the growing network at

time t; i.e.

Dk
t ðvÞ ¼

X
i[Nk

t

{Atðv; iÞ þ Atði; vÞ}: ð2Þ

Also, for any u; v [ Nt (the set of nodes in the growing

network at time t), let Dk
t ðv; uÞ denote the degree of node v

for community zk in the network obtained by eliminating

node u from the growing network at time t; i.e.

Dk
t ðv; uÞ ¼

X
i[Nk

t \{u}

{Atðv; iÞ þ Atði; vÞ}: ð3Þ

4.3. A network growth model

The proposed model is characterized by a stochastic

process PðDAtlAt21; uÞ; which has the same form as Eq. (1).

In particular, mt new links are added at each time t: Given

the adjacency matrix At21 of the network at time t 2 1; a

new link ½ut; vt� at time t is generated in the following way.

First, zk is chosen with probability j k as the community

to which the originating node ut of the new link belongs.

Next, zl is chosen with probability g kl as the community to

which the target node vt belongs. Finally, link ½ut; vt� is

created with probability Pð½ut; vt�l½zk; z l�; At21; uÞ: Namely,

taking into account the community structure, the probability

Pð½ut; vt�lAt21; uÞ that link ½ut; vt� is newly added given At21

is defined by

Pð½ut;vt�lAt21;uÞ¼
XK

k;l¼1

j kg klPð½ut;vt�l½zk
;z l�;At21;uÞ: ð4Þ

Note here that the proposed model is different from the

aspect model (PHITS) (Cohn & Chang, 2000; Hofmann,

1999) as a latent variable model. In particular, our model

becomes a generative model, and a community-label is

directly assigned to each individual node.

After the communities ½zk; zl� of ut and vt are given,

whether ut and vt are new or old is decided according to the

directional attachment

hkl ¼ {hkl
00;h

kl
01;h

kl
10;h

kl
11}

as shown in Table 1(a). For example, with probability hkl
11;

both ut and vt are new nodes.

If both ut and vt are new nodes, a new node of community

zk and a new node of community zl are created with

probability 1. Namely, the probability Pð½ut; vt�l½zk; zl�;

At21; uÞ that link ½ut; vt� is newly added given ½zk; zl� and

At21 is defined by

Pð½ut; vt�l½zk
; zl�;At21; uÞ ¼ hkl

11: ð5Þ

If ut is an old node and vt is a new node, the probability of

choosing ut is defined by a mixture of preferential and

uniform attachment within community zk; and a new node of

community zl is created with probability 1: Namely, the

probability Pð½ut; vt�l½zk; zl�; At21; uÞ is defined by

Pð½ut; vt�l½zk
; zl�;At21; uÞ

¼ hkl
01 ak Dk

t21ðutÞX
i[Nk

t21

Dk
t21ðiÞ

þ ð1 2 akÞ
1

Nk
t21

8>>><
>>>:

9>>>=
>>>;
; ð6Þ

(cf. Eq. (2)), where 0 # ak # 1:

Also, if ut is a new node and vt is an old node, a new node of

community zk is created with probability 1, and the probability

of choosing vt is defined by a mixture of preferential and

uniform attachment within community zl: Namely, the

probability Pð½ut; vt�l½zk; zl�; At21; uÞ is defined by

Pð½ut; vt�l½zk
; zl�;At21; uÞ

¼ hkl
10 bl Dl

t21ðvtÞX
i[Nl

t21

Dl
t21ðiÞ

þ ð1 2 blÞ
1

Nl
t21

8>>><
>>>:

1
CCCA; ð7Þ

(cf. Eq. (2)), where 0 # bl # 1:

Table 2

Directional attachment in conventional models

Old node New node

(a) BA model

Old node 0 0

New node 1 0

(b) PFLGG model

Old node
1 2

1 2 a

Nt


 �

� 1 2
1 2 b

Nt 2 1


 �
1 2

1 2 a

Nt


 �

�
1 2 b

Nt 2 1

New node
1 2 a

Nt

0

Table 1

Directional attachment in proposed model

Old node New node

(a) Fully correlated model

Old node h00 h01

New node h10 h11

(b) Independent model

Old node ð1 2 a0Þð1 2 b0Þ ð1 2 a0Þb0

New node a0ð1 2 b0Þ a0b0
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If both ut and vt are old nodes, the probability of

choosing ut is defined by a mixture of preferential and

uniform attachment within community zk; and the

probability of choosing vt is defined by a mixture of

preferential and uniform attachment within community zl

excepting ut: Namely, the probability Pð½ut; vt�l½zk; zl�;

At21; uÞ is defined by

Pð½ut; vt�l½zk
; zl�;At21; uÞ

¼ hkl
00 ak Dk

t21ðutÞX
i[Nk

t21

Dk
t21ðiÞ

þ ð1 2 akÞ
1

Nk
t21

8>>><
>>>:

9>>>=
>>>;

· bl Dl
t21ðvt; utÞX

i[Nl
t21

\{ut}

Dl
t21ði; utÞ

þ ð1 2 blÞ
1

Nl
t21 2 dk;l

8>>><
>>>:

9>>>=
>>>;
;

ð8Þ

(cf. Eqs. (2) and (3)), where 0 # ak; bl # 1; and dk;l is

Kronecker’s delta.

Hence, a generative model of growing networks has been

constructed. Here, the set u of model parameters becomes

u ¼ {a k
;b l

;h kl
1r; j

k
; g kl; k; l ¼ 1;…;K; 1; r ¼ 0; 1};

where 0 # a k; b l; h kl
1r; j k; g kl # 1; and

P
1;r h

kl
1r ¼P

kj
k ¼

P
l g

kl ¼ 1: We assume that mt is given.

Although we used the mechanism of preferential

attachment in the manner of undirected graphs, we can

use a more detailed preferential attachment mechanism by

taking into account a directed graph nature and decompos-

ing the degree of a node into its in-degree and its out-degree

(Krapivsky, Rodgers, & Redner, 2001). Then, we can obtain

a more flexible model of growing networks. Note that we

can also develop similar analyses and learning algorithms

for this extended model.

4.4. Degree distributions

We investigate the degree distributions of the growing

networks generated by the proposed model.

As Barabási and Albert (1999) pointed out, the

mechanisms of growth and preferential attachment can

be considered as the origin to yield a degree distribution

with a power-law tail. These mechanisms are also

incorporated in the proposed model. Thus, it can be

considered that our model also exhibits a degree

distribution with a power-law tail.

There are various approaches to formally prove the

power-law dependence of the degree distribution of a

growing network (Albert & Barabási, 2002; Dorogovtsev &

Mendes, 2002). We can give a formal proof of the following

proposition using the master equation approach with the

continuous approximation of Dorogovtsev and Mendes

(2001) (see Appendix A).

Proposition 1. Suppose that the values of all parameters

of the proposed model are not zero, and mt ¼ m0 for any

t . 1: We arbitrarily fix an initial network and consider

the growing network generated by the proposed model from

the initial network. Let FtðdÞ be the degree distribution of

the growing network at time t: Then, there exists a positive

constant n such that

FtðdÞ / d2n as t !1; d !1:

Hence, the proposed model generically exhibits a degree

distribution with a power-law tail after it has sufficiently

grown.

5. Learning for growing networks

Let {A0;A1;…;AT } be the observed time-sequence of

adjacency matrices of a growing network. Our task is to

estimate the set u of model parameters from these data.

Although the latent variable corresponding to node i should

be probabilistically estimated as Pðzkli [ Nt;AtÞ; for

simplicity, we deterministically estimate it by the following

hard-clustering procedure.

5.1. Clustering

First, we perform clustering for the network of adjacency

matrix AT (that is, the last observed network) to assign the

community-label to each node of the network.6 Then,

Pðzkli [ NT ;AT Þ is 1 for only one k and 0 for the others,

and we consider Pðzkli [ Nt21;At21Þ ¼ Pðzkli [ NT ;AT Þ

for t ¼ 1;…;T : Several methods (e.g. Flake et al., 2000;

Girvan & Newman, 2002) can be used for this clustering. In

our experiments, we made the network undirected, added

self-links to the network, and used the K-means clustering

algorithm based on the Kullback–Leibler divergence (see

Appendix B).

5.2. Parameter estimation

Next, we estimate u from the observed data based on the

clustering result. Let {ð½ul
t ; v

l
t �;ml

t Þ; l ¼ 1;…; rt} be the set

of links added newly at time t $ 1; where ð½ul
t ; v

l
t �;ml

t Þ

means that link ½ul
t ; v

l
t � is added ml

t times, that is,

DAtðu
l
t ; v

l
t Þ ¼ ml

t : Note that we know the communities of

each ul
t and each vlt by the clustering result. We also know

whether or not each ul
t and each vlt were new nodes from the

observed data {At; t ¼ 0; 1;…;T}:

First, let us estimate the parameters {jk}; {gkl}; and

{hkl
1r}: Consider all the links added for the observed period.

6 First, community structure is defined by the cluster structure of the

network. It is also assumed that on the growth process, links are more

frequently generated within each community than those between different

communities. Therefore, we can consider that by clustering the most recent

network, it is fairly possible to determine the community-label of each node

of the network.
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Let m denote the total number of these links, that is, m ¼PT
t¼1

Prt

l¼1 ml
t : j

k is estimated as nk
1=m; where nk

1 is the

number of these links such that the originating node has

label zk: gkl is estimated as nkl=nk
1; where nkl is the number of

these links such that the originating node has label zk and the

target node has label zl: Similarly, we can also empirically

estimate {hkl
1r}:

It suffices to estimate the parameters w ¼ {a;b}; where

a ¼ {ak} and b ¼ {bl}: We perform the maximal like-

lihood estimation. In this case, the log-likelihood function

LðwÞ is of the form

LðwÞ ¼
XT
t¼1

log PðDAtlAt21;wÞ

¼
XT
t¼1

Xrt

l¼1

ml
t log Pð½ul

t ; v
l
t �lAt21;wÞ þ const:;

which is explicitly calculated by Eqs. (4)–(8).

We can efficiently estimate the optimal parameter values

by using an iterative algorithm based on the EM algorithm.

Let �w be the current estimate of w: Then the update formula

of w can be obtained by maximizing the Q-function with

respect to w; which is defined by

Qðwl �wÞ¼M
XT
t¼1

Xrt

l¼1

XK
k;l¼1

ml
t qlkl

t ð �wÞlogPð½ul
t ;v

l
t �;½z

k
;zl�lAt21;wÞ;

where

qlkl
t ð �wÞ ¼ Pð½zk

; zl�l½ul
t ; v

l
t �;At21; �wÞ

¼
j kg klPð½ul

t ; v
l
t �l½zk; z l�;At21; �wÞX

k;l

j kg klPð½ul
t ; v

l
t �l½zk

; z l�;At21; �wÞ

which is explicitly calculated by Eqs. (5)–(8).

We decompose as

Qðwl �wÞ ¼ Q1ðal �wÞ þ Q2ðbl �wÞ þ const:

Our task is to calculate a and b; which maximize Q1ðal �wÞ
and Q2ðbl �wÞ; respectively. By Eqs. (5)–(8)

Q1ðal �wÞ ¼
XT
t¼1

Xrt

l¼1

XK
k;l¼1

ml
t qlkl

t ð �wÞxt21ðu
l
t Þlogða kpk

t21ðu
l
t Þ

þ ð1 2 akÞ=Nk
t21Þ;

where xt21ðu
l
t Þ is 1 if ul

t [ Nt21 (that is, ul
t is an old node)

and 0 otherwise, and

pk
t21ðu

l
t Þ ¼

Dk
t21ðu

l
t ÞX

i[Nk
t21

Dk
t21ðiÞ

:

Q2ðbl �wÞ can also be calculated in a similar way.

Next, we consider maximizing Q1ðal �wÞ with respect to a:

This is also performed by using an iterative algorithm based

on the EM algorithm. Let ~a be the current estimate of a:

We define Q0
1ðal ~a; �wÞ by

Q0
1ðal ~a; �wÞ¼

XT
t¼1

Xrt

l¼1

XK
k¼1

ylk
t ð �wÞ

�
~a k logða kÞp k

t21ðu
l
t Þþð12 ~a kÞlogð12a kÞ=N k

t21

~a kp k
t21ðu

l
t Þþð12 ~a kÞ=Nk

t21

;

where ylk
t ð �wÞ ¼ ml

t xt21ðu
l
t Þ
PK

l¼1 qlkl
t ð �wÞ: Since by Jensen’s

inequality

Q1ðal �wÞ2 Q1ð ~al �wÞ $ Q0
1ðal ~a; �wÞ2 Q0

1ð ~al ~a; �wÞ;

the update formula of a can be obtained by maximizing

Q0
1ðal ~a; �wÞ with respect to a: Hence, it is obtained by

ak ¼
XT
t¼1

Xrt

l¼1

ylk
t ð �wÞXT

t0¼1

Xrt0

l0¼1
yl

0k
t0 ð �wÞ

�
~a kp k

t21ðu
l
t Þ

~a kp k
t21ðu

l
t Þ þ ð1 2 ~a kÞ=Nk

t21

:

In a similar way, we can obtain the update formula of b for

maximizing Q2ðbl �wÞ: Hence, we have obtained an algorithm

to calculate the set w of unknown parameters by the

maximal likelihood estimation.

6. Experimental evaluation

For simplicity, we focus on the case of undirected graphs

in our experiments. Thus, we have ak ¼ bk; hkl
10 ¼ hkl

01;

ðk; l ¼ 1;…;KÞ:

6.1. Evaluation of degree distributions

We numerically confirm that the proposed model

exhibits a degree distribution with a power-law tail.

Fig. 4 shows the degree distributions for three models

and the network of the Web pages used in our next

experiment (cf. Section 6.3): (a) is for the BA model, where

five links are added at each time step, and (b) and (c) are for

our models with mt ¼ 5; hkl
00 ¼ 81=100; hkl

10 ¼ 9=100; hkl
11 ¼

1=100; ak
1 ¼ 4=5; and ak

2 ¼ 1=5; where (b) is the case of a

single community ðK ¼ 1Þ; which can essentially be

regarded as the PFLGG model, and (c) is the case of two

communities ðK ¼ 2Þ with j1 ¼ 1=5; j2 ¼ 4=5 and g11 ¼

g22 ¼ 4=5; g12 ¼ g21 ¼ 1=5: (d) is for the real data of the

Web. Fig. 4 numerically confirms that our model with two

communities also exhibits a degree distribution with a

power-law tail, as do the BA model, the model with a single

community, and the network of the Web pages. This result

supports Proposition 1.

6.2. Performance measure

Consider a growing network, and its observed data

{A0;A1;…;AT }: Let ûK denote the set of the parameter
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values learned by the proposed model with K communities

from this data. We evaluate the ability of the learned model

with the prediction performance for dynamic probability

matrix defined below.

We define the ðNT þ 2Þ £ ðNT þ 2Þ matrix ĜK ¼

½ĜKði; jÞ� by

ĜKði; jÞ ¼ Pð½i; j�lAT ; ûKÞ; ði; j ¼ 1;…;NT þ 2Þ:

ĜK is called the dynamic probability matrix of the learned

model at time T : Note that it represents the probability

distribution for a new link creation given AT : Let G ¼

½Gði; jÞ� denote the dynamic probability matrix of the actual

process at time T : We evaluate the prediction performance

of the learned model for dynamic probability matrix by the

Kullback–Leibler divergence

IðG; ĜKÞ ¼
X
i;j

Gði; jÞlogðGði; jÞ=ĜKði; jÞÞ:

6.3. Evaluation for real Web data

We evaluate the performance of the proposed model

using a real-world growing network, that is, a growing

network of Web pages concerning a broad topic.

6.3.1. Real Web data

Based on the method of Kleinberg (1998), we construct

the network GtðsÞ of the Web pages concerning a topic s; at

time t in the following way. At each time t; we first collect

the 200 highest-ranked pages for the query s by using a text-

based Web search engine. Next, we collect all of the pages

linked from these pages, and up to 50 the pages that link

these pages. Let StðsÞ denote the set of Web pages collected

in this way. We define GtðsÞ by the network induced on the

Web pages in <t
t¼0 StðsÞ at time t:

We consider the real-world growing network GtðsÞ;

ðt $ 0Þ: In the experiment, ‘mp3’ was used as topic s;

Fig. 4. Degree distributions.
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and the time-interval was 1 month. Also, the observed time-

sequence of the adjacency matrices were {A0;A1;A2}: We

used {A0;A1} as the training data, that is, T ¼ 1:

6.3.2. Performance evaluation

For the data of this real-world growing network, we

investigated the effectiveness of incorporating directional

attachment and community structure.

Let Model-0 be our independent model for directional

attachment (cf. Section 4.1) and Model-1 be the proposed

model, that is, the fully correlated model for directional

attachment. Fig. 5 displays IðG; ĜKÞ with respect to K for

Model-0 and Model-1. Here, G was empirically calculated

from A1 and A2:

Fig. 5 first shows that Model-1 could much more

accurately predict the actual dynamic probability matrix

than Model-0. This result implies that the prediction

performance can be improved by incorporating directional

attachment.

Fig. 5 also shows that although the prediction perform-

ance could be raised by increasing the number K of latent

variables, an optimal number (11 in this case) of latent

variables could exist. In particular, the proposed model

incorporating community structure could more accurately

predict the actual dynamic probability matrix than the

model not incorporating it ðK ¼ 1Þ: These results imply that

the prediction performance can be improved by incorporat-

ing community structure.

Furthermore, it is important to identify the community

structure of the network of Web pages on a particular topic

from the viewpoint of information retrieval. We note that

our method identified the community structure for such a

network from time-sequence data without community

information. Namely, in this experiment, the inferred

community structure for K ¼ 11 is regarded as an optimal

community structure for this Web network. Incidentally, for

the suggested communities, we in particular found the group

of Japanese sites, the group of Korean sites and the group of

Chinese sites.

6.4. Evaluation for synthetic data

Using synthetic data of a growing network with two

communities, we investigate the effectiveness of incorpor-

ating community structure in further detail.

6.4.1. Synthetic data

We consider the following growing network, which has

the same form as the proposed model except for having

time-dependent Pð½zk; zl�ltÞ ¼ PðzkltÞPðzllzk; tÞ:

† Five links are added at each time-step; i.e. mt ¼ 5;

ðt $ 0Þ:

† The growing network has two communities; i.e. K ¼ 2:

† a1ð¼ b1Þ ¼ a2ð¼ b2Þ ¼ 8=9; that is, the intensity of

preferential attachment of community z1 is the same as

that of community z2:

† The growth process is an independent model for

directional attachment. Moreover, a1
0ð¼ b1

0Þ ¼ a2
0ð¼

b2
0Þ ¼ 1=10; that is, for the probability that a new node is

chosen as an end node of a new link, community z1 and

community z2 are identified.

† Pðz1lz1; tÞ ¼ Pðz2lz2; tÞ ¼ 9=10; ðt $ 0Þ; that is, for the

probability that both end nodes of a new link belong to the

same community, community z1 and community z2 are

identified.

Pðz1ltÞ ¼ 1

�
1 þ exp 1 2

t

5000


 �� �
; ðt $ 0Þ;

that is, when an end node of a new link is chosen, there

is the difference between the probability that it is chosen

from community z1 and the probability that it is chosen

from community z2: In particular, Pðz1ltÞ is small at time

t ¼ 0 and gradually increases while Pðz2ltÞ is large at

time t ¼ 0 and gradually decreases.

We started the growth process from an initial network

with 100 nodes, and observed the networks at t ¼ T0ð¼

5000Þ and t ¼ Tð¼ 10; 000Þ: Namely, the observed time-

sequence of the adjacency matrices were AT0
; AT : Note that

the population of community z1 becomes more than that of

community z2 in the future while the former is less than the

latter at time T0 and the two are almost equal at time T :

Fig. 6(a) indicates the actual network at time T together with

the community structure, and (b) indicates its observable

data, where only the first 100 nodes are displayed.

6.4.2. Performance evaluation

For the prediction of this artificial growing network, we

compared the model incorporating community structure

ðK ¼ 2Þ and the model not incorporating it ðK ¼ 1Þ within

the proposed model. For the model of K ¼ 1; we used

the true parameter values, and for the model of K ¼ 2;Fig. 5. Prediction performance of learned models.
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we used the parameter values estimated from AT0
; AT by our

learning method. The experiment was performed for five

different initial networks with 100 nodes, which are

randomly generated. The results are shown in Table 3.

The second column of Table 3 indicates the clustering

accuracy. In particular, Fig. 6(c) visually indicates the

clustering result for one of these five trials. These show that

our clustering algorithm works well. Namely, at time T ; our

method could fairly accurately recover the community

structure of this growing network from the data without

community information.

The third and fourth columns, respectively, indicate the

prediction performances of the K ¼ 1 model and the K ¼ 2

model. Here, G; Ĝ1 and Ĝ2 are, respectively, the dynamic

probability matrices at time T of the true model, the K ¼ 1

model and the K ¼ 2 model. The results show that the

K ¼ 2 model could much more accurately predict the true

dynamic probability matrix than the K ¼ 1 model. This

implies that the prediction performance can definitely be

improved by incorporating community structure.

6.4.3. Prediction of future degrees

Moreover, we compare the K ¼ 1 model and the K ¼ 2

model for the ability to predict the future degrees of existing

nodes. Several methods have been proposed to measure the

importance of a node in a network from only its graph

structure; for example, the HITS algorithm (Kleinberg,

1998), the PageRank algorithm (Brin & Page, 1998), the

Randomized HITS algorithm and the Subspace HITS

algorithm (Ng et al., 2001). Using the degree of a node in

the network is one of the simplest approaches to this task.

For these synthetic data, we consider predicting the future

degrees of the nodes in the network observed at time T :

Let Dt be a positive integer. For any v [ NT (the set of

nodes in the network at time T), we consider the degree

DTþDtðvÞ of node v at time T þ Dt: We approximate the true

network at time T þ Dt by the network obtained by adding

M ¼ 5Dt new links at time t ¼ T þ 1: Moreover,

we incorporate the nodes created at time t $ T into nodes

NT þ 1 and NT þ 2; since we restrict our attention to the

nodes in NT : Let A0
TþM denote the adjacency matrix of

the network constructed in this manner as an approximation

of the true network at time T þ Dt: Therefore, for any

v [ NT ; we regard the degree DTþDtðvÞ as

DTþDtðvÞ ¼
XNTþ2

j¼1

A0
TþMðv; jÞ: ð9Þ

Note here that we deal with the case of undirected graphs. In

the same way, for v ¼ NT þ 1;NT þ 2; we define DTþDtðvÞ

by Eq. (9).

Let kDTþDtðvÞl denote the mean of DTþDtðvÞ: Then, the

following relation holds (see Appendix C):

kDTþDðvÞl¼
XNT

j¼1

AT ðv; jÞþ
M

2

XNTþ2

j¼1

{Gðv; jÞþGðj;vÞ}: ð10Þ

Let hðDtÞðvÞ denote the normalized mean degree of v at time

T þ Dt; i.e.

hðDtÞðvÞ ¼
kDTþDtðvÞlXNTþ2

i¼1

kDTþDtðiÞl

:

We define hðvÞ by

hðvÞ ¼ lim
Dt!1

hðDtÞðvÞ:

By Eq. (10), it turns out that

hðvÞ ¼
1

2

XNTþ2

j¼1

{Gðv; jÞ þ Gðj; vÞ}:

We call hðvÞ the dynamic degree of v at time T ; and h ¼

½hð1Þ;…; hðNT þ 2Þ� the dynamic degree vector at time T :

For this artificial growing network, we predict the future

degrees of the nodes in the network observed at time T by

Fig. 6. Clustering performance.

Table 3

Effects of incorporating community structure

Trial Clustering accuracy IðG; Ĝ1Þ IðG; Ĝ2Þ Iðh; ĥ1Þ Iðh; ĥ2Þ

1 0.910 0.793 0.033 0.195 0.079

2 0.852 0.872 0.137 0.252 0.118

3 0.891 0.869 0.089 0.249 0.092

4 0.912 0.829 0.085 0.221 0.109

5 0.856 0.842 0.078 0.229 0.095
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the dynamic degree vector h at time T : Let ĥ1 and ĥ2 be the

dynamic degree vectors of the K ¼ 1 model and the K ¼ 2

model at time T ; respectively. In Table 3, the fifth and sixth

columns, respectively, indicate the Kullback–Leibler

divergences Iðh; ĥ1Þ and Iðh; ĥ2Þ for the five trials. The

results show that the K ¼ 2 model could more accurately

predict the true dynamic degree vector than the K ¼ 1

model. This implies that the prediction performance can be

improved by incorporating community structure.

7. Concluding remarks

In this paper, we proposed a network growth model

incorporating directional attachment and community

structure. We showed that the proposed model also

exhibits a degree distribution with a power-law tail. We

presented a learning algorithm for the proposed model to

estimate the actual growth process from the observed data

of adjacency matrices. Using the growing network of the

Web pages concerning a certain topic, we experimentally

showed that the prediction performance for dynamic

probability matrix can be improved by incorporating

directional attachment and community structure. More-

over, using synthetic data, we experimentally showed that

the prediction performance for dynamic probability matrix

can definitely be improved by incorporating community

structure.

Our research aims to model the Web dynamics.

Extensive verification of the proposed model with various

real Web data remains an important task. However, we have

already made substantial progress, and we are encouraged

by the initial results of our efforts to model the Web

dynamics.

Appendix A. Proof of Proposition 1

Here, we give a formal proof of Proposition 1 using the

master equation approach with the continuous approxi-

mation of Dorogovtsev and Mendes (2001). For simplicity,

we assume K ¼ 2 and m0 ¼ 1; since the generalization to

the case of K . 2 and m0 . 2 is straightforward.

Note first that FtðdÞ can be regarded as the probability

that a node in the growing network at time t has d links. Let

Ftðd1; d2Þ be the probability that a node in the growing

network at time t has d1 links to the nodes of community z1

and d2 links to the nodes of community z2: We denote the

stationary distributions of FtðdÞ and Ftðd1; d2Þ by FðdÞ and

Fðd1; d2Þ; respectively, that is

FðdÞ ¼ lim
t!1

FtðdÞ;

Fðd1; d2Þ ¼ lim
t!1

Ftðd1; d2Þ:

Then, we have

FðdÞ ¼
X

d1þd2¼d

Fðd1; d2Þ: ðA1Þ

We consider the growing network at time t: Given a node

v [ Nt (the set of nodes in the growing network at time t),

let Ftðd1; d2; vÞ denote the probability that at time t; node v

has d1 links to the nodes of community z1 and d2 links to the

nodes of community z2: Then, we have

Ftðd1; d2Þ ¼ ð1=NtÞ
X

v[Nt

Ftðd1; d2; vÞ:

Next, given a node v [ Nk
t (the set of nodes that belong to

community zk in the growing network at time t), ðk ¼ 1; 2Þ;

let Fk
t ðd1; d2; vÞ denote the probability that at time t; node v

has d1 links to the nodes of community z1 and d2 links to the

nodes of community z2: Then, we have

Fk
t ðd1; d2Þ ¼ ð1=Nk

t Þ
X

v[Nk
t

Fk
t ðd1; d2; vÞ; ðk ¼ 1; 2Þ: ðA2Þ

We also have

Ftðd1; d2Þ ¼
X

k

ðNk
t =NtÞ

2Fk
t ðd1; d2Þ;

sinceX
v[Nt

Ftðd1; d2; vÞ ¼
X

k

ðNk
t =NtÞ

X
v[Nk

t

Fk
t ðd1; d2; vÞ:

Note that the mean kN1
t l of N1

t is given by

kN1
t l ¼ {2j1g11h11

11 þ
X1

1¼0

ðj1g12h12
11 þ j2g21h21

11Þ}t þ N1
0 ;

ðA3Þ

and the mean kN2
t l of N2

t can also be given by a linear

expression of t: Thus, we can consider that there exist

positive constants g1 and g2 such that

lim
t!1

ðNk
t =NtÞ ¼

ffiffiffi
gk

p
; ðk ¼ 1; 2Þ:

Hence

Fðd1; d2Þ ¼
X

k

gkFkðd1; d2Þ; ðA4Þ

where

Fkðd1; d2Þ ¼ lim
t!1

Fk
t ðd1; d2Þ:

We consider calculating F1ðd1; d2Þ: When we arbitrarily fix

a v [ N1
t ; the master equation for F1

t ðd1; d2; vÞ is

F1
tþ1ðd1; d2; vÞ ¼ f1ðd1 2 1; tÞF1

t ðd1 2 1; d2; vÞ

þ f2ðd1; tÞF
1
t ðd1; d2 2 1; vÞ

þ f3ðd1; tÞF
1
t ðd1; d2; vÞ; ðA5Þ

where f1ðd1 2 1; tÞ represents the probability that when

F1
t ðd1 2 1; d2; vÞ ¼ 1; both end nodes of a new link are
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chosen from community z1 and either of them is v; i.e.

f1ðd1 2 1; tÞ ¼j1g11 ðh11
00 þ h11

01Þ
a1ðd1 2 1Þ

L1
t

þ
1 2 a1

N1
t

 !(

þðh11
00 þ h11

10Þ
b1ðd1 2 1Þ

L1
t

þ
1 2 b1

N1
t

 !)
;

f2ðd1; tÞ represents the probability that when F1
t ðd1; d2 2

1; vÞ ¼ 1; one of the end nodes of a new link is v and the

other is chosen from community z2; i.e.

f2ðd1; tÞ ¼j1g12ðh12
00 þ h12

01Þ
a1d1

L1
t

þ
1 2 a1

N1
t

 !

þ j2g21ðh21
00 þ h21

10Þ
b1d1

L1
t

þ
1 2 b1

N1
t

 !
;

and f3ðd1; tÞ represents the probability that when

F1
t ðd1; d2; vÞ ¼ 1; both end nodes of a new link are not v; i.e.

f3ðd1; tÞ ¼ 1 2 f1ðd1; tÞ2 f2ðd1; tÞ:

Here, L1
t denotes the number of links within community z1 at

time t; that is, L1
t ¼

P
v[N1

t
D1

t ðvÞ: Since the degree of a new

node is always one,X
v[N1

t

F1
tþ1ðd1; d2; vÞ ¼

X
v[N1

tþ1

F1
tþ1ðd1; d2; vÞ2 dd1þd2;1

¼ N1
t F1

tþ1ðd1; d2Þ þ ðN1
tþ1 2 N1

t Þ

� F1
tþ1ðd1; d2Þ2 dd1þd2;1

by Eq. (A2), where dd;d0 is Kronecker’s delta. ApplyingP
v[N1

t
to both sides of Eq. (A5) and passing it to the t !1

limit, we obtain

c1F1ðd1;d2Þþða11d1þb11ÞF
1ðd1;d2Þ2{a11ðd121Þþb11}

�F1ðd121;d2Þþða12d1þb12Þ{F1ðd1;d2Þ2F1ðd1;d221Þ}

¼dd1þd2;1
; ðA6Þ

where

c1¼ lim
t!1

ðN1
tþ12N1

t Þ;

a11¼j1g11{ðh11
00þh11

01Þa
1þðh11

00þh11
10Þb

1} lim
t!1

ðN1
t =L

1
t Þ;

b11¼j1g11{ðh11
00þh11

01Þð12a1Þþðh11
00þh11

10Þð12b1Þ};

a12¼{j1g12ðh12
00þh12

01Þa
1þj2g21ðh21

00þh21
10Þb

1} lim
t!1

ðN1
t =L

1
t Þ;

b12¼j1g12ðh12
00þh12

01Þð12a1Þþj2g21ðh21
00þh21

10Þð12b1Þ:

Here, we used

lim
t!1

N1
t {F1

tþ1ðd1;d2Þ2F1
t ðd1;d2Þ}¼0:

Since the mean kL1
t l of L1

t is

kL1
t l¼j1g11tþL1

0;

we can consider that limt!1 ðN
1
tþ12N1

t Þ,1 and

limt!1 ðN1
t =L

1
t Þ,1 by Eq. (A3). Thus, c1; a11 and a12 are

positive constants. Eq. (A6) implies that

F1ðd1;d2Þ/ðd1þb11=a11Þ
2ð1þn1Þ asd1!1

for a positive constant n1; and

F1ðd1;d2Þ/ðk1Þ
2w1d2 asd2!1

for positive constants k1 and w1: On the other hand, in

the continuous d1; d2 limit (Dorogovtsev & Mendes, 2001),

Eq. (A6) has the form

c1F1ðd1;d2Þþ
›

›d1

{ða11d1þb11ÞF
1ðd1;d2Þ}

þða12d1þb12Þ
›

›d2

F1ðd1;d2Þ¼0:

By this continuous approximation, we can obtain n1¼c1=a11

(cf. Dorogovtsev & Mendes, 2001). Hence, there exists a

positive constant n1 such thatX
d1þd2¼d

F1ðd1;d2Þ/d2n1 asd!1: ðA7Þ

We can show the same results for F2ðd1;d2Þ; for example,

there exists a positive constant n2 such thatX
d1þd2¼d

F2ðd1;d2Þ/d2n2 asd!1: ðA8Þ

Eqs. (A1) and (A4) imply that

FðdÞ¼
X

d¼d1þd2

ðg1F1ðd1;d2Þþg2F2ðd1;d2ÞÞ: ðA9Þ

Hence, from Eqs. (A7)–(A9)

FðdÞ/d2n asd!1;

where n¼min{n1;n2}: We have completed the proof of

Proposition 1.

B. The clustering method

We specifically describe the clustering method used in

our experiments. Basically, we use the K-means algorithm

(see, e.g. Bishop, 1995).

First, we identify each u [ NT with the point

xu ¼ ½xuð1Þ;…; xuðNT Þ� of the ðNT 2 1Þ-dimensional sim-

plex in the NT -dimensional Euclidean space, which is

defined by

xuðiÞ /

ðAT ðu; iÞ þ AT ði; uÞÞ=2; ði – uÞ;

max
1#j#NT

ðAT ðu; jÞ þ AT ðj; uÞÞ=2; ði ¼ uÞ;

8<
:

XNT

i¼1

xuðiÞ ¼ 1:

Then, our task is to partition the points xu; ðu [ NT Þ into K

disjoint subsets C1;…;CK ; where subset Ck corresponds to

community zk for each k:
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The algorithm begins by assigning at random the points

xu; ðu [ NT Þ to K sets and then computing the representa-

tive vectors rk ¼ ½rkð1Þ;…; rKðNT Þ�; ðk ¼ 1;…;KÞ; in such a

way as to minimize the objective function

J ¼
XK
k¼1

X
xu[Ck

Iðxu; rkÞ

under the condition that each rk is a point of the

ðNT 2 1Þ-dimensional simplex in the NT -dimensional

Euclidean space. Here, Iðxu; rkÞ is the Kullback–Leibler

divergence

Iðxu; rkÞ ¼
XNT

i¼1

xuðiÞðlog xuðiÞ2 log rkðiÞÞ:

It is easily shown that these representative vectors r1;…;

rK are obtained by

rkðiÞ ¼

X
xu[Ck

xuðiÞ

lCkl
; ði ¼ 1;…;NT ; k ¼ 1;…;KÞ;

where lCkl denotes the number of the data points

belonging to set Ck: Next, each data point xu is

reassigned to a new set according to which is the

nearest representative vector with respect to the Kull-

back–Leibler divergence, that is, the set Ckp to which xu

newly belongs is determined by kp ¼ argmin1#k#K Iðxu;

rkÞ: Then, the value of the objective function J is

recomputed. This procedure is repeated until there is no

further change in the grouping of the points xu; ðu [
NT Þ: Since this algorithm finds a local optimum

solution, in our experiments, we changed the initial

assignment of the data points to K sets 10 times, and

selected the best result.

C. Proof of relation (10)

It suffices to prove that for u; v ¼ 1;…;NT þ 2

kA0
TþMðu; vÞl ¼ AT ðu; vÞ þ M

1

2
{Gðu; vÞ þ Gðv; uÞ}: ðA10Þ

Note that the left-hand side of Eq. (A10) represents the

mean number of links between nodes u and v at the next

time-step. We put N0 ¼ {1;…;NT þ 2}, and

SM ¼

(
s ¼ ðsijÞi;j[N0 ; 0 # sij # M; ði; j [ N0Þ;

X
i;j[N0

sij ¼ M

)
:

Then, it is easily seen that

kA0
TþMðu; vÞl2 AT ðu; vÞ

¼
X

s[SM

suv þ svu

2

M!Y
i;j[N0

sij!

Y
i;j[N0

Gði; jÞsij

¼
X

s[SM21

M
Gðu; vÞ þ Gðv; uÞ

2

ðM 2 1Þ!Y
i;j[N0

sij!

Y
i;j[N0

Gði; jÞsij

¼ M
1

2
{Gðu; vÞ þ Gðv; uÞ}:

This completes the proof of relation (10).
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