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Abstract. In this paper, we propose a novel sparse source separation
method that can estimate the number of sources and time-frequency
masks simultaneously, even when the spatial aliasing problem exists. Re-
cently, many sparse source separation approaches with time-frequency
masks have been proposed. However, most of these approaches require in-
formation on the number of sources in advance. In our proposed method,
we model the phase difference of arrival (PDOA) between microphones
with a Gaussian mixture model (GMM) with a Dirichlet prior. Then
we estimate the model parameters by using the maximum a posteriori
(MAP) estimation based on the EM algorithm. In order to avoid one
cluster being modeled by two or more Gaussians, we utilize a sparse
distribution modeled by the Dirichlet distributions as the prior of the
GMM mixture weight. Moreover, to handle wide microphone spacing
cases where the spatial aliasing problem occurs, the indeterminacy of
modulus 2πk in the phase is also included in our model. Experimental
results show good performance of our proposed method.

Keywords: Dirichlet distribution, prior, number of sources, blind source
separation, sparse, spatial aliasing problem.

1 Introduction

Blind source separation (BSS) is an approach for estimating source signals that
uses only the mixed signal information observed at each microphone. The BSS
technique for speech dealt with in this paper has many applications, including
the hands-free teleconference systems and preprocessing for an automatic speech
recognizer.

Let us formulate the task. Suppose that Ns ≥ 2 speech sources s1, . . . , sNs are
convolutively mixed and observed at Nm microphones,

xj(t) =
∑Ns

i=1

∑
l hji(l) si(t − l), j=1, . . . , Nm, (1)

where hji(l) represents the impulse response from source i to microphone j.
Our goal is to obtain estimates yi of each source signal si from the microphone
observations xj without information about the number of sources Ns, the speech
sources si or the mixing process hji.
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Two approaches have been widely studied and employed to solve the BSS
problem: one is based on independent component analysis (ICA) (e.g., [1]) and
the other relies on the sparseness of source signals (e.g., [2]). In this paper, we fo-
cus on the latter approach, more specifically, the time-frequency mask approach
[2,3]. With the time-frequency mask approach, we classify the phase difference
of arrival (PDOA) between microphone observations, and separate each signal
by collecting the observation signal at time-frequency points in each cluster.

In previous work [2,3], to automatically find clusters, the number of sources
Ns is assumed to be known. However, in real situations we usually cannot obtain
information on the number of sources Ns in advance. Especially for an under-
determined case (Ns > Nm), the source counting is difficult, and few papers
have dealt with this problem. Moreover, when the microphone spacing is large,
the spatial aliasing problem occurs. This problem makes it difficult to classify
the PDOA because the phase has the indeterminacy of modulus 2πk in high
frequencies. [4] considered the spatial aliasing problem in a time-frequency mask
approach, however, the number of sources Ns should be known.

In this paper, we propose a novel sparse source separation method that can
estimate the number of sources and time-frequency masks simultaneously, even
when spatial aliasing occurs. We model the PDOA distribution with a Gaus-
sian mixture model (GMM) with a Dirichlet prior [5], and estimate the model
parameters by using the EM algorithm. In order to avoid one cluster being mod-
eled by two or more Gaussians, thus making it possible to estimate the number
of sources correctly, we propose utilizing a sparse distribution modeled by the
Dirichlet distribution as the prior of the GMM mixture weight. The authors
of [6,7] also derived the EM algorithm, however, they still needed to know the
number of sources Ns in advance. On the other hand, our proposed algorithm
does not require information on the source number, thanks to the weight prior.
Because the indeterminacy of 2πk in phase is modeled in our GMM, we can also
overcome the difficulty in the PDOA clustering even in a spatial aliasing case.

The experimental results with a wide microphone spacing (20 cm) show that
our proposed method can estimate the number of sources and can separate signals
by time-frequency masks obtained by the posterior probability for each cluster.

2 Mixing and Separation Processes

This paper employs a time-frequency domain approach. With an F -point short-
time Fourier transform (STFT), (1) is converted into:

xj(n, f) =
∑Ns

i=1 hji(f)si(n, f), (2)
where hji(f) is the frequency response from source i to microphone j, si(n, f)
is the STFT of a source si. f ∈ {0, 1

F fs, . . . , F−1
F fs} is a frequency (fs is the

sampling frequency) and n(= 0, · · · , N − 1) is a time-frame index.
In this paper, we assume the sparseness of the sources [2]:

xj(n, f) ≈ hji(f)si(n, f), (3)
where si(n, f) is a dominant source at the time-frequency slot (n, f). This is
approximately true for speech signals in the time-frequency domain [2,3].
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2.1 Separation Method

In this paper, we assume that hji(f) in (2) is modeled by an anechoic model
(e.g., eq. (13) of [3]), that is, the PDOA between microphones is given as:

arg
[
x1(n, f)
x2(n, f)

]

= 2πfτ(n, f) = 2πf
d cosϕ(n, f)

v
, (4)

where τ(n, f) = d cosϕ(n, f)/v is the time difference of arrival (TDOA), ϕ(n, f)
is the dominant source direction at the time-frequency (n, f), and d and v denote
the microphone spacing and the sound speed.

First, by assuming the source sparseness, we calculate the PDOA at each
time-frequency slot by the left-side of (4). Then, by considering the frequency
dependence in the PDOA, we classify the PDOA values in some way. For ex-
ample, if there is no spatial aliasing problem and we know the number of
sources, the k-means clustering algorithm can be applied to TDOA τ(n, f) =

1
2πf arg [x1(n, f)/x2(n, f)]. Our method, which considers the aliasing problem
and the unknown source number, is introduced in the following section.

Finally, we estimate the separated signals yi(n, f) with time-frequency masks
Mi(n, f), which extract time-frequency points of members in the i-th cluster:

yi(n, f) = x1(n, f)Mi(n, f). (5)

3 Proposed Method

3.1 Problems in PDOA Clustering

The first problem for the PDOA clustering is the spatial aliasing problem. As
can be seen in (4), when the frequency f or the microphone spacing d are large,
arg [x1(n, f)/x2(n, f)] = 2πfd cosϕ(n, f)/v exceeds ±π. However, since the arg
operation has the indefiniteness of modulus 2πk, (4) should be:

2πfτ(n, f) = arg
[
x1(n, f)
x2(n, f)

]

+ 2πk = o(n, f) + 2πk, (6)

where o(n, f) = arg [x1(n, f)/x2(n, f)], −π ≤ o(n, f) < π, and k is an integer.
Note that we can observe just o(n, f), and k is unknown when the source di-
rection ϕ is unknown. This is the spatial aliasing problem. Figure 1 gives an
example of the observed PDOA o(n, f) for a wide microphone spacing of 20 cm.
In the next subsection, k in (6) is considered as a hidden variable.

The second problem occurs when we apply a GMM fitting method for an
unknown number of mixtures. Figure 2 shows an example. Here we have two
clusters in the histogram (Fig. 2(a)). Figure 2(b) shows the fitting result of
GMM of eight Gaussians, to Fig. 2 (a). From Fig. 2(b), we can see that multiple
Gaussians are fit to each cluster. However, we expect just one Gaussian for each
peak, in order to estimate the number of sources by counting the number of
dominant Gaussians. In this paper, in order to avoid the case where one cluster
is modeled by two or more Gaussians, we propose utilizing a sparse distribution
for the prior of the GMM mixture weight parameter in the next subsection.
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Fig. 1. Example PDOA for a microphone spacing of 20 cm and a sampling rate of 16
kHz. The PDOA for a source at 70◦ and a source at 150◦ are drawn individually for
illustrative purposes.

Fig. 2. Example GMM fitting result with and without prior. (a) Histogram of two
Gaussians, (b) estimated Gaussians of GMM without prior (φ = 1.0), (c) estimated
Gaussians of GMM with prior (φ = 0.9).

3.2 Probabilistic Model

To begin with, let us consider that we observe one source from one direction.
Hereafter, a notation onf = o(n, f) is utilized. Because the spatial aliasing issue
in (6) can be considered as a phase wrapping problem, we can model the PDOA
with a Gaussian distribution by considering the unwrapped data onf + 2πk. In
other words, the phase wrapping process can be modeled by summing the Gaus-
sians at intervals of 2π. That is, we assume that the PDOA follows a wrapped
Gaussian distribution [8],

p(onf ; μ, σ) =

Kf∑

k=−Kf

p(onf , k; μ, σ) =

Kf∑

k=−Kf

1√
2πσ2

exp

(−(onf + 2πk − 2πfμ)2

2σ2

)

,

(7)

where −π ≤ onf < π, μ gives us the expectation value of the TDOA τ of
the source, σ2 is the variance of the PDOA, and k is an integer to handle the
spatial aliasing (6). The value Kf is a frequency dependent integer, and it can
be determined if we know the microphone spacing d and the frequency f . If we
do not know d, we can set a sufficiently large value for Kf for all frequencies.
This model is inspired by a wrapped Gaussian model [8].
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In our observed mixture, we assume that there are a sufficient number of
source signals from different directions, where some are dominant and others are
much less dominant. Each source is modeled by (7). We also assume that the
PDOA for an observed mixture follows a Gaussian mixture model (GMM):

p(onf ; μm, σm) =
M∑

m=1

Kf∑

k=−Kf

αm
√

2πσ2
m

exp
(−(onf + 2πk − 2πfμm)2

2σ2
m

)

. (8)

We prepare a sufficient number M of Gaussians for our GMM model and estimate
the mean μm, variance σ2

m and weight αm for each Gaussian m.
In order to solve the second problem mentioned in Section 3.1, that is, in

order to model the observed PDOA data by allocating one Gaussian to each
source, we assume the sparseness of the source directions, where each direction
is dominated by at most one source. For this purpose, as the prior of the mixture
weight, we employ the Dirichlet distribution:

p(α) =
1

B(φ)

M∏

m

αφ−1
m , (9)

where α = {α1, · · · , αm, · · · , αM}, ∑M
m αm = 1, 0 ≤ αm ≤ 1, and B(φ) is the

beta distribution (regularization term). When we set small hyper parameter φ
(φ < 1), the prior takes a larger value as the number of mixture weights whose
values are close to zero increases, which is desirable for representing the sparse-
ness of the source direction [5]. In addition, the Dirichlet distribution is known
to be a conjugate prior of the mixture weight [5], and it can be incorporated into
the GMM fitting approach in a computationally efficient manner.

Figure 2 (c) shows a GMM fitting result with prior ((9) with φ = 0.9) for the
distribution in Fig. 2 (a). In spite of utilizing eight Gaussians, we can see that
just two Gaussians are dominant in Fig. 2 (c). That is, using the prior, more
correct GMM fitting can be performed.

3.3 Cost Function Based on GMM

Let θ = {αm, μm, σm} be a model parameter set. The observations are o =
{o11, o12, · · · , onf , · · · , oNF } and power values a = {a11, a12, · · · , anf , · · · , aNF },
where anf = a(n, f) = |x1(n, f)|2. In the following, Gaussian indices m and k in
the PDOA model (8) are assumed not to be observed, and therefore dealt with
as hidden variables.

The cost function of the maximum a posteriori (MAP) estimation is defined
based on a log of a joint probability density function (pdf) as

L(θ) = log p(o, θ) = log p(o|θ) + log p(α) + const. (10)

=
N∑

n

F∑

f

f(anf ) log p(onf |θ) + log p(α) + const. (11)

=
N∑

n

F∑

f

f(anf ) log

⎛

⎝
M∑

m

Kf∑

k=−Kf

p(m, k, onf |θ)
⎞

⎠+log p(α)+const.,(12)
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where

p(m, k, onf |θ) =
αm

√
2πσ2

m

exp
(−(onf + 2πk − 2πfμm)2

2σ2
m

)

. (13)

We disregarded the priors of the model parameters except for α in (10), and

f(anf ) = canf/
∑

n

∑

f

anf (14)

gives a power weight (anf = |x1(n, f)|2 in this paper) and controls the impor-
tance of the observation relative to the prior term (2nd term of (12)), where c
is a control parameter.

In (12), the mixture weight α follows the Dirichlet distribution (9) and
∑M

m αm

= 1, 0 ≤ αm ≤ 1 holds. For the sparse representation of the GMM, φ < 1 is
preferred for the Dirichlet distribution (9). Note that φ = 1 is equivalent to the
case without a prior for the mixture weight.

3.4 EM Algorithm

Here we derive an algorithm for estimating parameter θ by the EM algorithm.
The auxiliary function Q is given as

Q(θ|θt) = E
[
log p(onf ; θ)|onf ; θt

]
(15)

=
∑

n

∑

f

∑

m

∑

k

[
p(m, k|onf , θt)f(anf ) log p(m, k, onf |θ)

]
+ log p(α), (16)

where θt is the estimate of the parameters after the t-th iteration, and

p(m, k|onf , θt) =
p(m, k, onf |θt)

∑
m

∑
k p(m, k, onf |θt)

. (17)

By setting ∂Q(θ|θt)
∂μm

= 0 and ∂Q(θ|θt)
∂σ2

m
= 0, we obtain

μt+1
m =

∑
n

∑
f

∑
k p(m, k|onf , θt)f(anf )(onf + 2πk)

∑
n

∑
f

∑
k 2πfp(m, k|onf , θt)f(anf )

(18)

(σ2
m)t+1 =

∑
n

∑
f

∑
k p(m, k|onf , θt)f(anf )(onf + 2πk − 2πfμm)2
∑

n

∑
f

∑
k p(m, k|onf , θt)f(anf )

. (19)

Moreover, by using the Lagrange multiplier method,
∑M

m αm = 1 and (14), the
mixture weight is obtained as follows:

αt+1
m =

1
c + M(φ − 1)

⎧
⎨

⎩

∑

n

∑

f

∑

k

p(m, k|onf , θt)f(anf ) + (φ − 1)

⎫
⎬

⎭
. (20)

Since αm > 0, c > M(1 − φ) must hold from (20).
In the E-step we calculate (17), then in the M-step the parameters θ are

calculated by using (18), (19) and (20). Sometimes αm < 0 occurs. In such a
case, we can factor out the corresponding Gaussian (by setting αm = ε, where ε
is a very small value) and recalculate the parameters.
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3.5 Source Counting

Thanks to the Dirichlet prior (9), most of the mixture weight parameter αm

becomes very close to zero and some have dominant values. Sometimes, some
weight parameters αm do not come to zero sufficiently because of very large
variance σm. So, we can determine the number of sources Ns by counting the
number of Gaussians whose parameters meet conditions αm ≥ ε and σm ≤ th,
where ε is a sufficiently small threshod value and th is an appropriate threshold
value. ε = 0.2 and th = π/3 degrees are used in this paper.

3.6 Source Separation

The time-frequency mask Mm(n, f) for the m-th separated source (see (5)) is
obtained by marginalizing the estimated pdf (17) with respect to k,

Mm(n, f) = p(m|onf , θ) =
Kf∑

k=−Kf

p(m, k|onf , θ). (21)

The separated signal is obtained by
ym(n, f) = x1(n, f)Mm(n, f) = x1(n, f)p(m|onf , θ). (22)

4 Experiments

4.1 Experimental Setup

We performed experiments with measured impulse responses hji in a room whose
reverberation time was 130 ms (see Fig. 9’s setup A of [4]). We utilized two
microphones whose spacing was 20 cm. The numbers of sources Ns were two and
three. Mixtures were made by convolving the measured room impulse responses
and 5-second English speech signals sampled at 16 kHz. The frame size F for
STFT was 1024 (64 ms), and the frame shift was 256 (16 ms).

In the EM algorithm, we utilized M = 8 Gaussians. From the microphone
spacing and sampling rate, the aliasing problem occured above 850 Hz. In our
implementation, Kf = K = 5 was utilized for all frequencies f . For the compar-
ison with an aliasing-unconsidered case, Kf = K = 0 for all frequencies f was
also tested. As the hyper parameter for (9), we utilized φ = 0.9 for our proposed
method and φ = 1.0 for a conventional EM algorithm that corresponds to the
case without any prior for the mixture weights. The number of iterations was
10, and the control parameter c for (14) was 5.

We evaluated the signal-to-interference ratio (SIR) as a separation perfor-
mance measure, and the signal-to-distortion ratio (SDR) as a sound quality
measure. Their definitions can be found in [3]. We calculated SIR and SDR val-
ues for the separated sources that are counted as the sources by the method in
Section 3.5. We conducted 20 trials with different speech source combinations
and location combinations, and then averaged the results.
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Fig. 3. Example spectra of (A)(B) sources, (C)(D) observations, (E)(F) separated sig-
nals. Ns = 2, φ = 0.9 and K = 5.

Table 1. Experimental results. Input SIR was 0.0 [dB] (Ns = 2), and −3.1 [dB]
(Ns = 3).

Accuracy of N̂s estimation [%] Performance [dB]
Ns φ K N̂s:1 2 3 4 5 6 7 8 Output SIR SDR

2 0.9 5 100 11.5 12.4
0.9 0 35 60 5 11.4 7.5
1.0 5 0 5 40 35 20 8.8 9.7

3 0.9 5 15 75 10 7.5 8.2
0.9 0 5 25 50 20 2.0 8.7
1.0 5 0 90 10 6.9 7.5

4.2 Results

Figure 3 shows the example spectra of sources, observations, and separated
sources for a two source case. The source directions were 70◦ and 150◦, whose ex-
ample PDOA is shown in Fig. 1. By comparing the source spectra Fig. 3 (A)(B)
and the separation spectra Fig. 3 (E)(F), it can be seen that the spatial aliasing
problem does not occur in most frequencies. However, it is also seen that at
the frequencies where the PDOA of two sources lap over each other, say around
1500, 3000, 4500, 6000, 7500 Hz (see Fig. 1), the signals are not separated well.
Such phenomena can be seen in the separated spectra Fig. 3 (E)(F).

Table 1 reports the experimental results. In the table, φ = 0.9 means the
results with sparse prior (9) and φ = 1.0 indicates the results without a prior.
K = 5 and K = 0 mean the spatial aliasing is considered and unconsidered,
respectively. The percentage values are shown where the method estimates the
number of sources as N̂s within 20 trials. The average separation performance
results, SIR and SDR in dB, are also reported.

From Table 1, we can see that with the prior (φ = 0.9) by considering the
aliasing (K = 5), the number of sources is almost perfectly estimated. On the
other hand, without the prior, the number of sources is overestimated, and the
accuracy rate was quite low.



750 S. Araki et al.

As for the separation performance, we obtained better performance by using
the prior (φ = 0.9) than without the prior (φ = 1.0) when K = 5. When we
did not consider the spatial aliasing, K = 0, the separation performance was of
course poor, especially when Ns = 3.

5 Conclusion

We proposed a speech source separation method that can estimate both the
number of sources and separation masks. We model the PDOA with a GMM,
where the phase indefiniteness in spatial aliasing cases is considered. We employ
the Dirichlet distribution as the prior of the GMM mixture weight to model
each cluster by a single Gaussian. Our experimental results show that the pro-
posed method can estimate the number of sources correctly. We also confirmed
that the proposed method gives good separation performance in a room with
reverberation time of 130 ms.
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