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ABSTRACT
In this paper, we propose a novel sparse source separation method
that can be applied even if the number of sources is unknown. Re-
cently, many sparse source separation approaches with time-frequency
masks have been proposed. However, most of these approaches re-
quire information on the number of sources in advance. In our pro-
posed method, we model the histogram of the estimated direction of
arrival (DOA) with a Gaussian mixture model (GMM) with a Dirich-
let prior. Then we estimate the model parameters by using the max-
imum a posteriori estimation based on the EM algorithm. In order
to avoid one cluster being modeled by two or more Gaussians, we
utilize a sparse distribution modeled by the Dirichlet distributions as
the prior of the GMM mixture weight. By using this prior, with-
out any specific model selection process, our proposed method can
estimate the number of sources and time-frequency masks simulta-
neously. Experimental results show the performance of our proposed
method.

Index Terms— Blind source separation, Dirichlet distribution,
prior, number of sources, sparse

1. INTRODUCTION

Blind source separation (BSS) is an approach for estimating source
signals that uses only the mixed signal information observed at each
sensor. The BSS technique for speech dealt with in this paper has
many applications, including hands-free teleconference systems and
preprocessing for an automatic speech recognizer.

Let us formulate the task. Suppose that Ns ≥ 2 speech sources
s1, . . . , sNs are convolutively mixed and observed atNm sensors,

xj(t) =
PNs

i=1

P
l hji(l) si(t − l), j =1, . . . , Nm, (1)

where hji(l) represents the impulse response from source i to sensor
j. Our goal is to obtain estimates yi of each source signal si from
the sensor observations xj without information about the number of
sources Ns, the speech sources si or the mixing process hji.

Two approaches have been widely studied and employed to solve
the BSS problem: one is based on independent component analysis
(ICA) (e.g., [1]) and the other relies on the sparseness of source sig-
nals (e.g., [2]). In this paper we focus on the latter approach, more
specifically, the time-frequency mask approach [2–4].

With the time-frequency mask approach, we assume that sig-
nals are sufficiently sparse and, therefore, that at most one source
is dominant at each time-frequency slot. If these assumptions hold,
a histogram of the phase differences between sensor observations
(or direction of arrival (DOA) estimated from the phase differences)
has Ns clusters. Because an individual cluster in the histogram cor-
responds to an individual source, we can separate each signal by
collecting the observation signal at time-frequency points in each
cluster. This is the time-frequency mask approach.

In the previous work [2–4], to automatically estimate each clus-
ter, the number of sourcesNs is assumed to be known. For example,
in our previous work [4], we employed the k-means algorithm for
the clustering by assuming Ns is given. However, in real situations
(e.g., a meeting situation [5]) we usually cannot obtain information
on the number of sources Ns in advance. Moreover, especially for
an underdetermined case (Ns > Nm), the source number estimation
is difficult, and few papers have dealt with this problem.

In this paper, we propose a novel sparse source separation method
that can estimate the number of sources and time-frequency masks
simultaneously. We model the histogram of the DOA with a Gaus-
sian mixture model (GMM) with a Dirichlet prior [6], and we esti-
mate the model parameters by using the maximum a posteriori es-
timation based on the EM algorithm. Here, it is expected that an
individual cluster in the histogram corresponds to one Gaussian. In
order to avoid one cluster being modeled by two or more Gaussians,
thus making it possible to estimate the number of sources correctly,
we propose utilizing a sparse distribution modeled by the Dirichlet
distribution as the prior of the GMM mixture weight. The authors
of [7, 8] also modeled the histogram with a GMM and derived the
EM algorithm. However, they still needed to know the number of
sources Ns in advance. On the other hand, our proposed algorithm
in this paper does not need information on the source number, thanks
to the weight prior. Moreover, our method can estimate the source
number without any specific model selection process [6], which is
usually computationally expensive.

The experimental results show that our proposed method can
estimate the number of sources from sensor observations and can
separate signals by time-frequency masks obtained by the posterior
probability for each cluster.

2. MIXING AND SEPARATION PROCESSES

This paper employs a time-frequency domain approach. With an F -
point short-time Fourier transform (STFT), (1) is converted into:

xj(f, τ) =
PNs

i=1 hji(f)si(f, τ), (2)
where hji(f) is the frequency response from source i to sensor j,
si(f, τ) is the STFT of a source si. f ∈ {0, 1

F
fs, . . . , F−1

F
fs} is

a frequency (fs is the sampling frequency) and τ(= 0, · · · , T − 1)
is a time-frame index.

In this paper, we assume the sparseness of the sources [2]:
xj(f, τ) ≈ hji(f)si(f, τ), (3)

where si(f, τ) is a dominant source at the time-frequency slot (f, τ).
This is approximately true for speech signals in the time-frequency
domain (see [2, 4] and their references).
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2.1. Separation method

First, by assuming the source sparseness, we estimate the DOA value
at each time-frequency slot by using the time difference of arrival
(TDOA) between sensors [9]:2

4 cos ψ(f, τ) cos ϕ(f, τ)
sin ψ(f, τ) cos ϕ(f, τ)

sin ϕ(f, τ)

3
5 = vD+q(f, τ). (4)

where ψ and ϕ are the source azimuth and elevation, respectively, v
is the sound velocity,D = [· · · ,dj − dj′ , · · · ]T is the microphone
coordinate where dj is the three-dimensional vector representing the
location of the sensor j, q(f, τ) is a TDOA vector consisting of the
qjj′(f, τ) = 1

2πf
arg[xj(f, τ) x∗

j′(f, τ)] of all microphone pairs
j-j′, and + denotes the Moore-Penrose pseudo-inverse [9]. In this
paper, we utilize just the azimuth ψ(f, τ) information as DOA. We
assume that the microphone spacing is sufficiently small to avoid the
spatial aliasing problem.

Then we classify the estimated DOA values in some way. For
example, the k-means clustering is utilized in [4], and a GMM fitting
with the EM algorithm is employed in [7] and in this paper. Each
estimated cluster corresponds to an individual source.

Finally, we estimate the separated signals yi(f, τ) with time-
frequency masks Mi(f, τ), which extract time-frequency points of
members in the i-th cluster:

yi(f, τ) = x1(f, τ)Mi(f, τ). (5)

3. PROPOSED METHOD
3.1. Problem

In this subsection, we explain a typical problem that occurs when we
apply a GMM fitting method to a DOA histogram. Figure 1 shows
an example. Here we have four sources, and thus four clusters in the
DOA histogram (Fig. 1(a)). Figure 1(c) shows the fitting result of
GMM of eight Gaussians, and Fig. 1(b) plots each Gaussian. From
Fig. 1(b), we can see that two Gaussians are fit to the cluster around
−115 degrees. However, we expect just one Gaussian for this peak.
In this paper, in order to avoid the case where one cluster is modeled
by two or more Gaussians, we propose utilizing a sparse distribution
for the prior of the GMM mixture weight parameter.

3.2. Probabilistic model

If we observe one source from one direction, the DOA d(f, τ) =
ψ(f, τ) at time-frequency slot (f, τ) is an observation, and the power
a(f, τ) = |x(f, τ)|2 is considered as a weight. Moreover, we as-
sume that the DOA observation follows a Gaussian distribution, whose
mean value gives us the DOA of the source. Now, let n = τF + f ,
where F is the number of frequency bins, and let the observations be
the DOA values d = {d1, d2, · · · , dn, · · · , dN} and power values
a = {a1, a2, · · · , an, · · · , aN}. Here, N is the number of obser-
vations, i.e., when we have T time frames and F frequency bins,
N = T × F .

In our observed mixture, we assume that there are a sufficient
number of source signals from different directions, where some are
dominant and the others are much less dominant. We also assume
that observed data dn follows a Gaussian mixture model (GMM),

MX
m=1

αmN (dn; μm, σm), (6)

where one Gaussian is assigned to one direction (= one source). We
prepare a sufficient number M of Gaussians for our GMM model
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Fig. 1. An example GMM fitting result without prior (φ = 1.0)
when Ns = 4. (a) DOA histogram, (b) each Gaussian of GMM,
(c) GMM plot. Two Gaussians are fit to the cluster around −115
degrees. Their mean values are -116.01 and -116.07 degrees, and
their mixture weights are 0.13 and 0.15.

and estimate the mean μm, variance σ2
m and weight αm for each

Gaussianm.
In this paper, in order to deal with the distribution of DOA val-

ues, we utilize a modified Gaussian distribution. When the DOA
value is observed, it is folded into a range between −π and π. How-
ever, if the mean of the given data is close to ±π, the distribution
wraps and becomes bimodal [10]. In order to handle such a distri-
bution, we model the DOA data with a wrapped phase model [10].
More specifically, instead of (6), as the GMM we use

PM
m=1 αmP∞

k=−∞ N (dn + 2πk; μm, σm), where −π ≤ dn < π and k is an
integer that is uniquely determined from the observed DOA.

In order to solve the problem mentioned in Section 3.1, that is,
in order to model the observed DOA data by allocating one Gaussian
to each source, we assume the sparseness of the source directions.
For this purpose, as the prior of the mixture weight, we employ the
Dirichlet distribution:

p(α) =
1

B(φ)

MY
m=1

αφ−1
m , (7)

where α = {α1, · · · , αm, · · · , αM},PM
m=1 αm = 1, 0 ≤ αm ≤

1, and B(φ) is the beta distribution (regularization term). When we
make the hyper parameter φ small (φ < 1), the prior takes a larger
value as the number of mixture weights whose values are close to
zero increases, which is desirable for representing the sparseness of
the source direction [6]. In addition, the Dirichlet distribution is
known to be a conjugate prior of the mixture weight [6], and it can
be incorporated into the GMM fitting approach in a computationally
efficient manner.

3.3. Cost function based on GMM

Let θ = {αm, μm, σm, · · · } be a model parameter set. The ob-
servations are the DOA values d = {d1, d2, · · · , dn, · · · , dN} and
power values a = {a1, a2, · · · , an, · · · , aN} (see Sec. 3.2). In the
following, Gaussian indices m and k of the wrapped phase model
are assumed not to be observed, and therefore dealt with as hidden
variables.

The cost function of the maximum a posteriori estimation is de-
fined based on a log of a joint probability density function as

34



L(θ) = log p(d, θ) = log p(d|θ) + log p(α) + const. (8)

=

NX
n=1

f(an) log p(dn|θ) + log p(α) + const. (9)

=

NX
n=1

f(an) log

 
MX

m=1

∞X
k=−∞

p(m, k, dn|θ)
!

+ log p(α) + const., (10)
where

p(m, k, dn|θ) =
αm√
2πσ2

m

exp

„−(dn + 2πk − μm)2

2σ2
m

«
,(11)

and −π ≤ dn < π. We disregarded the priors of the model parame-
ters except for α in (8), and

f(an) = can/

NX
n=1

an. (12)

gives a power weight and controls the importance of the observation
relative to the prior term (2nd term of (10)), where c is a control
parameter.

In (10), p(α) follows the Dirichlet distribution (7). As men-
tioned in Section 3.2, for the sparse representation of the GMM,
φ < 1 is preferred for the Dirichlet distribution (7). Note that φ = 1
is equivalent to the case without a prior for the mixture weight.

3.4. EM algorithm

Here we derive an algorithm for estimating parameter θ by the EM
algorithm.

The auxiliary function Q is given as
Q(θ|θt) = E

ˆ
log p(d, θ)|dn; θt˜ (13)

=
X

n

X
m

X
k

ˆ
p(m, k|dn, θt)f(an) log p(m, k, dn|θ)

˜
+ log(α), (14)

where θt is the estimate of the parameters after the t-th iteration, and

p(m, k|dn, θt) =
p(m, k, dn|θt)P

m

P
k p(m, k, dn|θt)

. (15)

By setting ∂Q(θ|θt)
∂μm

= 0 and ∂Q(θ|θt)

∂σ2
m

= 0, we obtain

μt+1
m =

P
n

P
k p(m, k|dn, θt)f(an)(dn + 2πk)P

n

P
k p(m, k|dn, θt)f(an)

(16)

(σ2
m)t+1 =

P
n

P
k p(m, k|dn, θt)f(an)(dn + 2πk)2P

n

P
k p(m, k|dn, θt)f(an)

− (μt+1
m )2.

(17)
Moreover, by using the Lagrange multiplier method,

PM
m αm = 1

and (12), the mixture weight is obtained as follows:

αt+1
m =

1

c + M(φ − 1)

(X
n

X
k

p(m, k|dn, θt)f(an) + (φ − 1)

)

(18)
Since αm ≥ 0, c > M(1 − φ) must hold from (18).

In the E-step we calculate (15), then in theM-step the parameters
θ are calculated by using (16), (17) and (18). Sometimes αm < 0
occurs. In such a case, we can factor out the corresponding Gaussian
(by setting αm = ε, where ε is a very small value) and re-caluculate
the parameters.

Table 1. Example estimated parameters θ for (a) 40 and (b) 100 iter-
ations for an Ns = 4 case (see Sec. 4 for experimental conditions).

(a) 40 iterations:
m 1 2 3 4 5 6 7 8
μm 64.2 63.8 79.8 161.2 252.9 241.1 352.5 326.4
σm 4.3 4.5 46.9 4.7 59.8 4.1 2.6 5.5
αm 0.00 0.33 0.13 0.15 0.12 0.15 0.00 0.17
(b) 100 iterations:
m 1 2 3 4 5 6 7 8
μm 6.8 61.9 8.1 158.3 7.5 242.4 278.8 325.9
σm 2.5 14.6 2.0 16.1 2.2 12.7 27.4 10.8
αm 0.00 0.44 0.00 0.23 0.00 0.22 0.00 0.21

3.5. Source number estimation

Table 1 shows example estimated parameters θ after (a) 40 and (b)
100 iterations when the number of sources Ns = 4. After a suffi-
cient number of iterations (Table 1 (b)), four mixture weights αm

become 0.00 and four αm indicate meaningful values. That is, the
source number Ns = 4 is estimated by thresholding the mixture
weight αm. However, such a large number of iterations requires
heavy computational time. On the other hand, when we use fewer
iterations (Table 1 (a)), six mixture weights αm still have signifi-
cant values. However, we can see that two of them have very large
variance σm. Obviously, such Gaussians with large variance do not
represent one cluster.

Therefore, to save computational time, we determine the number
of sources Ns by counting the number of Gaussians whose param-
eters meet conditions αm ≥ ε and σm ≤ th, where ε is a suffi-
ciently small threshod value and th is an appropriate threshold value
(ε = 10−10 and th = 20 degrees are used in this paper).

3.6. Source Separation

Let xn and ynm be the observation vector at sensor 1 and the esti-
matedm-th separated signal, respectively. The time-frequency mask
for the m-th separated source is obtained by marginalizing the esti-
mated pdf (15) with respect to k,

p(m|dn, θ) =
∞X

k=−∞
p(m, k|dn, θ). (19)

For implementation, we summed up −1 ≤ k ≤ 1. Now, the sepa-
rated signal is obtained by

ynm = xnp(m|dn, θ), (20)
or, with the Section 2.1 notation,

ym(f, τ) = x1(f, τ)p(m|ψ(f, τ), θ), (21)
where n = τF + f .

4. EXPERIMENTS
4.1. Experimental setup

We performed experiments with measured impulse responses hji in
a room, whose reverberation time was 130 ms (see Fig. 4 of [4]).
We utilized three microphones arranged at the apexes of an equilat-
eral triangle, 4 cm on a side. Mixtures were made by convolving
the measured room impulse responses and 5-second English speech
signals. The sampling rate was 8 kHz. The frame size F for STFT
was 512 (64 ms), and the frame shift was 128 (16 ms).

In the EM algorithm, we utilized M = 8 Gaussians, whose
initial values were μm=[25, 75, 115, 160, 205, 250, 295, 340] in de-
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Fig. 2. GMM fitting result with prior (φ = 0.9) for the same example
as Fig. 1. (a) DOA histogram, (b) each Gaussian of GMM, (c) GMM
plot. We have just four (= Ns) dominant Gaussians.

gree, σm = 40 in degree, and αm = 1/M = 0.125 for all m. For
the wrapped phase model, we summed up −1 ≤ k ≤ 1. The num-
ber of iterations was 40. As the hyper parameter for (7), we utilized
φ = 0.9 for our proposed method and φ = 1.0 for a conventional
EM algorithm that corresponds to the case without any prior for the
mixture weights. The control parameter c for (12) was 5.

We evaluated the signal-to-interference ratio (SIR) as a separa-
tion performance measure, and the signal-to-distortion ratio (SDR)
as a sound quality measure:

InputSIRi = 10 log10

P
t |xJi(t)|2P

t |
P

k �=i xJk(t)|2 [dB], (22)

OutputSIRi = 10 log10

P
t |yii(t)|2P

t |
P

k �=i yik(t)|2 [dB], (23)

SDRi = 10 log10

P
t |xJi(t)|2P

t |xJi(t) − βyii(t − Δ)|2 [dB], (24)

where yik(t) is the sk component that appears at output yi(t):
yi(t) =

PNs
k=1 yik(t), xJi(t) =

P
l hJi(l) si(t − l), and β and

Δ are parameters used to compensate for the amplitude and phase
difference, respectively, between xJi and yii.

We calculated SIR and SDR values for the separated sources
that are counted as the sources by the method in Section 3.5. We
tested 20 trials with different speech source combinations and loca-
tion combinations, and then averaged the results.

4.2. Results

Figure 2 shows a GMM fitting result with prior (φ = 0.9) for the
same DOA distribution as that of Fig. 1. Although we had two Gaus-
sians around -115 degrees in Fig. 1, we can see that just four (= Ns)
Gaussians are dominant in this case. That is, using the prior ((7) with
φ = 0.9), more correct GMM fitting was performed.

Table 2 reports the experimental results. In the table, φ = 0.9
means the results with sparse prior (7) and φ = 1.0 indicates the
results without a prior. The percentage values are shown where the
method estimates the number of sources as N̂s within 20 trials. The
average separation performance results, SIR and SDR in dB, are also
reported. The results with the k-means method [4], where the num-
ber of sources was given, are also shown.

Table 2. Experimental results. φ = 0.9: with prior; φ = 1.0:
without prior, K: with the k-means. InputSIR was 0.0 [dB] (Ns =
2), −3.1 [dB] (Ns = 3), and −4.9 [dB] (Ns = 4).

Accuracy of N̂s estimation [%] Performance [dB]
Ns φ

N̂s:1 2 3 4 5 6 7 8 OutputSIR SDR
2 0.9 100 19.6 11.3
1.0 0 10 25 35 20 10 11.6 4.2
K given 15.9 14.5

3 0.9 5 95 16.0 8.9
1.0 35 15 30 20 14.5 7.5
K given 12.2 11.4

4 0.9 100 13.7 7.8
1.0 20 75 5 12.8 6.7
K given 10.7 9.7

From Table 2, we can see that with the prior (φ = 0.9) the
number of sources is almost perfectly estimated. On the other hand,
without the prior, the number of sources is overestimated, and the ac-
curacy rate was quite low. This overestimation tendency is stronger
for a small number of sources Ns.

As for the separation performance, we obtained better perfor-
mance by using the prior (φ = 0.9) than without the prior (φ = 1.0).

5. CONCLUSION

In this paper, we proposed a sparse source separation method that
can be applied even if the number of sources is unknown. We mod-
eled the DOA histogram with a GMM. We proposed employing the
Dirichlet distribution as the prior of the GMM mixture weight to
avoid the case where one cluster is modeled by two or more Gaus-
sians. Our experimental results show that the proposed method can
estimate the number of sources correctly without using any spe-
cific model selection process. We also confirmed that the proposed
method gives good separation performance.
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