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Abstract

We propose a method for separating speech signals with
little distortion when the signals outnumber the sensors.
Several methods have already been proposed for solving
the underdetermined problem, and some of these utilize
the sparseness of speech signals. These methods employ
binary masks that extract a signal at time points where the
number of active sources is estimated to be only one. How-
ever, these methods result in an unexpected excess of zero-
padding and so the extracted speeches are severely dis-
torted and have loud musical noise. In this paper, we pro-
pose combining a sparseness approach and independent com-
ponent analysis (ICA). First, using sparseness, we estimate
the time points when only one source is active. Then, we
remove this single source from the observations and apply
ICA to the remaining mixtures. Experimental results show
that our proposed sparseness and ICA (SPICA) method can
separate signals with little distortion even in a reverberant
condition.

1. Introduction

Blind source separation (BSS) is an approach that esti-
mates original source signals si(n) using only information
on the mixed signals xj(n) observed in each input channel.
This technique can be used for noise robust speech recog-
nition and high-quality hearing aid systems. It may also
become a clue to auditory scene analysis.

In this paper, we consider the BSS of speech signals ob-
served in a real environment, i.e., the BSS of convolutive
mixtures of speech. We focus particularly on the underde-
termined BSS problem, that is, the case of the number of
source signals outnumbers the number of sensors.

Several methods have already been proposed for solv-
ing the underdetermined problem and some of these utilize
the sparseness of speech signals [1, 2, 3]. If the signals are
sparse enough, that is, most of the samples of a signal are
almost zero, we can assume that the sources rarely over-
lap. Sparseness approaches use this assumption and extract
each signal using time-frequency binary masks. However,
due to these binary masks, their methods result in too much
zero-padding to the extracted signals, and so the extracted
speeches are severely distorted and sound unnatural.

To overcome this problem, i.e., to reduce the distortion
of the extracted signals, we propose combining a sparse-
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Figure 1: Block diagram of underdetermined BSS. N > M .

ness approach and independent component analysis (ICA).
First, using sparseness, we estimate the time points when
only one source is active. Then, instead of extracting only
one signal from the observations, we remove this single
source from the observations and apply ICA to the remain-
ing mixtures in order to separate the signals. This removal
does not cause severe zero-padding to the separated signals,
therefore we can improve the sound quality of the separated
signals. Experimental results show that our sparseness and
ICA (SPICA) method can separate signals with little dis-
tortion even in an echoic environment.

2. Problem description

In real environments, N signals observed by M sensors
are modeled as convolutive mixtures xj(n) =

∑N

i=1

∑P

k=1
hji(k)si(n−k+1) (j = 1, · · · , M), where si is the signal
from a source i, xj is the signal observed by a sensor j, and
hji is the P -taps impulse response from a source i to a sen-
sor j (see Fig. 1). Here, we consider the underdetermined
case N > M . In this paper N = 3 and M = 2. Sources
are assumed to be mutually independent and sparse.

This paper employs a time-frequency domain approach
because speech signals are more sparse in the time-frequency
domain [3, 4] and we can convert convolutive mixture prob-
lems into instantaneous mixture problems in each frequency.
In the time-frequency domain, mixtures are modeled as
X(ω, m) = H(ω)S(ω, m), where H(ω) is a 2×3 mix-
ing matrix whose j-i component is a transfer function from
a source i to a sensor j and

�
(ω, m) = [S1(ω,m), S2(ω, m),

S3(ω,m)]T , � (ω,m) = [X1(ω, m),X2(ω, m)]T and � (ω, m) =

[Y1(ω,m), Y2(ω,m), Y3(ω, m)]T show a Fourier transformed



source, observed and separated signals, respectively. ω is
the frequency and m is the frame index.

Our objective is to estimate separated signals Y (ω, m)
using only the information provided by observations X(ω, m).
In this paper, the sources are speech signals, i.e., the sources
are sufficiently sparse in the time-frequency domain [1]-
[4].

3. Conventional methods with sparseness

The standard ICA cannot be applied in underdetermined
cases because it assumes that a mixing matrix is invertible.
Several separation methods employing source sparseness
have been proposed for use when there are more sources
than sensors [1, 2, 3].

If most of the samples of a signal are almost zero, we
say that this signal is sparse. When signals are sparse enough,
we can assume that the sources overlap at rare intervals. We
can assume the sparseness of the speech signals especially
in the time-frequency domain. For a detailed analysis of
sparseness, see [5].

Sparseness approaches use this assumption and extract
each signal using time-frequency binary masks. Because
we can assume that sources do not overlap very often, we
can extract each source by selecting the time points at which
there is only one signal. One way of estimating such time
points is to use the level difference of the observations and
the phase difference between the observations. In this pa-
per, we utilize omni-directional microphones, and we use
the phase difference ϕ(ω, m) = 6

X1(ω,m)
X2(ω,m) between the ob-

servations X1(ω, m) and X2(ω, m).

Using ϕ(ω, m), we can estimate the direction of arrival
(DOA) for each time point m by calculating θ(ω, m) =

cos−1 ϕ(ω,m)c
ωd

, where c is the speed of sound and d is the
microphone spacing. When we plot this DOA θ(ω, m), we
can see three peaks in the histogram for each frequency.
Let these peaks be θ̃1, θ̃2 and θ̃3 where θ̃1 ≤ θ̃2 ≤ θ̃3, and
the signal from θ̃ξ be S̃ξ(ξ = 1, 2, 3) (Fig. 2).

We can extract each signal with a binary mask

Mξ(ω,m) =

{

1 θ̃ξ − ∆ ≤ θ(ω,m) ≤ θ̃ξ + ∆
0 otherwise

(1)

by calculating Yξ(ω, m) = Mξ(ω, m)Xj(ω, m) where j=1
or 2. Here, ∆ is an extraction range parameter: if ∆ is small
the separation performance is good but the distortion (mu-
sical noise) becomes large, on the other hand, if ∆ is large
the musical noise problem is overcome but the separation
performance deteriorates.

Although we can extract each signal using this binary
mask (1), such extracted signals are discontinuously zero-
padded by the binary mask. Therefore, we can hear con-
siderable musical noise in the extracted output.
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Figure 2: Example of (a) histogram and (b) smoothed histogram.
Anechoic, female-male-male combination. DFTsize T =512.

4. Proposed Method: Combination of
sparseness and ICA (SPICA)

To overcome this musical noise problem, we propose us-
ing both sparseness and ICA. Our method has two stages
(see Fig. 3). In the first stage, contrary to the conven-
tional approach, we remove one source from mixtures us-
ing the signals’ sparseness. By this removal, it is expected
that their zero-padding to be unimportant because we ex-
tract more time-frequency points than the conventional ap-
proach. Moreover we can expect the remaining mixtures
to consist of only two signals. Therefore, in the second
stage, we can apply ICA (e.g., [6]) to these remaining mix-
tures. Because these separated signals are not highly zero-
padded, we can expect less musical noise.
[1st stage] One source removal:

Here, we utilize omni-directional microphones, there-
fore, we use the phase difference between the observations
to set θ̃1, θ̃2 and θ̃3 shown in the previous section.

Instead of extracting each source as in conventional ap-
proaches, we remove only one source from the mixtures
with a binary mask

M
pq

ICA(ω,m) =

{

1 θmin ≤ θ(ω, m) ≤ θmax

0 otherwise
(2)

by calculating
ˆ�

(ω, m) = M
pq

ICA(ω, m)
�

(ω,m). (3)
In (2), θmin and θmax are extraction range parameters, and
in (3), X̂(ω, m) is expected to be mixtures of S̃p and S̃q.
For instance, as in case 1, if S̃1 can be removed from the
observations with a mask M 23

ICA we can use ICA to sep-

arate S̃2 and S̃3 in the next stage (see Fig. 3). In this
case θmin and θmax in (2) can be θ̃1 < θth1 = θmin <
θ̃2, θmax = 180◦ (see Fig. 4). Similarly in case 2, when S̃3

is to be removed from the observations with a mask M 12
ICA,

θmin = 0◦, θ̃2 < θth2 = θmax < θ̃3.
Because our system has only two outputs, both removals

should be performed to obtain three separated signals (see
Fig. 3).
[2nd stage] Separation of remaining sources by ICA:

Because the remaining signals X̂ are expected to be
mixtures of two signals, we can use 2×2 ICA to separate
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X̂. The separation process can be formulated as Y (ω, m) =

W (ω)X̂(ω, m), where X̂ is the masked observed signal
obtained by (3), Y (ω, m) = [Yξ1

(ω, m), Yξ2
(ω, m)]T (ξ1, ξ2

=1,2,3) is the separated output signal, and W (ω) repre-
sents a (2×2) unmixing matrix. W (ω) is determined so
that Yξ1

(ω, m) and Yξ2
(ω, m) become mutually indepen-

dent. This calculation is carried out independently at each
frequency.

In this paper, the adaptive rule is � i+1(ω) = � i(ω) +

η
[

diag
(

〈Φ( � ) � H〉
)

− 〈Φ( � ) � H〉
]

� i(ω), where Φ(y) =

φ(|y|) · ej·6 (y), φ(x) = tanh(gx) and g = 100 [7]. For
solving the permutation problem of frequency domain ICA,
we utilized the direction of arrival approach [8], and for
solving scaling problem of frequency domain ICA, we used
the minimum distortion principle [9].

5. Experiments
5.1. Experimental conditions

For the anechoic tests, we simulated the recording in an
anechoic room using the mixing matrix H ji(ω) = exp (jωτji),
where τji =

dj

c
sin θi, dj is the position of the j-th micro-

phone, θi is the direction of the i-th source, and c is the
speed of sound. We simulated a pair of omni-directional
microphones with an inter-element spacing of 4 cm. The
sampling rate was 8 kHz. The speech signals arrived from
three directions, 50◦(female), 100◦(male) and 135◦(male).

For the reverberant tests, we recorded each speech sig-
nal in a real room whose reverberation time was TR=130 ms
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Figure 5: Room for echoic tests.

(Fig. 5) and added them to obtain the mixtures.
We constructed a histogram of θ(ω, m) for each fre-

quency, and smoothed it slightly (see Fig. 2). Then we di-
vided the histogram into three parts, determined the peak
for each part, and set these peaks as θ̃1, θ̃2 and θ̃3. The
DFT frame size T was 512 and we used a frame shift of
256.

5.2. Performance measures

To evaluate the effectiveness of our approach, we used
the signal to interference ratio (SIR) as a measure of sepa-
ration performance, and the signal to distortion ratio (SDR)
as a measure of sound quality:

SIRi = 10 log

∑

n
y2

isi
(n)

∑

i6=j

∑

n
y2

isj
(n)

(4)

SDRi = 10 log

∑

n
x2

ksi
(n)

∑

n
(xksi

(n) − αyisi
(n − D))2

(5)

where the permutation is solved before calculating SIR and
SDR, i.e., yi is the estimation of si, and yisj

is the output
of the whole separating system at yi when only sj is active
and sk(k 6= j) does not exist, and xksj

is the observation
obtained by microphone k when only s j exists. α and D
are parameters to compensate for the amplitude and phase
difference between xksi

and yisi
. To evaluate the conven-

tional method (sparseness only method), we calculated SIR
and SDR using the measurements from both microphones,
and adopted the better value.

5.3. Experimental results

Figure 4 shows the power content by percentage of each
signal when ∆ = 10◦. From the upper three rows of Fig. 4,
we can see that the observations in θ̃2 − ∆ ≤ θ(ω, m) ≤

180◦ mainly contain the signals S̃2 and S̃3, on the other
hand, the observations in 0◦ ≤ θ(ω, m) ≤ θ̃2 + ∆ mainly
contain the signals S̃1 and S̃2. From this, we set θth1 =

θ̃2 − ∆ for S̃1 removal (case 1), and θth2 = θ̃2 + ∆ for S̃3

removal (case 2). In Fig. 4, the percentages of each power



Table 1: Power lost by binary masks (in %)
mask M1 M2 M3 M12

ICA M23

ICA
output Y1 Y2 Y3 Y1 Y2 Y2 Y3

[%] 17 14 23 2.5 5.7 8.1 0.7

extracted by the binary mask (2) with these thresholds are
also shown. Because the proportion of the third signal is
very small, we can say that we can use an ICA at the 2nd
stage of our method.

Table 1 shows the signal power eliminated by the zero-

padding
∑

n
si(n)2−

∑

n
ŝi(n)2

∑

n
si(n)2

caused by binary masks, where

ŝi(n) = IDFT[Mi(ω, m)Si(ω, m)]. If we use these mask
thresholds for separation, i.e., in the sparseness only case,
around 20% of signal power was diminished by the binary
mask. By contrast, with our method, the signal power elim-
inated by M

pq

ICA(ω, m) was inferior. This result convinces
us that the adverse effect of zero-padding was mitigated by
using our method, that is, one source removal.

Table 2 shows the experimental results of anechoic sim-
ulations. The first row shows the results obtained solely
using the sparseness, the second and third rows show the
results obtained with our SPICA method. With sparseness
only, the SIR values were high but the SDR values were un-
satisfactory. A large musical noise was heard in this case.
In contrast, with SPICA, we were able to obtain high SDR
values without any serious deterioration in the separation
performance SIR. Now the musical noise decreased.

Moreover, we conducted reverberant tests (TR=130 ms)
with settings of 50◦ (female), 100◦ (male), 135◦ (male),
and 45◦ (female), 90◦ (male), 135◦ (male). The results are
shown in Table 3. Even in a reverberant environment, we
obtained reasonable results with our proposed SPICA.

It should be noted that it is hard to separate the signal
at the center position by both methods.

Some sound samples can be found at our web site [10].

6. Conclusion
We proposed a method for separating more speech sig-

nals than sensors by combining a sparseness approach and
ICA (SPICA). Our method avoids over-zero-padding, and
therefore, can separate the signals with less distortion in a
reverberation of 130 ms.
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