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Abstract—Despite several recent proposals to achieve blind
source separation (BSS) for realistic acoustic signals, the sepa-
ration performance is still not good enough. In particular, when
the impulse responses are long, performance is highly limited. In
this paper, we consider a two-input, two-output convolutive BSS
problem. First, we show that it is not good to be constrained by
the condition , where is the frame length of the DFT
and is the length of the room impulse responses. We show that
there is an optimum frame size that is determined by the trade-off
between maintaining the number of samples in each frequency
bin to estimate statistics and covering the whole reverberation. We
also clarify the reason for the poor performance of BSS in long re-
verberant environments, highlighting that the framework of BSS
works as two sets of frequency-domain adaptive beamformers.
Although BSS can reduce reverberant sounds to some extent like
adaptive beamformers, they mainly remove the sounds from the
jammer direction. This is the reason for the difficulty of BSS in
reverberant environments.

Index Terms—Blind source separation, convolutive mixture,
frame size, frequency domain, independent component analysis,
reverberant speech.

I. INTRODUCTION

B LIND source separation (BSS) is an approach to estimate
original source signals using only the information

of mixed signals observed in each input channel. This
technique is applicable to the realization of noise robust speech
recognition and high-quality hands-free telecommunication
systems. It may also become a cue for auditory scene analysis.

To achieve BSS of convolutive mixtures, several methods
have been proposed [1], [2]. Some approaches consider un-
mixing systems as FIR filters, and estimate those filters
[3], [4]; other approaches transform the problem into the
frequency domain to solve an instantaneous BSS problem for
every frequency simultaneously [5], [6]. There are a few appli-
cations of BSS to mixed speech signals in realistic acoustical
environments [7], but the separation performance is still not
good enough [8].
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In this paper, we consider a two-input, two-output BSS
problem of convolutive mixtures of speech in the frequency
domain. The intention of this paper is to clarify the reason why
the performance of frequency-domain BSS in long reverberant
environments is poor. First, we show that it is not good to be
constrained by the condition , where is the frame
length of the DFT and is the length of the room impulse
responses. We also clarify the reason for the poor performance
of BSS in long reverberant environments, showing that the
framework of BSS works as two sets of frequency-domain
adaptive beamformers.

In Section II, we summarize the framework of frequency-do-
main BSS for convolutive mixtures. In Section III, we explain
the relationship between the frame sizeand the length of the
room impulse responses. In Section IV, we investigate how
to choose the frame size for BSS of convolutive mixtures, and
show that a longer frame size is not suitable even for long re-
verberation [9]. In Section V, we discuss the existence of an
optimum frame size for frequency-domain BSS. Moreover, we
also clarify the reason for the poor performance of BSS in highly
reverberant environments. We point out that frequency-domain
BSS works as two sets of frequency-domain adaptive beam-
formers [10]. Cardoso and Souloumiac [11] indicated the con-
nection between blind identification and beamforming in a nar-
rowband context. We discuss this relationship more closely, and
provide a physical understanding of frequency-domain BSS. Al-
though BSS can reduce reverberant sounds to some extent [12]
like adaptive beamformers, it mainly removes sound from the
jammer direction. This understanding explains the reason for
the difficulty of BSS in reverberant environments. Section VI
concludes this paper.

II. FREQUENCY DOMAIN BSS OF

CONVOLUTIVE MIXTURES OFSPEECH

The signals recorded by microphones are given by

(1)

where is the source signal from a source, is the received
signal by microphone, and is a -point impulse response
from source to microphone . In this paper, we consider a two-
input, two-output convolutive BSS problem, i.e.,
(Fig. 1).
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Fig. 1. BSS system configuration.

The frequency-domain approach to convolutive mixtures is
to transform the problem into an instantaneous BSS problem in
the frequency domain [5], [6]. Using-point short-time Fourier
transformation for (1), we obtain

(2)

where denotes the frequency, represents the time-depen-
dence of the short-time Fourier transformation,

is the source signal vector, and
is the observed signal

vector. The mixing matrix does not depend on time.
We assume that the (2 2) mixing matrix is invertible,
and that .

The unmixing process can be formulated in a frequency bin

(3)

where is the estimated
source signal vector, and represents a (2 2) unmixing
matrix at frequency bin . The unmixing matrix is deter-
mined so that and become mutually inde-
pendent. The above calculation is carried out at each frequency
independently.

III. FRAME SIZE FORBSSOF CONVOLUTIVE MIXTURES

It is commonly believed that the frame sizemust be longer
than to estimate the unmixing matrix for a-point room im-
pulse response. In this paper, we consider that the DFT frame
size is equal to the length of unmixing filter .

The reason for the belief that the frame sizemust be longer
than is because: i) A linear convolution can be approximated
by a circular convolution if . Therefore, in order to
transform (1) into (2) accurately, must be held. ii)
Signal separation by using a noise cancellation framework with
signal leakage into the noise reference was discussed in [13],
[14]. In the case of a noise canceller, we should use an FIR
filter of length ; therefore, . iii) If we want to
estimate the inverse system of a system with impulse response

-taps long, we need an inverse system that is-taps long,
where ; therefore, .

In [8], [15], however, the authors used in order to re-
duce permutation inconsistency and to assure that frame
size of the DFT is computed over a stationary window of data.
It is important to clarify what filter length is suitable and also
why that filter size is suitable for BSS of convolutive mixtures.
We investigate this in Section IV and discuss our findings in
Section V.

Fig. 2. Layout of a room used in experiments.

IV. EXPERIMENTS

A. Conditions for Experiments

1) Learning Algorithm: For the calculation of the unmixing
matrix in (3), an algorithm based on the minimization
of the Kullback-Leibler divergence [6], [16] has been proposed.
The optimal is obtained by using the following iterative
equation:

(4)

where , denotes the averaging operator,is
used to express the value of theth step in the iterations, and
is the step size parameter. In addition, we define the nonlinear
function as

(5)

where and are the real part and the imaginary part of
, respectively.
For more stable and faster convergence, Amari [17] proposed

an algorithm based on the natural gradient. Using the natural
gradient, we get the following iterative equation:

(6)

For the calculation of unmixing matrix in (3), we used
this iterative equation (6).

2) Conditions for Experiments:Separation experiments
were conducted using speech data convolved with impulse
responses recorded in three environments specified by different
reverberation times: ms, 150 ms, and 300 ms. Since
the sampling rate was 8 kHz, 150 ms, and 300 ms corresponds
to taps and 2400 taps, respectively. As the original
speech, we used two sentences spoken by two male and two
female speakers. The investigations were carried out for six
combinations of speakers.

The layout of the room we used to measure the impulse re-
sponses is shown in Fig. 2. We used a two-element array with an
inter-element spacing of 4 cm. The speech signals arrived from
two directions, 30 and 40 . An example of a measured room
impulse response used in our experiments is shown in Fig. 3.



ARAKI et al.: FUNDAMENTAL LIMITATION OF FREQUENCY DOMAIN BLIND SOURCE SEPARATION 111

Fig. 3. Example of (a) measured impulse responseh used in experiments
and (b) its energy decay curve.T = 300 ms.

Fig. 3(b) shows the energy decay curve of an impulse re-
sponse , which can be obtained by integrating the energy of
impulse response as follows:

The reverberation time is defined as the time for an energy
attenuation of 60 dB.

In these experiments, we varied the frame sizefrom 32 to
2048 and investigated the performance for each condition. The
frame shift was half of the frame size, the analysis window
was a Hamming window, and the step size for adaptation was

. The learning of using (6) was iterated
until the adaptation converged.

In frequency-domain BSS, a scaling and permutation
problem occurs, i.e., the estimated source signal components
are recovered with a different order and gain in the different
frequency bins. To solve this problem, we used the blind
beamforming algorithm proposed by Kuritaet al. [16]: first,
from the directivity pattern obtained by we estimate
the source directions and reorder the row of so that the
directivity pattern forms a null toward the same direction in all
frequency bins, then we normalize the row of so that the
gains of the target directions become 0 dB.

3) Evaluation Measure:In order to evaluate the perfor-
mance for different frame sizes with different reverberation
times , we used thesignal-to-interference ratio(SIR),
defined as follows:

SIR SIR SIR

SIR (7)

SIR (8)

Fig. 4. Results of SIR for different frame sizes: (a) explanation of the test data
conditions, (b) nonreverberant test, (c) reverberant test (T = 150ms), and (d)
reverberant test (T = 300 ms).

where and . SIR means the ratio of
a target-originated signal to a jammer-originated signal. These
values were averaged over all six combinations of the speakers,
and SIR and SIR were averaged.

B. Experimental Results

The experimental results are shown in Fig. 4. First we explain
the test data condition in Fig. 4(a) as follows; i) The lengths of
the mixed speech signals were about 8 s each, the beginning 3 s
of the mixed data were used for the learning according to (6),
and the entire 8 s data was separated (dashed lines); ii) The entire
8 s of the mixed data for the learning, and the entire 8 s data for
the separation (thick lines); iii) The lengths of the mixed data
were 15 s, the lengths of the learning data were the beginning
8 s, and the entire 15 s data were separated (thin lines). Note
that in cases i) and iii), the separation evaluation was executed
for “open” data, i.e., the separated data was not the same as
the learning data, and in case ii), the evaluation was done for
“closed” data, i.e., the separated data was exactly the same as
the learning data.
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In the case of 3-s learning (dashed lines), we obtained the best
performance with a short frame size both in nonreverberant tests
[Fig. 4(b)] and in reverberant tests [Fig. 4(c) and (d)]. A short
frame was found to function far better than a long frame size,
even for long room reverberation.

For the longer learning data, i.e., the 8-s data, the results were
slightly different from the 3-s learning case. In this case, we ob-
tained a better separation performance than for the 3-s learning
case. Furthermore, in comparison with the 3-s learning case, the
best performance was realized when we used a longer frame size

. With an overly long frame size, however, the performance
was poor even when we used longer learning data.

Even for long room reverberation, the condition is not
suitable, and a shorter frame sizeis best. We will discuss this
in the next section.

Moreover, we achieved better performance in “closed” tests
than in “open” tests. Since the room impulse response was not
changed during the entire experiment, there is little difference
between the closed and open tests. If the room impulse response
were to slightly change during a real recording, however, the
difference there would be larger between the closed and open
tests.

V. ANALYSIS AND DISCUSSION

A. Optimum Frame Size for Frequency-Domain BSS

In the previous section, we showed that a longer frame size
fails even for long room reverberation. In this section, we

discuss the reason why both a short frame and a long frame fail.
1) The Case of a Long Frame:In the frequency-domain BSS

framework, the signal we can use is not but .
If the frame size is long, the number of samples in each
frequency bin is small. This causes assumptions to collapse,
like the zero-mean and independence assumptions, because this
makes the correct estimation of statistics difficult. In this paper,
when the number of samples is too small to estimate statistics
correctly, we say “the independence assumption is not held” or
“the independence decreases/collapses.” As an example of such
a collapse, we observe that the independence of two source sig-
nals goes down when the frame size becomes longer. In order to
evaluate the independence of two signals from different points
of view, we used two measures. One was the Frobenius norm of
the adaptation term in (6), and the other was a correlation coef-
ficient.

Measure 1: Off-Diagonal of : To investigate
the independence between the two signals, we used the brack-
eted term of the adaptation equation (6) to define a new measure.
Here, we set this term as

(9)

(10)

where , and represents
the source signal , observed signal or separated signal .

When the algorithm converges, becomes the zero ma-
trix, and the two signals become mutually independent. There-
fore, we can consider this term as a measure of the indepen-

Fig. 5. Average Frobenius norm of off-diagonal terms ofh�(YYY )YYY i. The
solid lines refer to data of 8 s, and the dashed lines refer to data of 3 s. No
reverberation (T = 0 ms).

dence, i.e., if this term is small, two signals should be highly
independent.

The independence measure is the Frobenius norm of
averaged over frequency, defined as follows:

(11)

Fig. 5 shows this measure for each frame size. As the mea-
sure for source signals and shows, the independence de-
creases when the frame sizebecomes longer. In these cases,
because the number of data samples is smaller, the assumption
of independence does not hold for the two source signals. This
is a reason why the long frame fails. Besides, the independence
is higher when we use 8-s long learning data than when we use
3-s data.

Measure 2: Correlation Coefficient:For a second mea-
sure of the independence, we used the correlation coefficient.
Although a correlation coefficient does not show independence
directly, we use this measure as an index of independence. The
independence measure here is the average of the correlation co-
efficients over all frequency bins

(12)

where

(13)
represents a mean value, andis the source signal , ob-

served signal, or separated signal .
Fig. 6 shows the relationship between the frame sizeand the

average correlation coefficient. The decrease of independence
is observed again for the source signals when the frame size
becomes longer. Moreover, the independence is also higher with
8-s learning data, than with 3-s data.
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Fig. 6. Relationship betweenT and the average correlation coefficient. The
solid lines refer to data of 8 s, and the dashed lines refer to data of 3 s.T =

0 ms.

Because the number of samples in each frequency bin be-
comes smaller when we use a longer frame, the assumption of
independence does not hold for the two source signals. This is
a reason why the long frame fails.

Moreover, when the filter length becomes longer, the number
of coefficients to be estimated increases while the number of
samples for learning in each frequency bin decreases. As a
result, the estimation error is integrated and the performance
worsens. This is another reason for poor performance when we
use a longer frame.

2) The Case of a Short Frame:In our experiments, a shorter
frame also failed. When we use a short frame, the frame could
not cover the reverberation; therefore, the separation perfor-
mance was limited.

In order to show the reverberation coverage of a frame, we
investigated the impulse response of the mixing and unmixing
systems in the time domain [12]. We considered a separated
signal , target signal , and jammer signal . When the target

is an impulse and jammer signal , we can mea-
sure the impulse response of the system for the target signal
[Fig. 7(a)]. Similarly, when and , we can
measure the impulse responseof the system for the jammer
[Fig. 7(b)]

(14)

(15)

The impulse response determines the remaining reverbera-
tion sound of the jammer that cannot be reduced using BSS,
and that worsens the separation performance. Therefore we pay
attention to .

Fig. 8 shows the jammer signal’s impulse responsefor
and 512 and for ms . Fig. 8(a)

is the observed signal at microphone 1 when the target signal
, i.e., the impulse response . In the case of

[Fig. 8(b)], the length of the unmixing system is much shorter
than the length of the reverberation; accordingly, reverberation
longer than the frame cannot be reduced. On the other hand,
when [Fig. 8(c)], the reverberation covered by the
frame size is reduced.

Fig. 7. Definition of system for target and jammer. Signals is a target and
signals is a jammer. (a) System for the target. (b) System for the jammer.

Fig. 8. Impulse response of system for jammerh .

From Section V-A-1 and Section V-A-2, we conclude that
in frequency-domain BSS, there is an optimum frame size de-
termined by a tradeoff between maintaining the assumption of
independence and covering the whole reverberation interval.

B. Length of Learning Data and Separation Performance

In Section IV-B, we obtained better performance using 8-s
data than using 3-s data. The reason for this result is also ex-
plained by Figs. 5 and 6. With 8-s data, the independence was
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Fig. 9. Directivity patterns obtained by (a) NBF, (b) BSS(T = 0 ms), (c)
BSS (T = 150 ms), and (d) BSS (T = 300 ms). Frame sizeT = 256, 3-s
learning.

better maintained than with 3-s data. Therefore, we can obtain
better performance using the longer data. Furthermore, the op-
timum frame size changes when we use learning data of dif-
ferent length, because the optimum frame size is determined by
the trade-off we mentioned in Section V-A.

C. Physical Understanding of Frequency-Domain BSS

It is well known that an unmixing matrix can at best
be obtained up to a scaling and a permutation. Before the per-
mutation and scaling problem, however, we must note that the
BSS algorithm cannot solve the dereverberation/deconvolution
problem in itself [14].

Fig. 10. Relationship between the contribution of a direct sound and the
separation performance.T = 300 ms,T = 512. (a) Example of an impulse
response. (b) Energy decay curve. (c) Separation performance.

In the BSS framework, what an unmixing matrix can
do is to minimize the second term of (6), and becomes a
solution of

(16)

where and are arbitrary complex constants. This means
that is in general not the inverse matrix of the mixing
system . We can understand this unmixing system as
two sets of microphone array systems, i.e., two sets of adaptive
beamformers (ABFs) [10].

We can form only one null toward the jammer in the case of
two microphones. Fig. 9 shows directivity patterns obtained by
a null beamformer (NBF) and BSS; Fig. 9(a) is obtained by an
NBF that forms a steep null directivity pattern toward a jammer
under the assumption of the jammer’s direction being known.
Fig. 9(b)–(d) are obtained by BSS for (b) , (c)
ms, and (d) ms. When , a sharp null is ob-
tained like with an NBF. When is long, the directivity pattern
is comparatively duller; however, we can still draw a directivity
pattern. Although BSS and ABF can reduce reverberant sounds
to some extent (see Fig. 8) [12], they mainly remove sound from
the jammer direction. This understanding clearly explains the
poor performance of BSS in a real room with long reverberation.

Fig. 10 shows the performance when the contribution of the
direct sound is changed artificially. The performance increases
with the increase of the contribution of the direct sound. This is
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the same characteristic as that of an ABF. Because an unmixing
system mainly removes sound from the jammer direc-
tion, chiefly the direct (largest) sound of the jammer can be sep-
arated, and the other reverberant components which arrive from
different directions cannot be separated. As a result, separation
performance is fundamentally limited.

Moreover, as we have shown in Section IV, a long frame
size works poorly in the frequency-domain BSS for speech
data of a few seconds. This is because when we use a long
frame, the assumption of independence between
and does not hold at each frequency; this is caused
by a small number of samples in each frequency bin. ABF,
however, does not use the assumption of independence, so it
can achieve good performance using a long frame size, i.e.,
high frequency resolution. Therefore, the performance of BSS
is upper bounded by that of ABF. Note that ABF needs to know
the array manifold and the target direction. Note also that ABF
can be adapted only when a jammer exists but a target does
not exist, whereas BSS can adapt in the presence of target and
jammer, and also in the presence of only one active source.

The BSS was shown to outperform an NBF [18], [12]. It is
well known that an ABF outperforms an NBF in long reverber-
ation. Our understanding also clearly explains this.

VI. CONCLUSIONS

In this paper, we discussed why the separation performance
of frequency-domain BSS is poor when there is long reverbera-
tion. First, we showed that it is not good to be constrained by the
condition , where is the frame size of the FFT andis
the length of a room impulse response. This is because the lack
of data causes the collapse of the assumption of independence
between the two source signals in each frequency bin when the
data length is short, or when a longer frame sizeis used. On
the other hand, when we use a short frame, we cannot get good
performance, because long reverberation cannot be covered by
a short frame. Therefore, there is an optimum frame size de-
termined by a trade-off between maintaining the assumption
of independence and covering the whole reverberation in fre-
quency-domain BSS.

Next, we showed a physical understanding of frequency-do-
main BSS. We can understand the frequency-domain BSS
system as two sets of microphone array systems i.e., two sets of
adaptive beamformers (ABFs). Because ABF and BSS mainly
consider sound from the jammer direction by making a null
toward jammer, the separation performance is fundamentally
limited. Furthermore, we can conclude that the performance of
the BSS is upper bounded by that of ABF.

This understanding clearly explains the poor performance of
BSS in a real room with long reverberation.
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