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ABSTRACT
In this paper, we propose a method for separating speech signals

when there are more signals than sensors. Several methods have
already been proposed for solving the underdetermined problem,
and some of these utilize the sparseness of speech signals. These
methods employ binary masks to extract the signals, and therefore,
their extracted signals contain loud musical noise. To overcome
this problem, we propose combining a sparseness approach and in-
dependent component analysis (ICA). First, using sparseness, we
estimate the time points when only one source is active. Then, we
remove this single source from the observations and apply ICA to
the remaining mixtures. Experimental results show that our pro-
posed sparseness and ICA (SPICA) method can separate signals
with little distortion even in reverberant conditions of TR=130 and
200 ms.

1. INTRODUCTION

Blind source separation (BSS) is an approach that estimates
original source signals si(n) only from observations xj(n) with-
out source or mixing process information.

In this paper, we consider the BSS of speech signals observed
in a real environment, i.e., the BSS of convolutive mixtures of
speech. Recently, many methods have been proposed to solve
the BSS problem of audio signals in real environments (e.g., [1]).
However, most of these methods consider the determined or overde-
termined case, i.e., the number of sensors is equal to or greater than
the number of signals. In contrast, this paper focuses on the under-
determined BSS problem where source signals outnumber sensors.

It is our understanding that there are two approaches with which
to realize underdetermined BSS. Both approaches rely on the sparse-
ness of source signals. One involves the clustering of time-frequency
points with binary masks [2], and the other is based on ML estima-
tion, where the sources are estimated after mixing matrix estima-
tion [3–5]. Since separation in a real environment has already been
tried with the former method, we decided to employ a binary mask
approach [2]. If the signals are sufficiently sparse, that is, most of
the samples of a signal are almost zero, we can assume that the
sources rarely overlap. [2] uses this assumption and extracts each
signal using a time-frequency binary mask. However, due to these
binary masks, their method result in too much discontinuous zero-
padding of the extracted signals, and so the extracted signals are
severely distorted.

To overcome this problem, we propose utilizing both a sparse-
ness approach and independent component analysis (ICA). First,
using sparseness, we estimate the time points when only one source
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Fig. 1. Block diagram of underdetermined BSS. N > M .

is active. Then, we remove this single source from the observa-
tions and apply ICA to the remaining mixtures in order to sepa-
rate the signals. This single source removal does not cause severe
zero-padding of the separated signals, therefore we can improve
their sound quality. Experimental results show that our sparseness
and ICA (SPICA) method can separate signals with little distortion
even in real reverberant environments.

2. PROBLEM DESCRIPTION

In real environments, N signals observed by M sensors are
modeled as convolutive mixtures xj(n) =

∑N

i=1

∑L

l=1
hji(l)

si(n−l+1) (j = 1, · · · , M), where si is the signal from a source
i, xj is the signal observed by a sensor j, and hji is the L-taps im-
pulse response from a source i to a sensor j (see Fig. 1). Our ob-
jective is to obtain separated signals yk(n) (k = 1, · · · , N) using
only the information provided by observations xj(n). Here, we
consider the underdetermined case N > M . In this paper N = 3
and M = 2. Moreover, the sources are speech signals, i.e., the
sources are assumed to be mutually independent and sufficiently
sparse in the time-frequency domain [2–6].

This paper employs a time-frequency domain approach be-
cause speech signals are more sparse in the time-frequency do-
main than in the time-domain [5, 6] and we can convert convolu-
tive mixture problems into instantaneous mixture problems in each
frequency. In the time-frequency domain, mixtures are modeled as�

(ω,m) = � (ω) � (ω,m), where � (ω) is a 2×3 mixing ma-
trix whose j-i component is a transfer function from a source i to a
sensor j, and � (ω,m) = [S1(ω,m), S2(ω,m), S3(ω, m)]T and�

(ω,m) = [X1(ω, m),X2(ω, m)]T denote short-time Fourier
transformed source and observed signals, respectively. ω is the fre-
quency and m is the frame index. Moreover, we write short-time
Fourier transformed separated signals as � (ω,m) = [Y1(ω,m),
Y2(ω,m), Y3(ω,m)]T .
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Fig. 2. Example histogram. (a) TR = 0 ms and (b) TR = 200 ms.
A male-male-female combination with DFTsize T = 512.

3. CONVENTIONAL METHODS:
SPARSENESS APPROACH

Standard ICA cannot be applied to underdetermined cases be-
cause it assumes that a mixing matrix is invertible. Several meth-
ods have been proposed (e.g., [2–5]) for solving an underdeter-
mined BSS problem, and they utilized source sparseness.

If most of the samples of a signal are almost zero, we say that
this signal is sparse. When signals are sufficiently sparse, we can
assume that the sources overlap at rare intervals. For a detailed
analysis of sparseness, see [7].

Some conventional methods use the sparseness assumption
and extract each signal using time-frequency binary masks. Be-
cause we can assume that sources do not overlap very often, we
can extract each source by selecting the time points at which there
is only one signal. One way of estimating such time points is to
use the level difference of the observations and the phase differ-
ence between the observations. In this paper, we utilize omni-
directional microphones, therefore we use the phase difference
ϕ(ω, m) = � X1(ω,m)

X2(ω,m)
between the observations X1(ω, m) and

X2(ω,m).
Using ϕ(ω, m), we can estimate the direction of arrival (DOA)

for each time point m by calculating θ(ω,m) = cos−1 ϕ(ω,m)c
ωd

,
where c is the speed of sound and d is the microphone spacing.
When we plot this DOA θ(ω, m), we can see three peaks in the
histogram for each frequency. Let these peaks be θ̃1, θ̃2 and θ̃3

where θ̃1 ≤ θ̃2 ≤ θ̃3 (Fig. 2), and the signal from θ̃ξ be S̃ξ

(ξ = 1, 2, 3).
We can extract each signal with a binary mask

Mξ(ω,m) =

{
1 θ̃ξ − ∆ ≤ θ(ω, m) ≤ θ̃ξ + ∆
0 otherwise

(1)

by calculating Yξ(ω,m) = Mξ(ω, m)Xj(ω, m) where j=1 or 2.
Here, ∆ is an extraction range parameter: if ∆ is small the separa-
tion performance is good but the distortion is large, in contrast, if
∆ is large the musical noise problem is reduced but the separation
performance deteriorates.

Although we can extract each signal using this binary mask
(1), such extracted signals are discontinuously zero-padded by the
binary masks. Therefore, we hear considerable musical noise in
the extracted output.

4. PROPOSED METHOD: COMBINATION OF
SPARSENESS AND ICA (SPICA)

To overcome this musical noise problem, we propose using
both sparseness and ICA. Our method has two stages (Fig. 3). In
the first stage, unlike the conventional approach, we remove one
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Fig. 3. System setup

source from mixtures using the signals’ sparseness. By this re-
moval, it is expected that their zero-padding of the extracted sig-
nals to be less trouble because we extract more time-frequency
points than the conventional approach. Moreover, because we can
expect the remaining mixtures to consist of only two signals, we
can apply ICA (e.g., [8]) to these remaining mixtures in the second
stage. Because these separated signals are not highly zero-padded,
we can expect less musical noise.

[1st stage] One source removal:
Instead of extracting each source as in conventional approaches,

we remove only one source from the mixtures with a binary mask

Mpq
ICA(ω,m) =

{
1 θmin ≤ θ(ω,m) ≤ θmax

0 otherwise
(2)

by calculating

ˆ� pq
(ω, m) = Mpq

ICA(ω, m)
�

(ω,m). (3)

In (2), θmin and θmax are extraction range parameters, and in (3),
ˆ� pq

(ω, m) = [X̂pq
1 (ω, m), X̂pq

2 (ω,m)] are expected to be mix-
tures of S̃p and S̃q. For instance, if S̃1 can be removed from the
observations with a mask M23

ICA we can use ICA to separate S̃2 and
S̃3 in the next stage. In this case θmin and θmax in (2) can be
θ̃1 < θth1 = θmin < θ̃2, θmax = 180◦ (see Fig. 4), where θ̃1

and θ̃2 are estimated in the same way as in the previous section.
Similarly, when S̃3 is to be removed from the observations with a
mask M12

ICA, θmin = 0◦, θ̃2 < θth2 = θmax < θ̃3.
Because our system has only two outputs, both removals should

be performed to obtain three separated signals (see Fig. 3).
[2nd stage] Separation of remaining sources by ICA:

Because the remaining signals ˆ� pq
are expected to be mix-

tures of two signals, we can use 2×2 ICA to separate ˆ� pq
. The

separation process can be formulated as

� pq(ω,m) = �
pq(ω) ˆ� pq

(ω,m), (4)

where ˆ� pq
is the masked observed signal obtained by (3),

� pq(ω, m) = [Yp(ω,m), Yq(ω,m)]T is the separated output sig-
nal, and � pq(ω) represents a (2×2) separation matrix. � pq(ω)
is determined so that Yp(ω,m) and Yq(ω, m) become mutually
independent.

In this paper, the adaptive rule is � i+1(ω) = � i(ω) +

η
[
diag

(
〈Φ( � ) � H〉

)
− 〈Φ( � ) � H〉

]
� i(ω), where Φ( � ) =

φ(| � |) · ej·� ( � ), φ(x) = tanh(gx) and g = 100 [9]. To solve
the permutation problem of frequency domain ICA, we employed
the DOA and correlation approach [10], and for solving the scaling
problem of frequency domain ICA, we used the minimum distor-
tion principle [11].

III - 882

➡ ➡



∆ θ
0 180θ1 θ2 θ3

91
7
2

99
1
0

58
37
5

5
91
4

8
32
60

1
2
97

7
2
91

∆
M1 M2 M3

θth1 θth2

S1

S2
S3

[%]

(area 23)

S1: 3    S2: 47   S3: 50

S1: 50    S2: 48   S3: 2 removed

removed

~ ~ ~

M23
ICAM12

ICA (area 12)

area 23

area 12

87
4
9

86
5
9

66
24
10

13
80
7

13
43
44

3
11
86

5
6
89

S1

S2
S3

[%]

S1: 10    S2: 58   S3: 32

S1: 36    S2: 56  S3: 8 removed

removedarea 23

area 12

(a) TR=0 ms

(b) TR=200 ms

Fig. 4. Source power in each area (%). A male-male-female com-
bination.

5. EXPERIMENTS

5.1. Experimental conditions

In our experiments, we utilized the set-up shown in Fig. 5. For
tests of TR = 0 ms, we simulated a recording using the mixing
matrix Hji(ω) = exp (jωτji), where τji =

dj

c
sin θi, dj is the

position of the j-th microphone, and θi is the direction of the i-th
source.

For the reverberant tests, we used speech data convolved with
impulse responses recorded in a real room whose reverberation
time was TR = 130 and 200 ms.

As the original speech, we used three sentences spoken by
three male and three female speakers. We investigated three com-
binations of speakers: male-male-female, male-male-male, and
female-female-female.

The DFT frame size T was 512 and the frame shift was 256 at
a sampling rate of 8 kHz. We constructed a histogram of θ(ω, m)
for each frequency (see Fig. 2), and smoothed it slightly to find
θ̃1, θ̃2 and θ̃3. The ∆ value in the conventional method’s binary
masks (1) was 15◦ in DOA. We used θth1 = θ̃2−∆ for M23

ICA (area
23), and θth2 = θ̃2 + ∆ for M12

ICA (area 12), where ∆ was also
15◦. With this ∆ value the conventional method and our proposed
method provided compatible signal to noise ratio (SIR).

5.2. Performance measures

We used the signal to interference ratio (SIR) as a measure of
separation performance, and the signal to distortion ratio (SDR) as
a measure of sound quality:

SIRi = 10 log

∑
n

y2
isi

(n)∑
n
(
∑

i�=j
yisj (n))2

(5)

SDRi = 10 log

∑
n

x2
ksi

(n)∑
n
(xksi(n) − αyisi(n − D))2

. (6)

The permutation is solved before calculating SIR and SDR, i.e.,
yi is the estimation of si, and yisj is the output of the whole sepa-
rating system at yi when only sj is active and sk(k �= j) is silent,
and xksj is the observation obtained by microphone k when only
sj is active. α and D are parameters to compensate for the am-
plitude and phase difference between xksi and yisi . To evaluate
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Fig. 5. Room for reverberant tests.

the conventional method (sparseness only method), we calculated
SIR and SDR using the measurements from both microphones, and
adopted the better value.

5.3. Experimental results

5.3.1. Sparseness assessments
The histograms we used to design the binary masks are shown

in Fig. 2. Because of the sparseness property of speech signals,
the signals are well localized and the histogram has sharp peaks
for TR = 0 ms [Fig. 2 (a)]. However, in a reverberant case the
peaks are not so sharp [Fig. 2 (b)]. This shows that signals overlap
each other in a reverberant case and it becomes more difficult to
use the sparseness assumption than when TR = 0 ms.

We can also see this overlap in Fig. 4, which shows the power
content by percentage of each signal when ∆ = 15◦. When
TR = 0 ms [Fig. 4 (a)], S1, S2 and S3 are dominant in the ar-
eas of M1, M2 and M3, respectively. When TR = 200 ms [Fig. 4
(b)], however, the other signals’ overlaps increase in each area. It
is difficult for the sparseness assumption to held in a reverberant
case.

The degree of sparseness affects the performance of the 2nd
stage of our method. Figure 4 also shows the percentage of each
source power in the areas of M12

ICA and M23
ICA. The contributions of

the third signal are small and two signals are dominant even when
TR=200 ms. Therefore, we can say that we can use ICA in the 2nd
stage of our method.

5.3.2. Effect of one source removal
Table 1 shows the signal power eliminated by the zero-padding∑
n

x1si
(n)2−

∑
n

ŝi(n)2∑
n

x1si
(n)2

caused by binary masks, where ŝi(n) =

IDFT[M(ω, m)X1si(ω, m)]. In the sparseness only case [i.e.,
M(ω, m) = Mi(ω,m)], a large part of the signal power was elim-
inated by the binary mask. By contrast, with our proposed method,
signal power eliminated by Mpq

ICA(ω,m) was inferior. This result
convinces us that the adverse effect of zero-padding was mitigated
by using our method.

5.3.3. Separation results
Table 2 shows the experimental results we obtained for TR = 0 ms.

The first row shows the results obtained solely using the sparse-
ness, and the second and third rows show the results obtained with
our SPICA method. With sparseness only, the SDR values were
unsatisfactory, and a large musical noise was heard. In contrast,
with our proposed method, SPICA, we were able to obtain high

III - 883

➡ ➡



Table 1. Power lost by binary masks (in %). (a) TR=0 ms, (b)
TR=130 ms, (c) TR=200 ms. A male-male-female combination,

(a)
mask M1 M2 M3 M12

ICA M23
ICA

output Y1 Y2 Y3 Y1 Y2 Y2 Y3

[%] 15 8.7 15 1.4 3.9 4.9 0.9

(b)
mask M1 M2 M3 M12

ICA M23
ICA

output Y1 Y2 Y3 Y1 Y2 Y2 Y3

[%] 39 6.0 28 1.6 2.5 3.6 4.4

(c)
mask M1 M2 M3 M12

ICA M23
ICA

output Y1 Y2 Y3 Y1 Y2 Y2 Y3

[%] 48 9.2 37 4.1 4.5 4.7 8.8

SDR values without any serious deterioration in the separation per-
formance SIR and the musical noise was reduced.

Moreover, Tables 3 and 4 show the results of reverberant tests
when TR = 130 and TR = 200 ms, respectively. In reverberant
cases, due to the decline of sparseness, the performance with both
methods was worse than when TR = 0 ms. However, we were
able to obtain higher SDR values with SPICA than with the con-
ventional method even in reverberant environments. Some sound
samples can be found at our web site [12].

It should be noted that it is not easy to separate signals at the
center position by either method.

6. CONCLUSION

We proposed combining a sparseness approach and ICA (SPICA)
for BSS when speech signals outnumber sensors. Our method
avoids excessive zero-padding, and therefore, can separate the sig-
nals with little distortion in reverberant environments of TR=130
and 200 ms.
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Table 2. Results of TR=0 ms simulations. ‘Conv.’: with conven-
tional method, ‘area 12’ and ‘area 23’: with SPICA. ∆=15◦.

male-male-female [dB]
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 18.4 11.6 17.3 9.0 11.5 9.4
area 12 15.0 8.4 - 18.7 14.4 -
area 23 - 7.9 14.6 - 13.9 18.5

male-male-male
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 14.4 5.5 17.4 5.5 9.2 6.0
area 12 9.2 2.5 - 16.8 14.7 -
area 23 - 3.7 11.3 - 10.5 12.4

female-female-female
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 21.3 9.7 20.5 9.3 13.9 9.6
area 12 13.6 6.8 - 18.9 16.6 -
area 23 - 6.8 13.2 - 16.3 21.3

Table 3. Results of reverberant tests. TR=130 ms.
male-male-female [dB]

SIR1 SIR2 SIR3 SDR1 SDR2 SDR3
Conv. 10.4 6.8 10.7 4.8 13.3 6.2
area 12 9.5 6.1 - 8.8 15.9 -
area 23 - 6.4 8.9 - 14.4 9.5

male-male-male
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 10.6 2.9 8.6 3.7 12.5 4.4
area 12 7.7 2.5 - 5.9 14.3 -
area 23 - 2.2 8.9 - 12.7 7.9

female-female-female
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 16.0 9.2 13.7 6.4 16.0 6.9
area 12 12.2 7.9 - 8.6 17.6 -
area 23 - 7.9 9.7 - 16.5 10.6

Table 4. Results of reverberant tests. TR=200 ms.
male-male-female [dB]

SIR1 SIR2 SIR3 SDR1 SDR2 SDR3
Conv. 8.3 5.9 8.6 3.4 11.3 4.9
area 12 8.1 5.4 - 6.0 12.6 -
area 23 - 5.5 7.5 - 13.6 6.5

male-male-male
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 7.7 1.9 5.4 1.1 10.6 4.0
area 12 6.6 2.3 - 4.2 11.6 -
area 23 - 1.7 2.4 - 10.5 5.4

female-female-female
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 10.2 6.0 8.2 3.3 13.5 4.8
area 12 9.6 5.5 - 5.8 14.0 -
area 23 - 5.6 9.0 - 13.6 7.1
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