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ABSTRACT

This paper investigates the effects of real world acoustic envi-
ronments on sparse source separation and direction of arrival
(DOA) estimation performance. The time-frequency mask tech-
nique is widely studied as an approach for sparse source separa-
tion and DOA estimation. The approach relies on source sparse-
ness, which can easily be affected by, for example, reverbera-
tion. In fact, most proposed approaches assume an anechoic
condition, which is difficult to maintain in a real acoustic en-
vironment. We investigate how the performance of such meth-
ods is affected when the problem does not meet the assumed
conditions. We show that strong reverberation and a large dis-
tance between the sources and sensors degrade the separation
performance, however, the DOA estimation performance is not
so severely affected.

1. INTRODUCTION

The time-frequency mask approach to blind sparse source
separation (BSS) is being widely studied (e.g. [1, 2]).
Some authors have also proposed direction of arrival (DOA)
estimation methods for sparse sources [3, 4]. The time-
frequency mask approach is attractive because it can han-
dle the underdetermined problem where the sources out-
number the sensors. With regard to these problems, we
have also already proposed the time-frequency mask ap-
proach, which is based on observation vector clustering
[5], and a DOA estimation method [6] for sparse sources.

In order to estimate the time-frequency mask for the
separation, all the cited methods rely on the assumption
of source sparseness, and some methods adopt an ane-
choic assumption. Moreover, all the above DOA estima-
tion methods utilize an anechoic assumption. In practice,
however, these assumptions cannot hold due to such fac-
tors as reverberation and noise.

To study the effects of such practical issues, in this pa-
per, we investigate how the performance of a time-frequency
mask approach degrades when the problem becomes far
from holding the assumptions. We focus particularly on
the reverberation variations caused by changing the room

reverberation time and the distance between sensors and
sources.

2. PROBLEM DESCRIPTION

Suppose that sources s1, . . . , sN are convolutively mixed
and observed at M sensors

xj(t) =
∑N
k=1

∑
l hjk(l) sk(t− l), j=1, . . . ,M, (1)

where hjk(l) represents the impulse response from source
k to sensor j. In this paper, we look especially at a situa-
tion where the number of sources N can exceed the num-
ber of sensors M (N > M ). We assume that N and M
are known, and that the sensor alignment does not cause
the spatial aliasing problem. We have two goals. One
is to obtain separated signals yk(t) that are estimations
of sk solely from M observations. The other is to esti-
mate the DOAs qk of signals sk (k = 1, · · · , N) using
the knowledge of the sensor alignment. Here qk is a 3-
dimensional vector of a unit-norm representing the direc-
tion of the source sk [6].

This paper employs a time-frequency domain approach.
Using a short-time Fourier transform (STFT), the convo-
lutive mixtures (1) can be converted to instantaneous mix-
tures at each frequency f :

xj(f, τ) ≈∑N
k=1 hjk(f)sk(f, τ), (2)

or in vector notation,

x(f, τ) ≈∑N
k=1 hk(f)sk(f, τ), (3)

where hjk(f) is the frequency response from source k to
sensor j, sk(f, τ) is the STFT of a source signal sk, and τ
is a time index. We call x = [x1, . . . , xM ]T an observa-
tion vector and hk = [h1k, . . . , hMk]T is a vector of the
frequency responses from source sk to all sensors.

3. METHOD REVIEW

In this section, first we explain the assumptions that have
been widely employed for solving the underdetermined
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Figure 1: Flow of our method.

problem (e.g. [1, 5]). Then, we briefly describe our sepa-
ration and DOA estimation methods [5, 6] (Fig. 1).

3.1. Assumptions
ASSUMPTION 1: Source sparseness
We assume the sparseness of sources in the time-frequency
domain. When the signals are sufficiently sparse, we can
assume that the sources rarely overlap at each time-frequency
point, and (3) can be approximated as

x(f, τ) ≈ hk(f)sk(f, τ), k ∈ {1, · · · , N}, (4)

where sk(f, τ) is a dominant source at the time-frequency
point (f, τ). For instance this is true for speech signals in
the time-frequency domain [1].
ASSUMPTION 2: Anechoic model
We also assume an anechoic environment. If the source is
Dirac’s delta function sk(t) = δ(t), its observation at the
j-th sensor is

xj(t) = hjk(t)δ(t)
= hjk(t) = λjkδ(t− τjk)

where λjk ≥ 0 and τjk are the attenuation and the time
delay from source k to sensor j. If we assume an ane-
choic environment, λjk and τjk are determined solely by
the geometric condition of the sources and sensors. In the
frequency domain, an impulse response hjk(f) is repre-
sented by

hjk(f) ≈ λjk exp [−2πfτjk]. (5)

3.2. Sparse source separation
Here we employ the method proposed in [5], which

employs the above two assumptions as discussed below.
First, we normalize all observation vectors x(f, τ) for

all time-frequency points (f, τ) such that they form clus-
ters, each of which corresponds to an individual source.
The normalization includes phase-normalization with re-
spect to a sensor J and the frequency-normalization,

x̄j(f, τ)← |xj(f, τ)| exp
[

arg[xj(f, τ)/xJ(f, τ)]

4fc−1dmax

]

(6)
where c is the propagation velocity and dmax is the maxi-
mum distance between sensor J and a sensor j ∈ {1, . . . ,M}.

Then, we apply unit-norm normalization

x̄(f, τ)← x̄(f, τ) / ||x̄(f, τ)|| (7)

to x̄(f, τ) = [x̄1(f, τ), . . . , x̄M (f, τ)]T .
Considering the sparseness assumption (4) and the ane-

choic assumption (5), the normalized vector can be written
as

x̄j(f, τ) ≈ λjk
A

exp
[
− π(τjk − τJk)

2c−1dmax

]
, (8)

where A =
√∑M

j=1λ
2
jk. We can see that the normalized

observation vector x̄(f, τ) depends only on the source ge-
ometry λjk and τjk of the source sk, which is dominant
at the time-frequency point (f, τ). This means the nor-
malized observation vectors can be clustered based on the
source geometry.

Therefore, the next step is to find clusters C1, . . . , CN
formed by all normalized vectors x̄(f, τ). After setting
appropriate initial centroids ck (k = 1, · · · , N ), cluster-
ing is realized by the following iterative updates:

Ck = {x̄(f, τ) | k= argmini||x̄(f, τ)− ci||2} (9)
ck ← E[x̄(f, τ)]x̄∈Ck , ck ← ck/||ck||, (10)

where E[·]x̄∈Ck is a mean operator for the members of
a cluster Ck. This minimization can be performed effi-
ciently with the k-means clustering algorithm [7] with a
given source number N .

Because each resulting cluster corresponds to an indi-
vidual source, finally, we obtain separated signals yk(f, τ)
=Mk(f, τ)xj(f, τ) where j is an arbitrary selected sensor
index j ∈ {1, . . . ,M} and

Mk(f, τ) =
{

1 x̄(f, τ) ∈ Ck
0 otherwise (11)

Then we have time-domain outputs yk(t) by using an in-
verse STFT (ISTFT).

3.3. DOA estimation [6]

When qk and dj are 3-dimensional vectors representing
the k-th source DOA and the j-th sensor position, respec-
tively, the delay τjk in (5) normalized by the delay τJk for
the sensor J is

τjk − τJk = c−1(dj − dJ)Tqk. (12)

On the other hand, from (8) and (10), the delay τjk can
also be derived as

τjk − τJk = −2c−1dmax

π
arg{ck}j (13)

where {ck}j is the j-th component of the centroid ck.
From (12) and (13), we obtain the DOA

qk = −2dmax

π
D+rk. (14)

where rk = [arg[{ck}1], · · · , arg[{ck}M ]]T ,D = [d1 −
dJ , · · · ,dM − dJ ]T , and ·+ denotes a pseudo-inverse.
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Figure 2: Experimental setup.

If rank(D) ≥ 3, we can estimate the 3-dimensional DOA.
Note that the DOA estimation procedure also assumes source
sparseness and an anechoic condition.

4. PERFORMANCE INVESTIGATIONS

4.1. General conditions

We investigated how the performance of a time-frequency
mask approach is affected by reverberation. We performed
experiments under an anechoic condition and some rever-
berant conditions. Here, we only tested the 3-microphone
and 4-source case. For the anechoic test, we simulated
the mixture by using the anechoic model ((5) and (13))
and the mixture model (1). For the reverberant tests, ob-
servations were simulated by following (1) with impulse
responses hjk measured in a room (Fig. 2). The room re-
verberation times RT were 128 and 300 ms. For both RTs,
we utilized the same room but changed the wall condi-
tion. We also changed the distance R between the sensors
and sources. The distances variations were R=50, 110,
and 170 cm (see Fig. 2). The sources sk(t) were 5-second
English speech signals sampled at 8 kHz. We investigated
eight speaker combinations and averaged the results for all
the outputs. The STFT frame size was 512 and the frame
shift was 128(= 512/4).

4.2. Properties of impulse responses of reverberant con-
ditions

Figure 3 shows example impulse responses under differ-
ent reverberant conditions; (a) RT=128 ms, R=50 cm, (b)
RT=128 ms, R=170 cm, (c) RT=300 ms, R=50 cm, (d)
RT= 300 ms, R=170 cm. The impulse response becomes
long as RT and R increase. Figure 3 also includes the
clarity index [8]:

C = 10 log10

∫ 80ms
0

h2(t)dt∫∞
80ms h

2(t)dt

which explains the ratio between direct sound and rever-
berant sound. Small (large)C means the reverberant sound
(direct sound) is large. We can see that the clarity C be-
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Figure 3: Example impulse responses. (a) RT=128 ms,
R=50 cm, (b) RT=128 ms, R=170 cm, (c) RT=300 ms,
R=50 cm, (d) RT=300 ms, R=170 cm.

comes small as the reverberation and distance R increase.
That is, when the reverberation is long and R is large, the
anechoic assumption becomes corrupted.

4.3. Source sparseness under reverberant conditions

Here, we investigate how the sparseness changes under
some of the reverberant conditions. For the sparseness
measure, we employed the approximate W-disjoint orthog-
onality [9]:

rk(z) =

∑
(f,τ) ||Φ(k,z)(f, τ)sk(f, τ)||2∑

(f,τ) ||sk(f, τ)||2 × 100 (15)

where Φ(k,z) is a time-frequency binary mask that has a
parameter z

Φ(k,z)(f, τ) =
{

1 20 log (sk(f, τ)/ŷk(f, τ)) > z
0 otherwise (16)

and ŷk(f, τ)=STFT
[∑N

i=1,i6=k si(t)
]

(sum of interference
components). The approximate W-disjoint orthogonality
rk(z) means the percentage of the energy of source k for
time-frequency points where it dominates the other sources
by z dB.

Figure 4 shows the rk(z) values under some reverberant
conditions. The sparseness decreases when the contribu-
tion of the direct sound is small (see Fig. 3). That is, the
sparseness decreases as a result of both the reverberation
and distance R.

4.4. Separation performance

The separation performance was evaluated in terms of the
signal-to-interference ratio (SIR) improvement. Moreover,
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Figure 5: Separation performance for each condition.

we also evaluated the sound quality with the signal to dis-
tortion ratio (SDR). The definitions of SIR improvement
and SDR can be found in [5].

Figure 5 shows the result for each condition. The per-
formance degrades as the reverberation becomes long. More-
over, performance degradation was observed as the dis-
tance R became large. Both phenomena were expected
from the clarity values in Fig. 3 and from the sparseness
evaluation in the previous subsection. The performance
tends to worsen as the direct sound contribution becomes
smaller.

4.5. DOA estimation performance

For DOA evaluation, we converted the estimated DOAs
qk as follows

qk = [cos θk cosφk, sin θk cosφk, sinφk]T (17)

where θk and φk are the azimuth and the elevation of the
k-th source, respectively. Because the elevations φk were
always zero with our setting, we evaluated only the az-
imuth θk.

The azimuth values were set as shown in Fig. 2, how-
ever, there were small differences between the drawn DOA
and real DOA because they were set manually for every
RT and R. Therefore, we evaluated the estimation error

Errork = |θk − θ̂k|
where θ̂k represents the approximated true directions, which
were estimated by the MUSIC algorithm [10] when there
was only one source signal.

The result is shown in Fig. 6. When the reverbera-
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Figure 6: DOA estimation error in degrees. The error bar
shows the standard deviations.

tion and distance R are large, the DOA estimation error
increases, however, the DOA estimation error is still not
very large even under difficult conditions.

5. CONCLUSION

We investigated the time-frequency mask approach for BSS
and DOA estimation with respect to reverberation. As
our test was only for the 3-microphone and 4-source case,
further investigations are required for more complicated
cases (more sources, more sensors, longer reverberation,
etc.). The performance degradation caused by diffused
noise should also be investigated in the future.

6. REFERENCES
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