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ABSTRACT

This paper presents a speaker diarization system that estimates who

spoke when in a meeting. Our proposed system is realized by using

a noise robust voice activity detector (VAD), a direction of arrival

(DOA) estimator, and a DOA classifier. Our previous system uti-

lized the generalized cross correlation method with the phase trans-

form (GCC-PHAT) approach for the DOA estimation. Because the

GCC-PHAT can estimate just one DOA per frame, it was difficult

to handle speaker overlaps. This paper tries to deal with this issue

by employing a DOA at each time-frequency slot (TFDOA), and re-

ports how it improves diarization performance for real meetings /

conversations recorded in a room with a reverberation time of 350

ms.

Index Terms— diarization, voice activity detector, direction of

arrival

1. INTRODUCTION

Meeting recognition has been studied [1, 2, 3, 4, 5] and it has been

pointed out that speaker diarization, i.e., estimating who spoke when,

is an important topic. Speaker diarization information should be use-

ful for such applications as speech recognition during minute taking

and speech enhancement.

Let us formulate the task. Suppose that N ≥ 2 speech sources

s1, . . . , sN are convolutively mixed and observed at M micro-

phones,

xj(t) =
PN

k=1

P

l
hjk(l) sk(t − l) + nj(t), j =1, . . . , M, (1)

where hjk(l) represents the impulse response from source k to mi-

crophone j, and nj(t) is the observed stationary background noise

at microphone j. Speech sk(t) consists of intermittent signals. In

this paper we assume that the speakers do not change their seats dur-

ing one meeting / conversation. Our goal is to estimate “who spoke

when” at each time point t, without knowing the number of speakers

N , the speech sources sk or the mixing process hjk. We work in the

time-frequency domain. That is, we utilize the time-frequency repre-

sentation xj(f, τ) of the observations xj(t) (1), which we can obtain

by a short-time Fourier transform (STFT). Here f is a frequency and

τ is a time-frame index.

Recently, we proposed a diarization system based on a noise ro-

bust voice activity detector (VAD), a generalized cross correlation

method with a phase transform (GCC-PHAT) based direction of ar-

rival (DOA) estimator, and a DOA classifier [6]. That is, our diariza-

tion system relies on the speaker seat locations. The system worked

very well for real meetings / conversations, even when the system

did not know the number of speakers. The system is simple and
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Fig. 1. Block diagram of previous method (framed by dashed line)

and proposed method (Method I).

portable: it can run in real-time and it uses a small number of mi-

crophones. However, the system has a problem: it estimates just one

DOA per frame, because the previous approach employed the GCC-

PHAT. This means that only one speaker is detected even if multiple

speakers spoke in a frame. This causes a lot of missed speaker time

(false rejection in VAD terminology), and degrades the performance.

Some other approaches by the ICSI project [1] and the CHIL project

[2] also employ the GCC-PHAT technique, and therefore they also

experience the same problem as our approach.

In this paper, we try to improve the performance of our diariza-

tion system by using the DOA at each time-frequency slot (TFDOA).

The authors of [7] have successfully employed the TFDOA in a

speech enhancement scenario. In addition to the TFDOA, we try

to utilize the amplitude information of observations at each time-

frequency slot, and a probabilistic representation of the VAD results.

The experimental results obtained for real recordings of meetings

/ conversations show that such refinements improve the diarization

performance.

2. PREVIOUS METHOD

This section describes our previous approach [6], and points out its

problems.

2.1. Method

Figure 1 shows the system flow of our previous method [6]. With

the method, first the speech periods PS = {τ |bv(τ) = 1} are es-

timated from a continuously observed signal by using a VAD, then

the speech periods PS are determined for each speaker period Pk
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Fig. 2. Block diagram of VAD. PARADE: a Periodic to Aperiodic

component RAtio-based DEtection, SKF: a switching Kalman filter.

(k = 1, · · · , N ) by classifying the direction of arrival (DOA) in-

formation. That is, our previous method for estimating “who spoke

when” is based on the speaker positions.

As the VAD, we utilized the MUlti Stream Combination of Like-

lihood Evolution of VAD (MUSCLE-VAD) [8], which integrates

multiple speech features and a signal decision scheme. A block di-

agram of the VAD is shown in Fig. 2. The VAD is constructed by

using two stream speech / non-speech discriminators, i.e., periodic

to aperiodic component ratio-based detection (PARADE) [9] and a

switching Kalman filter (SKF)-based approach [10]. Each stream

outputs the likelihood of speech / non-speech discrimination frame

by frame, thus the speech period PS is decided by using the adap-

tively weighted sum of each likelihood [8]. PARADE is robust for

burst noise and the SKF is robust for stationary and non-stationary

noises. Therefore, by integrating them, we can obtain a VAD that

is robust for all types of noises, i.e., stationary noise, non-stationary

noise, and burst noise.

The VAD results bv(τ) are given by binary labeling, i.e., the

speech and non-speech frames are labeled 1 and 0, respectively. As

we employ multiple microphones, first we apply the VAD to each

channel independently. Then, each outputted binary label is unified

with a frame by frame logical sum operation.

The DOA estimation was performed using the GCC-PHAT [11]

q
′

jj′(τ) = argmaxq′

X

f

xj(f, τ)x∗

j′(f, τ)

|xj(f, τ)x∗

j′
(f, τ)|

e
2πfq′

, (2)

where q′jj′(τ) is the time differences of arrival (TDOA) in between

a microphone pair j − j′. The DOA vector q(τ) is calculated by the

TDOA information q′(τ), which consists of the q′jj′(τ) of all the

microphone pairs, and the given microphone coordinate information

D [12]:

q(τ) = cD
+
q
′(τ) (3)

where c is the propagation velocity of the signals and + denotes the

Moore-Penrose pseudo-inverse. When the source azimuth is θ(τ)
and the elevation is φ(τ), the DOA vector can be written as

q(τ) = [cos θ(τ) cos φ(τ), sin θ(τ) cos φ(τ), sin φ(τ)]T .

Here, we employ only the azimuth θ(τ) for simplicity.

The individual speaker periods Pk are determined by clustering

the estimated DOA θ(τ) at all speech frames τ ∈ PS :

τ ∈ Pk if q(τ) ∈ Ck, (4)

where Ck is the k-th cluster. This Pk is the speaker diarization result.

Equation (4) can be rewritten as

τ ∈ Pk if bv(τ)φk(θ(τ)) = 1 (5)

where

φk(θ) =



1 if |θ − θk| ≤ th

0 otherwise,
(6)

θk is the centroid of the k-th cluster, and th is a threshold.

2.2. Problems with previous approach

2.2.1. Problem 1: Frame-wise DOA

Because the previous approach employed the GCC-PHAT, it esti-

mates one DOA per frame. The system cannot estimate multiple

DOAs even if there are some speakers in a frame. This causes a lot

of missed speaker time (false rejection in VAD terminology), and

degrades the performance.

2.2.2. Problem 2: Directional noise

Thanks to the VAD, noise periods (non-speech periods) are esti-

mated successfully in most of the time frames. However, directional

noise is sometimes detected as a speaker if the directional noise is de-

tected as speech in terms of VAD, or if it becomes dominant in terms

of the GCC-PHAT calculation when the other speaker is speaking

with small power, e.g. speech onset/offset, and unvoiced speech part.

Such false detections increase the false alarm speaker time (FAT, see

Section 4.2) and degrade overall performance.

2.2.3. Problem 3: Binary VAD

The VAD performance changes when we change the threshold for

the speech / non-speech discrimination. And, what is worse, overall

diarization performance depends on the VAD performance. If the

false acceptance rate (FAR) of the VAD is high, there is little missed

speaker time (MST, see Section 4.2) but increased FAT. On the other

hand, when the false rejection rate (FRR) of the VAD is high, there

is little FAT but MST increases. Therefore, it is difficult to set a

preferable VAD threshold for good diarization performance.

3. PROPOSED METHODS

This section proposes three refined methods to handle the problems

discussed in the previous section.

3.1. Method I: Employ TFDOA

To solve problem 1, we employ the TFDOA. That is, instead of (2),

the TDOA is estimated at each time-frequency slot by

q
′

jj′(f, τ) =
1

2πf
arg [xj(f, τ)x∗

j′(f, τ)] (7)

and the TFDOA q(f, τ) is estimated in the same way as (3). Here,

we employ only the azimuth θ(f, τ) for simplicity.

If τ is a speech frame τ ∈ PS and a sufficient number of fre-

quency bins f have a DOA adjacent to the k-th centroid θk in frame

τ , then speaker k is regarded as speaking in the frame τ . That is, the

individual speaker periods Pk are determined by

τ ∈ Pk if bv(τ)λ1k(τ) > th1, (8)

where th1 is a threshold,

λ1k(τ) =
X

f

φk(θ(f, τ)) (9)

is a DOA voting, and φk(θ) has the same definition as (6). Figure 1

also shows a block diagram of this proposed method I.
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Fig. 3. Room setup. Small ellipses illustrate example speaker loca-

tions. The reverberation time was around 350 ms.

Table 1. Conversation recordings. Each recording lasted five min-

utes.

Evaluation data ID #Speaker Overlap [%] #Turn-taking #Utterance

crossword puzzle 1 4 18.6 149 185

crossword puzzle 2 4 13.0 183 218

discussion 3 10.8 126 172

conversation 3 34.8 243 278

3.2. Method II: Employ amplitude weight

To suppress the noise influence, here we assume that the signal to

noise ratio is sufficiently high, i.e., the amplitude of the speech spec-

trum is greater than that of the noise spectrum. By exploiting this

assumption, method II employs the amplitude weight for the DOA

voting:

λ2k(τ) =
X

f

|x1(f, τ)|
P

f
|x1(f, τ)|

φk(θ(f, τ)) (10)

where φk(θ) has the same definition as (6). From the amplitude

weight, it can be expected that the speech time-frequency slot gar-

ners a large number of votes and noise time-frequency slot receives

few votes.

The individual speaker periods Pk are determined in the same

way as in Method I:

τ ∈ Pk if bv(τ)λ2k(τ) > th2 (11)

where th2 is a threshold.

3.3. Method III: Employ probabilistic VAD

To handle the third problem, here we utilize the probability pv(τ) of

speech activity at each frame τ . Such a probability can be estimated

with a VAD. Here, we also employ the MUSCLE-VAD introduced

in Section 2.1, and utilize the forward probability (see (11) in [8]).

As we employ an array of multiple microphones, first we calculate

the probability for each channel independently and then take the av-

erage.

The individual speaker periods Pk are determined by

τ ∈ Pk if pv(τ)pk(τ) > th3 (12)

where th3 is a threshold and pk(τ) is the probability of speaker k

speaking. Here as the probability pk(τ), we employ the normalized

DOA voting result

pk(τ) ≡ λ3k(τ) =
λ2k(τ)

P

k
λ2k(τ)

. (13)

4. SYSTEM EVALUATION

4.1. Setup

Experiments were performed in the room shown in Fig. 3 whose

reverberation time was around 350 ms. We recorded some conver-

sations between three or four speakers in the room. The duration of

each unit of recorded data was five minutes. The distance between

the microphone array and the speakers was around 1 m. The per-

sonal computer (PC) in Fig. 3 could be the noise source. Figure 3

also illustrates our direction definition.

Because our recordings were conversations, they contain more

speaker turn-takings and speaker overlaps than usual meeting record-

ings. Table 1 summarizes the conversation situations. It can be seen

that our data contains many speaker turn-takings and overlaps, which

make speaker diarization difficult. Reference diarization labels were

generated by employing a hand-labeled transcription, which includes

temporal information about the speech onsets and speech offsets of

each speaker.

The sampling rate was 16 kHz for VAD and 8 kHz for DOA

estimation. The frame size for STFT was 64 ms, and the frame shift

was 32 ms. The thresholds for the proposed methods were th1 = 40,

th2 = 0.2, and th3 = 0.4. They were decided in our preliminary

experiments.

4.2. Evaluation measure

We evaluated performance with the diarization error rate (DER),

DER =
Wrongly estimated speaker time length

Entire speaker time length
× 100[%],

which was established by NIST [3]. The diarization error includes

the missed speaker time (MST), the false alarm speaker time (FAT),

and the speaker error time (SET) [3]. If the estimated number of

speakers exceeds the true number of speakers, such ghost speaker

periods were regarded as the SET. We also evaluated the DER after

smoothing (hangover) the speaker diarization result Pk, where short

fragments and short pauses were removed.

4.3. Results and discussion

Table 2 summarizes the results. With the previous method, which

cannot estimate multiple DOAs in a frame, we had a large MST rate.

When using Method I, where multiple DOAs can be estimated, the

MST rate decreases. Figure 4 shows an example illustration. With

the previous method (Fig. 4 (b)) we can estimate only one DOA for

each frame. On the other hand, several DOAs can be estimated in a

frame with Method I (Fig. 4 (c)). However, the FAT rate becomes a

little worse with Method I. One reason for this is that the directional

noise (PC) can be falsely detected easily by Method I. Figure 5 (c)

shows an example of such false detection of the directional noise

(from direction 8).

With Method II, where we utilize the amplitude weight, we can

improve the FAT rate. Figure 5 shows this result. With the previous

method (Fig. 5 (b)) and the proposed Method I (Fig. 5 (c)), some

directional noise from direction 8 was detected for 6 to 8 seconds.

By contrast, with Method II (Fig. 5 (d)), the directional noise is not

detected thanks to the amplitude weight.

The performance further improved when we used Method III,

which employs the probabilistic VAD result. When we test “cross-

word puzzle 2” data with Method II (Table 2 (b)), the FAR of the

VAD was 26.8% and the FRR of the VAD was 13.6%. If we use

the VAD of FAR=45.7% and FRR=2.8%, MST, FAT, SET and DER
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Table 2. Diarization results [%] for each evaluation data. (Values in

bracket indicate the DER after hangover.)

(a) Crossword puzzle 1

Method MST FAT SET DER

Previous 35.3 8.1 9.7 53.2 (41.1)
Method I 31.4 10.5 6.4 48.3 (37.0)
Method II 31.2 8.2 3.9 43.2 (28.5)
Method III 25.1 6.5 3.6 35.2 (21.9)

(b) Crossword puzzle 2

Method MST FAT SET DER

Previous 28.4 12.7 8.9 50.1 (40.0)
Method I 24.2 17.8 5.2 47.2 (36.1)
Method II 23.9 15.1 3.1 42.2 (29.2)
Method III 19.6 13.4 2.6 35.5 (25.0)

(c) Discussion

Method MST FAT SET DER

Previous 43.5 5.1 2.1 50.6 (35.9)
Method I 38.5 9.0 1.5 49.0 (31.9)
Method II 37.8 7.8 1.5 47.0 (32.6)
Method III 38.5 5.5 1.5 45.5 (29.9)

(d) Conversation

Method MST FAT SET DER

Previous 38.2 7.5 8.0 53.7 (40.7)
Method I 30.0 13.1 7.6 50.7 (37.7)
Method II 30.4 12.3 6.2 48.9 (32.3)
Method III 33.2 9.5 6.1 48.8 (34.3)

were 5.6, 30.7, 5.3, and 41.6, respectively. That is, the diarization

performance depends on the VAD performance as pointed out in

Section 2.2.3. With Method III, without tuning the VAD, we can

obtain good diarization performance.

5. CONCLUSION

We proposed methods for improving the performance of our meet-

ing diarization system. Instead of the GCC-PHAT approach, we uti-

lized the DOA at each time-frequency slot for the diarization. This

refinement reduces the missed speaker time, and improves the per-

formance. In addition, we also showed that the use of the obser-

vation amplitude at each time-frequency slot effectively disregards

directional noise. We also showed that the use of a probabilistic rep-

resentation of the VAD results produces high levels of performance.
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