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ABSTRACT

This paper presents a novel approach for speech
extraction by a combined subband independent com-
ponent analysis and neural memory. In the approach,
probabilistic neural networks followed by the subband
independent component analysis processing units are
used for the neural memory to identify firstly the speaker
and then compensate for the ‘side-effects’, i.e., the scal-
ing and the permutation disorder, both of which are
particularly problematic for subband blind extraction.
Simulation study shows that the combined scheme can
effectively extract the speech signal of interest from
the instantaneous / delayed mixtures, in comparison
with the conventional subband/fullband approaches.

1. INTRODUCTION

The cocktail party problemcan be generally solved;
i.e., in a place where a group of people are talking si-
multaneously, we can still be selectively attentive to
a particular person and communicate with each other.
However, it is well-known that to imitate such capabil-
ity inherent to humans is a challenging topic. In the
last decade, with the advancements in the algorithms
for independent component analysis (ICA) [1], emula-
tion of this facility by a machine has been tackled by a
number of researchers [2].

In recent studies [3] - [5], a variant of subband
blind extraction approaches was proposed. As reported,
these methods work well to extract the highest energy
speech component but the enhanced speech, so ob-
tained, is greatly deteriorated. This is mainly due to
the incomplete reconstruction of the enhanced signal,
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resulting from both the scale misadjustment and per-
mutation indeterminacy in the separated subband sig-
nals.

In this paper, we therefore propose a combined
scheme for subband blind extraction with a neural mem-
ory consisting of a multiple of probabilistic neural net-
works (PNNs) [6], so as to compensate for the incom-
plete reconstruction. In contrast, in [7], a neural ap-
proach for the cocktail party problem is proposed. The
approach exploits so-called a ‘cortronic’ neural net-
work (i.e., correlation matrix trained by a Hebbian-
type learning algorithm) for the extraction of one speaker.
The manner in which neural memory is utilised in this
paper is rather different in that the neural network it-
self extracts the speech signal. Moreover, the com-
bined scheme benefits from the flexible configuration
property of PNNs [8].

2. METHOD

In cocktail party situations, it is assumed that there
are M source speech signals at time &, i.e., s;(k), 1 =
1,2,---, M which can be represented in vector form
as s(k) = [s1(k),s2(k), -+, sp(k)]T, where []7 de-
notes the vector transpose operator, and the two signals
arriving at the two sensors (microphones) at discrete
time k, w;(k) = [u1(k),u2(k)]", can be defined as an
under-determined linear convolutive model:

u;(k) = i H(n)s(k —n) (€H)

n=—oo

where H € R®2*M s a linear filter operator and
defines the mixture. In the real acoustic environment,
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Fig. 1. Block diagram of the combined subband blind speech ex-
tractor containing neural memory units denoted by NN1 to NNy
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H is generally a non-minimum phase low-pass filter [9]
and recovering the original signals is thus very hard.

Fig. Lillustrates the block diagram of the proposed
speech extraction scheme. Note that, as implicitly de-
noted by the variables in Fig. 1, the proposed method
works in a batch operated manner rather than on-line.
(Thus, in practice, the signals are given in vector forms,
€.g., uz(k) = [uz(k), ’U,Z(k — 1), s ,ul(k — L+ 1)]T,
representing a length L window.) In the figure, note
also that the neural memory unit for each subband NN
1 (1 =1,2,---,N) is newly introduced and that, after
the identification by the neural memory units, the de-
cision mechanism 1) determines which separated sub-
band signal ;; obtained by ICA 4 should be used for
the summation operation and 2) outputs the scaling ad-
justment factors d; to finally obtain the reconstructed
speech §; as

N
8 =) dily )
i=1
where p = 1 or 2 and is determined by the refer-
ence to the neural memory.

2.1. TheSubband ICA Mechanism

As stated in [5], the effectiveness of subband blind
extraction resides in the property that narrow band sig-
nals are less prone to the convolutive effects in com-
parison with the original fullband signal. In this pa-
per, the subband coding mechanism developed in [5] is
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considered. The subband coding scheme [5] is based
upon the concept of harmonicity of the voiced sounds,
which has also been exploited in some models of com-
putational auditory scene analysis (CASA) [10]. In
summary, the mechanism involves two steps: 1) ex-
traction of the fundamental frequencies obtained by
applying both the wavelet and Hilbert transforms and
2) the bank of adaptive band-pass filters centered at the
fundamental frequency f0 obtained in 1) and its har-
monics.

In the proposed scheme, both the two-channel sub-
band signals B; (RY>*2,i = 1,2,---, N, in block form)
and instantaneous amplitude envelope signals C; (RZ' *2,
1 =1,2,---,N), which can be obtained as intermedi-
ary signals in 2) above, are exploited. The reason for
using C; instead of B; for the reference to the neural
memory is based on the assumption that the amplitude
envelope retains sufficient information about the orig-
inal speech, whilst its column vector length, L', is less
than that of each column vector in B; [5] (which is
proportion to 1/N, N: the number of subbands), which
is desirable for quick data processing by the PNNSs.

For the blind extraction of each subband signal, we
apply the second-order blind identification (SOBI) al-
gorithm [11] which is based upon joint diagonalisa-
tion of correlation matrices and known to be robust for
nonstationary signals such as speech. As in Fig. 1,
the SOBI algorithm is independently applied to both
the separation of the subband signal B; (ICA ¢) and
the amplitude envelope C; (ICA’ 4). (In a noisy en-
vironment, the robust form of SOBI [1] can also be
exploited.)

Then, it is considered that, due to the statistical in-
variance between the subband signal B; and the am-
plitude envelope C;, there is no ordering problem be-
tween the corresponding separated signals Z;; and r;;
(4 =1,2), i.e., both I;; and r;; correspond to the same
target source signal. Although the theoretical justifi-
cation is still under investigation, this was empirically
confirmed by the preliminary simulation study.

2.2. TheProbabilistic Neural Network

In Fig. 1, each unit ‘NN 2’ represents a distinct
probabilistic neural network (PNN). The PNN [6] is a
family of radial basis function neural networks (RBF-
NNs) [12] and reformulation of kernel discriminant
analysis [13] in the artificial neural network context.



Fig. 2. Ilustration of the topological equivalence between a con-
ventional PNN (upper) and that realised modular form (lower).

Recently, the utility of PNN/ generalised regression
neural networks (GRNNSs) has been increased espe-
cially in pattern classification, due to its straightfor-
ward and flexible configuration (i.e., network grow-
ing/shrinking) property (e.g., see [14]) and robustness,
in comparison with the commonly used multilayered
perceptron neural networks [12] trained by a backprop-
agation type algorithm [15]. Moreover, in [8] it is re-
ported that a PNN even exhibits a capability in accom-
modating new classes.

In Fig. 2, each input neuron z; (i = 1,2,---, N;)
corresponds to the element in the input vector & =
[xla-TQa e 7xN¢]T' h] (J =12 - 7Nh) is the J_th
RBF (note that N, is variable), ||---||3 denotes the
squared Lo norm, and the output neuron o (k = 1,2,
--+,N,) is given as

1
o = gzwj,khja ©)
7j=1
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_ N Np 0. L —
where § = 32,0 >0t wikhj, wj =
[wj,l, Wj2y -eey wj,No]T, and

llz — ;i3
Z‘p(—72]
g

(4)

h‘j - )7

where y; is called the centroid vector, o; is the
radius, and w; denotes the weight vector between the
j-th RBF and the output neurons. As in the upper part
in Fig. 2, the structure of a PNN is similar to the well-
known multilayered perceptron neural network (MLP-
NN) except that RBFs are used in the hidden layer and
linear functions in the output layer. In Fig. 2, when the

target vector ¢(x) corresponding to the input pattern
vector « is given as

t(m) = (51;627"'761\70)7

1 if x belongs to the class
0

corresponding to oy
otherwise

which assigns the weight vector between the j-th RBF
and the output neurons, i.e., w; = t(x), the entire net-
work eventually becomes topologically equivalent to
the one with a decision unit (followed by the ‘winner-
takes-all’ strategy) and N, number of sub-nets as in
the lower part of the figure [14]. Then, each SubNet
1 represents the pattern space of Class 7 spanned by
the RBFs. In summary, the network configuration by
means of a PNN is simply done as follows:

6 = (®)

Network Growing: Set y; = z and fix o, then add the
term w;ih; in (3). The target vector ¢(z) is used as
a class ‘label” indicating the subnetwork number to
which the RBF belongs.

Network Shrinking: Delete the term, w;xh;, from (3).

As in the above, it is considered that, in hardware
implementation, the network growing (learning) can
be straightforwardly performed. It is well-known that
the generalisation performance of RBF-NN families
such as PNNs is robust, while conventional neural net-
works such as multilayered perceptron neural networks
(MLP-NNs) with the backpropagation algorithm [15]
require iterative and (quite often) long training when-
ever the network configuration is changed and there is
always a danger of being stuck in local minima [12].

2.3. TheNeural Memory

As mentioned earlier, the role of the neural mem-
ory is to determine 1) which subband signal Z;; should



be chosen and 2) the scale adjustment factor d; for the
reconstruction.

For 1), the determination is performed as pattern
recognition (identification) of each blindly extracted
amplitude envelope r;; (j=1,2) given to the neural mem-
ory. Thus, the input vector of the PNN is obtained
from the envelope signal. In contrast, during the con-
struction (or network growing of the PNNSs) phase of
the neural memory, a total of N new RBF units will
be created at a time within the respective PNNs, with
each C; stored as the centroid vector (after the vectori-
sation) of the corresponding RBF. Then, the class ID
represents the ID of the target speech signal. During
the construction of the neural memory, we also store
the values obtained by calculating the standard devia-
tion of B; as d; in an auxiliary array.

For the reference/construction of the neural mem-
ory, there is, however, one consideration: since the
data length of the amplitude r;; is varied in a sample-
by-sample manner, the input vector to the PNN must
be normalised in not only amplitude but time (length).
To adjust the length of the input vector, we consid-
ered applying a simple re-sampling mechanism with
both anti-aliasing low-pass filtering and zero-padding
where necessary (e.g., see [16]).

After the normalisation, pattern recognition of the
input vectors r;; is performed one by one by the PNN
for each subband. Then, for each r;;, we obtain a total
of N (= number of subbands) recognition results (e.g.,
for the 4-th subband, Channel j is recognised as the
subband signal of the target signal s1). To finally de-
termine which 1;; should be taken for the reconstruc-
tion of the target speech, we apply a simple scoring
scheme: regard the channel j as the target signal if
the number of subbands recognised as the target s; is
greater than that of the other channel.

For 2), now that we know which channel should be
taken for the reconstruction of the target speech signal
and the channel signal is identified by the neural mem-
ory, we simply recall a set of scale adjustment values
d; stored in the auxiliary array, corresponding to the
identified speech. Finally, we obtain the reconstructed
speech by (2).
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3. SIMULATION STUDY

In the simulation study, we applied the proposed
scheme and compared the performance with that of 1)
the original subband approach [5] with the SOBI al-
gorithm [11] and 2) the fullband SOBI approach. To
measure objectively the extraction performance, the
energy in difference Ey; ¢y was considered:

q

> (

=1

1

8
Eaiss = p

Std(gl)

(6)

where ¢ is the number of simultaneous speech sig-
nals in the mixture (known a priori), std(-) denotes
the standard deviation, 8 is the extracted signal cor-
responding to the target speech, and s; are the speech
signals. (Therefore, the quality of the extraction per-
formance improves as Ey; ¢y approaches zero.)

For modeling the environment, we considered two
types of the two-channel mixture; 1) the instantaneous
and 2) the delayed mixture. For Case 2), we assumed
the situation where there is one dominant speech sig-
nal with no delay and other background signals with
delays and less amplitudes than the dominant speech.

3.1. Parameter Settings

In the simulation, the number N = 64 was chosen
for the two subband approaches and the performance
was tested up to seven simultaneous voices for both the
instantaneous and delayed mixture cases.

For the speech signals, we collected a total of 3 x 4
Portuguese and 4 x 1 Polish speech utterances recorded
at 8kHz sampling. The Portuguese speech utterances
were the three digits /NOVE/, /OITO/, and /QUATRO/,
each pronounced four times by two native female and
a male speaker. In contrast, the four Polish utterances
were the Polish words/phrases /JEDEN/, /ANONIM/,
INAZYWAM SIE/, and [IKOWALSKI/, each uttered by
two native female and one male speakers. Then, in the
simulation, the task was to extract the Portuguese fe-
male pronounced digit /NOVE/.

For the neural memory, only three out of four ut-
terances for each Portuguese digit (i.e., a total of nine
utterances) were used for constructing the PNNs and
the remaining one was used for generating the mix-
tures (i.e., for the reference mode). This is to simulate
the memory for a single language (Portuguese). Then,
the length of both the input and the centroid vector was
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Fig. 3. Simulation Results - the Instantaneous Mixture Case with
Five Simultaneous Voices (s1 - s5); z1: Original Subband SOBI,
z2: Fullband SOBI, and z3: Proposed Method.

fixed to 64 after the normalisation. For the scale adjust-
ment values, as for each digit, three different patterns
were used for the construction of PNNSs, we stored the
averaged values obtained from the three patterns as d;.

3.2. Simulation Results

Due to the limit on space, we show only two sets
of waveforms obtained for the instantaneous and de-
layed mixture case, respectively. For the instantaneous
mixture, five simultaneous voices were modeled (three
Portuguese s; - s3 and two Polish s4 and s5):

U1 (k) = 0.831( ) + 0.432( ) + 0. 283( )
+0.184(k) + 0.3s5(k)
uz(k) = 0.6s51(k) + 0.8s2(k) + 0.3s3(k)

+0.284(k) + 0.1s5(k)

In the above, it was assumed that two Portuguese
speakers (i.e., 81 and s2) were dominant and the other
three were background. In the simulation, Channel
1 was recognised as the voice corresponding to the
Portuguese digit /NOVE/ and the speech was recon-
structed according to this recognition result.

In contrast, the delayed mixture consists of three
simultaneous voices (three Portuguese s - s3):

0.8s1 (k) + 0.285(k — 120) + 0.3s5(k — 180)
0.681 (k) + 0.285(k — 125) + 0.3s3(k — 190)
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Fig. 5. Comparison of Ey; ¢ - the Delayed Mixture Case.

In the delayed mixture case, Channel 1 was again
recognised as the target speech signal /NOVE/. As in
Figs. 3 and 6, it was observed that the separation per-
formance by the proposed method is almost compa-
rable to the fullband SOBI and better than the origi-
nal subband SOBI, and it was confirmed by the listen-
ing tests that the proposed method is the best among
the three methods in terms of the quality of the ex-
tracted speech for both the instantaneous and delayed
mixture cases. In Fig. 3, the effectiveness of the pro-
posed method is noticeable between sample nos 1000
and 4000.

In Figs. 4 and 5, the comparisons of Eg;; (de-
fined in (6)) for the instantaneous and delayed mixture
cases with varying number of simultaneous voices are
respectively shown. In both the cases, it is clearly ob-
served that the performance with the proposed method
(=3) is almost consistently superior to the other two.
This is particularly remarkable for the instantaneous
mixture case and was also confirmed by the informal
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Fig. 6. Simulation Results - the Delayed Mixture Case with
Three Simultaneous Voices (s - s3); z1: Original Subband SOBI,
z2: Fullband SOBI, and z3: Proposed Method.

listening tests.

4. CONCLUSION

In this paper, a novel subband blind speech extrac-
tion scheme with neural memory concept has been pro-
posed. The neural memory is synthesised with PNNs
applied to the subband speech envelope information.
From both objective and subjective evaluation of the
simulation results, it appears that the neural memory
can compensate for the drawbacks within the original
subband approaches and the extraction performance is
consistently superior to that of other two conventional
approaches. Future work includes a thorough investi-
gation of the proposed scheme applied to the general
case where convolutive mixtures are considered and is
directed towards the extension of the proposed scheme
to a more practical situation: continuous speech cases.
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