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ABSTRACT 
 
Time-frequency domain blind source separation (BSS) leads to 
an important problem that generally the independence 
assumption between source signals collapses in frequency 
domain due to inadequate samples. It consequently degrades 
the performance of all the ICA-based BSS methods. To remedy 
the defect, we propose introducing the beamforming into the 
conventional BSS system taking the advantage that the null 
beamforming does not depend upon the assumption of 
independence but only upon the estimation of the directions of 
arrival (DOA). We set up a criterion on the performance of 
separation. It is used to compare the separation results by ICA 
and beamforming, and select the result that is thought better. 
The separations at certain bins are greatly improved, which 
results in a better separation. 
 

1. INTRODUCTION 
 
Blind source separation has received extensive attention 
in signal and speech processing, machine intelligence, 
and neuroscience communities. The goal of BSS is to 
recover the unobserved source signals without any prior 
information given only the sensor observations that are 
unknown linear mixtures of the independent sources. A 
variety of successful ICA methods have been developed 
for this purpose [1-5]. 

Due to the multi-path effect and reverberation in real 
environment, computationally blind speech separation is 
often implemented in time-frequency domain. A number 
of approaches for the delayed and convoluted sources 
separation have been reported [6-9]. The commonly 
mentioned disadvantage in frequency domain 
implementation is that the standard ICA indeterminacy of 
scaling and permutation appears at each output frequency 
bin. Various methods using different continuity criteria as 
listed in [10] have been reported. 

There is another disadvantage, which is not addressed 
yet but is thought to be important. It is the assumption of 
independence between source signals collapsed in 
frequency domain [11]. This is because the BSS is 
normally implemented on a short time period of 
observations due to the dynamic mixing process in real 

environment. Frequency domain implementation leads to 
much less samples than in time domain. As a result, the 
estimation of statistics often includes large error. For 
example, the correlation function between source signals 
can no longer be expected to be zeros. We say that the 
frequency representations of the source signals 
corresponding to the observations of limited samples are 
correlated. The existing correlation obviously disobeys 
the commonly adopted basic assumption of ICA that the 
sources should be independent with each other. It 
decreases the performance of ICA in different degree, 
sometimes very seriously, at various frequency bins 
whatever the separation method is used. Furthermore, it 
degrades the performance of the solution to the 
ambiguity of scaling and permutation problem. 

For remedying the unfavorable effect caused by the 
low-independence problem, we propose to incorporate 
the beamforming into conventional ICA-based BSS 
method. It is expected that beamforming could produce a 
better separation to replace ICA when ICA can not do its 
job properly due to low-independence problem. The null 
beamforming is established on the estimated directions of 
arrival (DOA) of sources and has the advantage that it 
does not depend on the assumption of independence 
between source signals. It could give a better separation 
if a good estimation of DOA is available. We first set up 
a criterion on the performance of separation and use it to 
compare and select the separation that is thought better 
between those achieved by ICA and beamforming. 
Because the DOA at each frequency is generally different 
in acoustic environment and also in consideration of the 
estimation error of it, we adopt a search-and-error 
scheme in using the beamforming.  

The rest of this paper is organized as follows. Section 
2 summarizes the conventional ICA-based method and 
the directivity pattern. Section 3 details the 
low-independence problem in frequency domain BSS. 
The section 4 describes the proposed criterion on the 
performance of separation and section 5 gives the 
proposed method. In section 6, more clarification of 
DOA and beamforming are made. Section 7 gives the 
simulation test results, and following the discussion on 
the results of the experiments, the paper is concluded. 



2. PREPARATION 
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2.1. Conventional ICA-based BSS 
 
The formation of conventional ICA-based BSS could be 
summarized as follows. Source signals are assumed to be 
independent with each other, with zero mean, and are 
denoted by a vector  When 
the signals are recorded in a real environment, the 
observations can be approximated with convolutive 
mixtures of source signals, 
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For utilizing the directivity pattern to estimate the DOA, 
a linear array is assumed. The coordinates of the 
microphones are designated as , and the 

directions of arrival of multiple sound sources are 
designated as . Hereinafter, we assume a 
two channel system, i.e., K=L=2. Fig.1 illustrates the 
configuration of the linear spaced array and sound 
sources. 
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where A is an unknown polynomial matrix, a is the 
impulse response from source l to microphone k, and the 
symbol * refers to convolution. In frequency domain, the 
convolutive mixing problem is decomposed into multiple 
instantaneous mixing problems. 
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The instantaneous mixing problem then can be solved 
using any desired ICA method. With the derived 
unmixing filter W(f), we recover the source signals by 

$( ) ( ) (S PDW Xf,t f f,t= ) .           (3) 

where, P and D are the solution to the ambiguity of 
permutation and scaling. Then we can either transfer the 
bin unmixing filters into time domain or directly transfer 
the separated frequency components into time domain to 
recover the source signals. 

In the conventional BSS method, the unmixing 
matrix W(f) is derived by the following learning rule [3]: 
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⋅ t ηwhere denotes the time averaged operator, denotes 
the step-size learning factor, and the nonlinear vector 
functionΦ is defined as [6]: ( )⋅
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where and are the real and 
imaginary parts of , respectively. l
 
2.2. Directivity pattern [6] 
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In the standpoint of the array signal processing, and 
omitting the permutation and scaling operators, P and D, 
the resultant output signals of Eq.(3) could be seen as 
obtained by multiplying array signals X1(t) and X2(t) by 
the weight Wkl and adding them. It implies that directivity 
patterns are produced in the array system. The unmixing 
matrix Wf that is achieved by ICA could be used to 
estimate the DOAs of sound sources with respect to each 
frequency bin. The directivity of the array system, 
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where is the element of . In the 
directivity patterns, directional nulls exist in only two 
particular directions. The DOA of the l-th source, , is 
estimated as 
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where N is the length of DFT, denotes the DOA 
of the l-th source at the m-th frequency bin, which are 
given by 

fm( )

θ θ θ1 1 2( ) [ ( , ) , ( , ) ]min ar n ar nf F f F fm m m=

θ2 ( ) [max arfm =
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And in the case that the look direction is and the 
directional null is steered to , the elements of the 
matrix for signal separation are given as  

$θ 2
$θ 1

 

 
 
 
 

3. THE PROBLEM 
 
Due to the dynamic mixing process in real environment, 
BSS is normally implemented on a short time period of 
observations. Frequency domain implementation leads to 
much less samples than that in time domain. As a result, 
there often exists large estimation error in the second and 
higher order statistics. For example, the correlation 
function between the source signals can no longer be 
expected to be zeros. The frequency components of 
source signals, corresponding to the observations of the 
limited samples, are correlated. 

For evaluation of the correlation between 
 we define that, s sf,t f,t1 L( ) ( ), ,L ,
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where ⋅ denotes the expectation operator, and 
S f, t S f, t( ) ( )H  is the normalized covariance matrix. 

The correlation between the frequency components of 
source signals, denoted as I(f), is quantified by the 
Frobenius norm of V . It is further normalized and 
defined as, 
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The higher the value I f( ) is, the lower the 
Fig. 2 shows the correlation 
ency between the two speech 

samples, “Good morning” and “Konbanwa”. The signals 
are about one second in length, and the sampling rate is 
16kHz. The DFT length is 512 samples (32msec) and the 
window shift is 5 samples. Hamming window is used. It 
is noted that the correlation may vary in some degree 
when using different frame length and window shift. But 
it will not cause significant change to it.  

independence will be. 
distribution against frequ

Regardless of the ICA method, the off-diagonal 
elements of the covariance matrix of the separated 
signals are to be minimized as practical, ideally 
minimized to zeros. In other words, ICA will make I f( )  
close to or equal to zero. The existing correlation 
between the sources as shown in Fig.2 apparently shows 
that ICA will not work perfectly in such case. It degrades 
the performance of ICA, sometimes makes the separation 
completely failed. 
 

4. CRITERION 
 
ICA assumes the limited data of  is independent 
and separates the frequency mixtures into mutually 
independent signals. However  is often not 
independent and sometimes the separation completely 
failed. In such case, the separated signals are still mixed 
with each other. Taking an improper separation (Fig.3) as 
an example, Y1 and Y2 are the separated results achieved 
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Fig.2 Correlation distribution between two speech 
samples, “Good morning” and “Konbanwa”. 



by ICA, and S1, S2 are the components of original 
sources. The waveforms are the norms of the 
complex-valued signals respectively. Although Y1 and 
Y2 are uncorrelated with each other, comparing with S1 
and S2, it is obvious that Y1 and Y2 are quite similar at 
certain segment pairs, for example at [1900, 2200] and 
[2400, 3000].  

The criterion is set up on the above observation. We 
divide the separated signals  into a number of 
continuous segments , and use the averaged 
segmental similarity (ASS) as the criterion to make the 
decision. The ASS is defined as, 

 
segmental similarity (ASS) as the criterion to make the 
decision. The ASS is defined as, 
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where, l is the segment sequence number and m is the 
segmental length. 

Figure 4 shows the segmental similarities between Y1, 
Y2 and S1, S2, respectively. They are divided into six 
segment pairs with m equals to 500, respectively. We can 
see that the average of the segmental similarities of 
improper separation (Y1, Y2) is higher than that of 
complete separation (S1, S2). In other words, those with 
higher averaged segmental similarity tend to be improper 
separation. 

In this paper, the proposed ASS is used as criterion to 
compare and select a better separation among the 
separations achieved by ICA and beamforming. 
 

5. SEPARATION METHOD 
 

We propose a separation method consisting of ICA and 
beamforming and expect beamforming produces better 
separation when the low-independence problem prevents 
ICA from a proper separation. 

Fig. 5 depicts the processing flow of this method. The 
mixtures are firstly decomposed into frequency domain. 
In each frequency bin, the frequency mixtures are 
separated using ICA at first. The DOAs of sources are 
estimated using the directivity pattern. With the estimated 
DOAs, we construct the null beamforming. 

Due to the reflections and reverberations in real 
environment, DOAs of sources actually are different at 
various frequency bins (see section 6.1). Furthermore, the 
derivation of DOAs of sources using Eq.(7) only 
provides an approximate estimation. As such, we use a 
search-and-error scheme to find the most adequate 
separation by beamforming at each frequency bin. The 
search range is set to . The setting of 
the parameter 

$ ( ,θ ϕk k± = 1 2
ϕ  depends on the acoustical environment. 

When the reverberation time is long, it might be better to 

set ϕ  to a big value such as 30-50 degree. And when 
the reverberation time is short, it might be set to 10-20 
degree. Experimentally, it is adequate to set the step size 
of search to 1-3 degree (see section 6.2). It is pointed out 
that the scheme does not cause heavy computation load 
and it may be implemented in parallel. 
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Fig.5 Process flow. BF: beamforming. S.&P.: scaling 
and permutation. Sepa.: separation. The operations 
within the broken line are implemented in each 
frequency bin. 

Among these searches, the separation that outputs the 
least ASS is selected. It is further compared with the 
result achieved by ICA as follows,  
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The selected unmixing matrixW are transferred into 
time domain unmixing filter through inverse DFT after 
solving the indeterminacy of permutation and scaling. 
For the problem of irregular amplitude of the separated 
signals, the commonly adopted solution that is putting 
back the separated frequency components to the sensor 
with the inverse matrices is used. The indeterminacy of 
permutation is solved using the DOA information 
obtained in Eq.(8) [6]. 
 

6. DOA AND BEAMFORMING 
 
6.1. About DOA  
 
In real environment, the DOA of a sound source is 
generally varying at different frequency. The DOA at 
each frequency is determined by the impulse responses. 
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In a two microphone array system, the DOA of a source 
at a certain frequency is determined by the time 
delay between the two microphones. 
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where and denote the transfer functions 
from the source to the two microphones, respectively. 
The angle denotes the arriving angle of the source, d 
is space between the two microphones and c is the 
propagation speed of sound wave. From Eq.(17), we get 
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Fig.6 The two impulse responses from a source in the 
direction of -20 degree to the two microphones. 

where phase denotes the operation that output the phase 
of a complex number. 
where phase denotes the operation that output the phase 
of a complex number. 

Here, as an example, we verify the DOA of a source 
at each frequency using a pair of impulse responses from 
RWCP Sound Scene Database. The reverberation time is 
300 msec. Source is in the angle of -20 degree. Fig.6 
depicts the two impulse responses from the source to the 
two microphones. The space between the two 
microphones is 2.83 cm and sound speed c equals to 340 
m/s. We use Eq.(18) to evaluate the DOA at each 
frequency. Fig.7 shows the result. Although DOA varies 
dramatically at some bins, most of them stay within a 
certain range with its center is close to the named angle. 
As such, for the impulse responses of 300 ms, 

Here, as an example, we verify the DOA of a source 
at each frequency using a pair of impulse responses from 
RWCP Sound Scene Database. The reverberation time is 
300 msec. Source is in the angle of -20 degree. Fig.6 
depicts the two impulse responses from the source to the 
two microphones. The space between the two 
microphones is 2.83 cm and sound speed c equals to 340 
m/s. We use Eq.(18) to evaluate the DOA at each 
frequency. Fig.7 shows the result. Although DOA varies 
dramatically at some bins, most of them stay within a 
certain range with its center is close to the named angle. 
As such, for the impulse responses of 300 ms, ϕ  equals 
to 15-25 degree could provide potential abilities to 
remedy the separations by ICA for most of the bins. 
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6.2. Step size of the search 
 
For determining the step size of search approximately, a 
simple simulation using only the beamforming was 
conducted. A pair of source signals was mixed without 
reflection. The signal-to-noise ratio were calculated at 
different pairs of and . Fig.8 shows the result. 
When both of and are a little apart away from 
their real angles in 1-3 degree, respectively, beamforming 
still provide good separation, the SNR is close to that of 
exact angles. This indicates that the step size in the 
search scheme might be set to about 1-3 degree. 

θ 1 θ 2

θ 1 θ 2

 
7. SIMULATION TESTS 

 
7.1. Simulation 1: Effect of the method 
 
For evaluating the performance of the proposed method 
solely in remedying the defect from the independence 
problem in ICA, simulation test 1 was conducted in the 
simplest condition. The configuration was as follows (see 
Fig.1): The two sound sources were in the directions of 
-30 and +30 degrees, respectively. The distances from the 
sources to the center of array were 2 m. The space 

between the microphones was 8 cm. We used the sound 
samples from ASJ continuous speech corpus for research. 
The mixing filter was simulated according to the 
configuration without echoes. 

The test parameters were as follows: sampling rate 
was 10 kHz, window length was 512 samples, window 
shift was 20 samples, and Hamming window was used. 
The signals used for learning the filter were 2.5 sec. The 
search range parameter ϕ  was set to 2 degree. 

Fig.9 shows an example of the improvement of SNR 
at each frequency bin accompanying by the decrease of 
ASS comparing to the ICA. At about half of the bins, 
beamforming provided lower ASS and replaced ICA. 
Although SNR unexpectedly decreased a little at a few 
bins, most of the replacement gave a better separation. 
This proves the effectiveness of the proposed criterion. 

Twelve pair of different sound samples were used in 



the test. Fig.10 shows the averaged results achieved by 
the proposed method and those of ICA and beamforming, 
respectively. The proposed method gave about 6.0 dB 
improvement than ICA and 3.4 dB higher than 
beamforming. In the simplest test condition, if bypassing 
the errors in estimation of DOA, beamforming could 
provide perfect result. 
 
7.2. Simulation 2: Convolutive mixtures 
 
In simulation 2, we used the same configuration but the 
impulse responses were used from RWCP Sound Scene 
Database in Real Acoustic Environment. The 
reverberation time is 300 msec. Test parameters were 
same with those used in simulation 1 with the exception 
that the window length was 1024, the search parameterϕ  
and step were set to 15 and 2 degree, respectively. 

Twelve trails on different sound samples were 
conducted. Fig.11 shows the averaged SNRs by ICA and 

the proposed method, respectively. Comparing with the 
conventional ICA-based BSS, about 1.5 dB improvement 
was achieved.  
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Fig.9 The upper two figures show the improvement of SNR 
in each frequency bin at source 1 and 2, respectively. The 
lower figure shows the decreasing of ASS. These are all 
compared with the conventional ICA. 
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8. CONCLUSION 

 
This paper addressed the low-independence problem in 
the frequency domain BSS and proposed a method that 
using beamforming to replace ICA when ICA cannot 
work well due to the problem. The null beamforming 
could work well in simplest condition, but it fails in 
complicated environment because of variation of DOA at 
frequency bins. However using it in a search and error 
scheme, it is possible in remedying the defect from the 
low-independence problem, which results in a better 
separation. Simulation tests proved the effectiveness. 
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Fig.11 Separation results of simulation 2.

 

Fig.10 Separation results of simulation 1.
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