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ABSTRACT

In this paper we link the blind identification of a MIMO
Moving Average (MA) system to the calculation of the Canon-
ical Decomposition (CD) in multilinear algebra. This con-
ceptually allows for the blind identification of systems that
have many more inputs than outputs. We also derive a new
theorem guaranteeing uniqueness of a high-rank CD and an
algebraic algorithm for its computation.

1. INTRODUCTION

Blind identification of a linear system is the identification
of that system without knowing its inputs. Typically one
assumes that the inputs are spatially and temporally inde-
pendent.

In this contribution we exploit the structure of the higher-
order cumulant of the outputs. We show that a part of it
satisfies a CD model, in which the components yield the un-
known Markov parameters. The CD of a higher-order tensor
is the decomposition of that tensor in a minimal number of
rank-1 terms; a rank-1 tensor is an outer product of a num-
ber of vectors, i.e., anN th-order tensorA has rank1 when
there existN vectorsU (1), U (2), . . . ,U (N) such that:

ai1i2...iN
= u

(1)
i1

u
(2)
i2

. . . u
(N)
iN

for all values of the indices. A good tutorial on the CD
is [1]. A general discussion and a brief overview of the
state-of-the-art can also be found in [6]. Uniqueness of the
decomposition has been investigated in [2, 3, 9, 10]. For an
(I×J×K×L) tensor, the number of terms in an essentially
unique CD can be much higher than min(I, J,K,L) (unlike
the situation for matrices), enabling us to blindly identify
systems that have many more inputs than outputs.

The link between the CD and blind identification is ex-
plained in Section 2. In Section 3 we derive two important
algebraic results: (i) a new uniqueness theorem for the CD,
based on relatively weak assumptions, and (ii) a powerful
technique for the computation of the decomposition via a

simultaneous diagonalization. Section 4 elaborates further
on the blind identification problem. Section 5 is the conclu-
sion.

Our formulation is in terms of real-valued data; the gen-
eralization to the complex case is straightforward.

2. THE CD AND BLIND IDENTIFICATION

Consider the following data model:

Y (n) =

L−1
∑

l=0

H(l)X(n − l) + N(n),

in which X(n) ∈ R
J are the unkown inputs, which are

assumed to be mutually independent in space and time and
at least fourth-order stationary,Y (n) ∈ R

I are the observed
outputs,H(l) ∈ R

I×J , l = 0, . . . , L − 1 are the unknown
Markov parameters, andN(n) ∈ R

I is Gaussian noise.
Let us consider the(I × I3) matricesC(τ1, τ2, τ3, τ4),

defined by

(C(τ1, τ2, τ3, τ4))i1,(i2−1)I2+(i3−1)I+i4 =

Cum[yi1(n − τ1), yi2(n − τ2), yi3(n − τ3), yi4(n − τ4)].

Define also

H =
(

H(L − 1)T . . . H(0)T
)T

.

Then we have:

T̃ =










C(0, 0, L − 1, 0) . . . C(0, 0, L − 1, L − 1)
C(1, 0, L − 1, 0) . . . C(1, 0, L − 1, L − 1)

... . . .
...

C(L − 1, 0, L − 1, 0) . . . C(L − 1, 0, L − 1, L − 1)











= H · diag(κ1, . . . , κJ ) · (H(L − 1) ¯ H(0) ¯ H)
T

,

in which¯ is the Katri-Rao or column-wise Kronecker prod-
uct, andκ1, . . . , κJ are the cumulants of the inputs. This



equation actually correponds to the decomposition of a fourth-
order tensorT ∈ R

LI×I×I×LI , of whichT̃ is a matrix rep-
resentation, in a sum of rank-1 terms:

(T )k1k2k3k4
= (T̃)k1,(k2−1)LI2+(k3−1)LI+k4

=
∑J

j=1 κj (H)k1j(H(L − 1))k2j(H(0))k3j(H)k4j .(1)

In what follows, we will derive means to compute this de-
composition.

3. A CD ALGORITHM

This section is inspired by the techniques derived in [2, 7],
which only apply to super-symmetric higher-order tensors
(real tensors are super-symmetric when they are invariant
under arbitrary index permutations).

Consider an(I ×J ×K ×L) tensorT of which the CD
is given by

tijkl =

R
∑

r=1

airbjrckrdlr, (2)

in whichA ∈ R
I×R, B ∈ R

J×R, C ∈ R
K×R, D ∈ R

L×R.
R is called the rank ofT . Trivial indeterminacies of this
decomposition are that theR components may be reordered,
and that, within the same component, the different factors
may be rescaled, as long as the overall component remains
the same.

Associate withT a matrix-to-matrix mapping as fol-
lows:

(T (V))ij =
∑

kl

tijklvkl.

Let this mapping be represented by a matrixT ∈ R
IJ×KL,

and consider a factorization ofT of the form

T = E · FT , (3)

with E ∈ R
IJ×R andF ∈ R

KL×R full rank (this factoriza-
tion may, e.g., be obtained by means of a Singular Value De-
composition (SVD)). The full rank property is generically
satisfied ifR 6 min(IJ,KL). We call a property generic
when it holds everywhere, except for a set of Lebesgue mea-
sure 0. Hence we may read the valueR as the number of
significant singular values ofT. Because of (2) and (3), we
have:

A ¯ B = E · W (C ¯ D)T = W
−1 · FT (4)

for some nonsingularW ∈ R
R×R. The task is now to find

W such that the columns ofE ·W andF ·W−T correspond
to rank-1 matrices.

Theorem 1. Define a mappingΦ : R
I×J×R

I×J → R
I×J×I×J

by

(Φ(G,H))i1j1i2j2 = gi1j1hi2j2 − gi1j2hi2j1 . (5)

Then we have thatΦ(G,G) = 0 if and only if G is at most
rank-1.

Proof: It is easy to check thatΦ(G,G) = 0 if G is
rank-1. For the “only if” part, let the SVD ofG be given by
U · Σ · VT . We have:

gi1j1gi2j2 =
∑

rs

σrσsui1rvj1rui2svj2s

gi1j2gi2j1 =
∑

rs

σrσsui1rvj1sui2svj2r.

Rank-1 terms corresponding to the samer = s cancel out
in Eq. (5). However, due to the orthogonality ofU andV,
the other terms are linearly independent. So we must have
thatσrσs = 0 wheneverr 6= s; hence,Σ is at most rank-1.

Denote the(I×J) matrices represented by the columns
of E asE1, . . . ,ER, letΦst = Φ(Es,Et) and let the columns
of A, B be given by{Ap}, {Bp}. Due to the bilinearity of
Φ, we have

Φst =
∑

pq

(W−1)ps(W
−1)qtΦ(ApB

T
p , AqB

T
q ). (6)

Now consider the matricesM of which the entries sat-
isfy the following set of homogeneous linear equations:

∑

st

mstΦst = 0. (7)

As will become clear, these matrices form anR-dimensional
subspace of the symmetric(R × R) matrices (under the
condition to be specified). Let{Mr} represent a basis of
this subspace. If the tensors{Φ(ApB

T
p , AqB

T
q )}p6=q are

linearly independent, then substitution of (6) in (7) shows
that
∑

st

(Mr)st(W
−1)ps(W

−1)qt = (Λr)pqδpq ∀p, q

(8)
in which δ is the Kronecker delta. (8) can be rewritten as

M1 = W · Λ1 · WT

...

MR = W · ΛR · WT (9)

in which Λ1, . . . ,ΛR are diagonal.W can be determined
from this simultaneous matrix decomposition by means of
the algorithms developed in [4, 5, 12, 13, 14].

Working onF may provide a similar set of equations in
W

−1 (provided{Φ(CpD
T
p , CqD

T
q )}p6=q are linearly inde-

pendent). These equations may be combined with (9).
The question is now under which condition onR linear

independence of{Φ(ApB
T
p , AqB

T
q )}p6=q can generically be

guaranteed. The following theorem establishes sufficient
(but not necessary) conditions:



Theorem 2. The CD in Eq. (2) is generically unique, up to
the trivial indeterminacies mentioned before, ifR 6 min(IJ,
KL) andR(R − 1) 6 I2(J2 − J)/2.

Proof: The first inequality was used in the derivation
of Eq. (4). The second inequality generically guarantees
linear independence of{Φ(ApB

T
p , AqB

T
q )}p6=q. These ten-

sors can be represented in a vector format as

Ap ⊗ Aq ⊗ Bp ⊗ Bq − Ap ⊗ Aq ⊗ Bq ⊗ Bp

= Ap ⊗ Aq((IJ2×J2 − P)(Bp ⊗ Bq))

= (II2×I2 ⊗ (IJ2×J2 − P))(Ap ⊗ Aq ⊗ Bp ⊗ Bq)

in which P is a specific permutation matrix.P is such that
IJ2×J2 − P has rank(J2 − J)/2. Hence, the condition is
thatR(R − 1) 6 I2(J2 − J)/2.

Note that one may start from a version ofT of which the
indices are permuted in the way that leads to the smoothest
condition onR.

Remark 1. The technique may also be used for the com-
putation of the CD of a third-order tensorT ∈ R

I×J×K

of which the rankR 6 min(IJ,K). By starting from the
vector-to-matrix mapping

(T (V ))ij =
∑

k

tijkvk,

one obtains a simultaneous decomposition of the form (9)
(but not a similar set in terms ofW−1). Again, the decom-
position is unique ifR(R − 1) 6 I2(J2 − J)/2.

Remark 2. For an(I × J × K × L) tensorT with L À
max(I, J,K), one can even allow a higher rank. One starts
from the vector-to-tensor mapping

(T (V ))ijk =
∑

l

tijklvl

and imposes the structure

A ¯ B ¯ C = E · W.

This can be done by resorting to a variant of mappingΦ in
Theor. 1.

These results can be applied to, e.g., the problems dealt
with in [8, 10, 11], and to the problem sketched in Section 2.

4. THE BLIND IDENTIFICATION PROBLEM

As far as our blind identification problem is concerned, the
previous section explicitly leads to the noise-free solution
(even when considering only 2 of the decompositions in (9)
— these can be combined to an eigenvalue decomposition
of the typeMr · Ms

−1 = W · Λr · Λs
−1 · W−1).

However, in the context of Section 2, the results of the
previous section should rather be considered as theoretical
contributions, intended to set out some marks showing what
theoretically can be achieved. We have proved that, usingI
sensors, one can identify a MIMO system of orderL having
as much asJ inputs, bounded by

J(J − 1) 6 L2I3(I − 1)/2. (10)

With respect to application in practice, Section 2 has
the drawback that, in Eq. (1), we have actually only ex-
ploited the structure of the output cumulant for a very spe-
cific set of time lags:τ1 = 0, . . . , L − 1, τ2 = 0, τ3 =
L − 1, τ4 = 0, . . . , L − 1. The expressions for the input-
output cumulant relations for other sets of time lags are
more complex. Assume, without loss of generality, that
τ1 = max{τ1, τ2, τ3, τ4} andτ2 = min{τ1, τ2, τ3, τ4}. Then
we have:

C(τ1, τ2, τ3, τ4) =

L−1−τ1+τ2
∑

p=0

H(p) · diag(κ1, . . . , κJ ) ·

(H(τ1 − τ2 + p) ¯ H(τ1 − τ3 + p) ¯ H(τ1 − τ4 + p))
T

.(11)

One may expect to obtain more accurate results by matching
both sides of (11) for a sufficient number of time lags.

5. CONCLUSION

In this paper we have derived a new uniqueness theorem for
the CD of a higher-order tensor, involving mild conditions
on dimensions and rank. We have shown that, under the
conditions specified by the theorem, the canonical compo-
nents can be computed by means of a simultaneous congru-
ence transformation. These powerful results are important
for many higher-order signal processing problems. Our ex-
position was limited to third- and fourth-order tensors, but
can be generalized to arbitrary tensor orders.

We have established a link between the blind identifica-
tion of a MIMO MA system and the CD of a fourth-order
output cumulant. Based on this link, we have proved that it
is possible to blindly identify systems of which the number
of inputs is roughly proportional toI2L, in which I is the
number of outputs andL the system order.
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