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ABSTRACT

In this paper we describe a non-negative matrix factoriza-
tion (NMF) for recovering constituent spectra in 3D chem-
ical shift imaging (CSI). The method is based on the NMF
algorithm of Lee and Seung [1], extending it to include
a constraint on the minimum amplitude of the recovered
spectra. This constrained NMF (cNMF) algorithm can be
viewed as a maximum likelihood approach for finding ba-
sis vectors in a bounded subspace. In this case the opti-
mal basis vectors are the ones that envelope the observed
data with a minimum deviation from the boundaries. Re-
sults for

���
P human brain data are compared to Bayesian

Spectral Decomposition (BSD) [2] which considers a full
Bayesian treatment of the source recovery problem and re-
quires computationally expensive Monte Carlo methods.
The cNMF algorithm is shown to recover the same con-
stituent spectra as BSD, however in about

������	
less com-

putational time.

1. INTRODUCTION

Chemical shift imaging (CSI) is an imaging modality whereby
high resolution nuclear magnetic resonance (NMR) spec-
tra are acquired across a volume of tissue [3]. In vivo CSI
allows for the non-invasive characterization and quantifica-
tion of molecular markers with clinical utility for improv-
ing detection, identification, and treatment for a variety
of diseases, most notably neurological disorders. CSI can
be tuned to different biochemical markers through varying
the atomic resonances, thus providing precise characteriza-
tions of tissue and/or a means for optimizing the signal-to-
noise ratio (SNR). The more common atomic resonances
include

�
H (protons)1,

��

F (Fluorine), and

���
P (Phospho-

rus). Together with structural magnetic resonance imag-
ing (MRI), CSI can provide an integrated biochemical and
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1When protons are imaged the imaging modality is often referred to
as magnetic resonance spectroscopy imaging (MRSI).

morphological view of biological tissue and disease pro-
cesses.

Each tissue type can be viewed as having a character-
istic spectral profile corresponding to the chemical compo-
sition of the tissue. In a given voxel multiple tissue types
may be present. The observed spectra is therefore a com-
bination of different constituent spectra. The signal mea-
sured in CSI is the response to a coherent stimulation of
the entire tissue. As a result the amplitudes of the different
coherent resonators are additive and their spectral magni-
tudes are additive. The overall gain with which a tissue
type contributes to this addition is proportional to its con-
centration in each voxel. As a results we can explain the
observed spectra � as

����������� (1)

where the columns in � represent the concentration, or
abundance, of the constituent material and the rows in �
their corresponding spectra. � represents additive noise.

The abundance matrix � has � columns (one for each
material) and � rows (one for each voxel). � and � have�

columns (one for each resonance frequency). Figure 1
shows an example of CSI data for

���
P spectroscopy. The

data shows spectra for an axial slice of human brain. In
this example the complete CSI acquisition was 8-by-8-by-
8 voxels.

Since we interpret � as concentrations, we can assume
the matrix to be non-negative. In addition, since the con-
stituent spectra, � , represent amplitudes of resonances, in
theory the smallest resonance amplitude is zero, correspond-
ing to the absence of resonance at a given frequency. The
factorization of Equation 1 is therefore constrained by,

��� � and ��� � � (2)

In CSI spatial inhomogeneity of the magnetic field may
introduce an unknown phase shift which must be separately
estimated for every voxel. Inhomogeneity within a voxel
and errors in the estimation of that phase as well as mea-
surement noise may lead to violations of the positivity con-
straint of the observed spectra.



Fig. 1. Example
���

P CSI data from Ochs et al. [2]. Shown
is an 8-by-8 voxel axial slice of spectra taken of the brain of
a healthy subject. Spectra near the edges are almost exclu-
sively noise. The complete dataset consists of 512 voxels
with spectra of 369 points (bands).

Conventional NMR spectra analysis often imposes a
parametric or explicit model for � � � ����� , and considers
one voxel at a time, ��� to invert the linear problem �	� �
� �
����� � (i.e. a constrained least-squares solution). More re-
cently, there have been efforts to simultaneously exploit the
statistical structure of multi-voxel spectra to solve Equa-
tion 1 as a blind source separation (BSS) problem. For
example, Nuzillard et al. [4] use second order blind identi-
fication (SOBI) [5] to separate

���
C spectra. Problematic

with the approach is the assumption that the constituent
spectra are orthogonal, which is required for the SOBI al-
gorithm. There are many cases where the constituent spec-
tra can be highly correlated, and thus an orthogonality or
independence assumption is incorrect.

Ochs et al [2] formulate Equation 1 within a Bayesian
framework to simultaneously solve for � and � . Using a
Markov chain Monte Carlo (MCMC) procedure, they sam-
ple the posterior space of  � ������� � �

subject to the likeli-
hood  � ��� ��� � �

(the noise distribution) and priors  � � �
,

 � � � . These priors include positivity and sparseness in �
and � , however make no assumptions about orthogonality
or independence. Their results have shown good separa-
tion for highly correlated constituent spectra. However the
approach is computationally expensive, given the MCMC
procedure.

In this paper we describe a fast algorithm which ex-
ploits only the non-negativity of � and � for blindly sep-
arating multi-voxel CSI data. The algorithm is based on
the non-negative matrix factorization (NMF) algorithm of
Lee and Seung [1][6]. We further develop the NMF ap-
proach, within a maximum likelihood framework, to in-
clude a function for forcing low amplitude spectral values
in the recovered sources to be zero. The method can be
viewed as a subspace reduction whereby small amplitudes

of the constituent sources are forced to zero–i.e. forced to
the edges of a polygonal conic subspace spanned by the
constituent spectra. We term this algorithm constrained
non-negative matrix factorization (cNMF). The cNMF al-
gorithm is four orders of magnitude faster than the Bayesian
MCMC approach and converges to the same solution for
real-mixture, multi-voxel CSI data. In the following sec-
tions we describe the cNMF algorithm and present results
for
���

P data, a subset of which is shown in Figure 1.

2. CONSTRAINED NON-NEGATIVE MATRIX
FACTORIZATION

We begin by reviewing the formulation of the NMF algo-
rithm of Lee and Seung. The basic idea of the algorithm is
to construct a gradient descent over an objective function
that optimizes � and � . For example, with � modeled
as i.i.d. Gaussian noise (a reasonable assumption given the
empirical noise distribution in Figure 2), one can formulate
the problem as a maximum likelihood estimation, where
we minimize the negative log-likelihood,

���������	��� � argmax
A,S

 � ��� ����� �

� argmin
A,S

� ��� ��� � �

subject to : ��� � � ��� � � (3)

Defining ! as the negative log likelihood, the gradients for
� and � are given by,

" !"$# �
% & �'�)(+* ����,�-/.0� ��% & � � # -1-/.	� �
% & �
" !" - &)% 2 �'�)(+* ��� # . ,�� &3% 2 � � # . # -�� &3% 2 � (4)

Using the gradients we can construct the additive update
rules,

# �
% &54 # ��% & �76 ��% &�8 �
,�- . � �
% & � � # -�- . � ��% &)9- &)% 2 4 - &3% 2 �;:<&3% 2 8 � # .�,�� &3% 2 � � # . # -1� &3% 2 9 (5)

Note that we have two free parameters, which are the
step size of our updates. Lee and Seung show that by ap-
propriately choosing the step size, 6 and : ,

6 �
% & �
# ��% &� # -�- . � ��% &

:<&3% 2 �
- &3% 2� # . # -�� &3% 2 (6)

The additive update rule can be formulated as a multiplica-
tive update rule, with � � ��� being a fixed point. In
addition, they show that this optimization is equivalent to
optimization over an auxiliary function, guaranteed to have



Fig. 2. Empirical noise estimate from
���

P CSI data. The
noise distribution was computed using the 256 voxels that
were determined, via PCA and visual inspection, to contain
no signal.

the same minimum as Equation 3 [6]. The multiplicative
update rules for � and � therefore become,

# ��% &54 # ��% &
�
,�- . � ��% &� # -�- . � ��% &

- &3% 2 4 - &3% 2
� # . ,�� &3% 2� # . # -�� &)% 2 (7)

By formulating the updates as multiplicative rules we
can ensure non-negative � and � , given both are initial-
ized non-negative. For our CSI experiments, initialization
is done by first choosing the number of constituent spec-
tra (sources) to recover by setting the dimensions of the
two matrices � and � . We then initialize the values of the
matrices by constructing a non-negative random � and es-
timating � by solving a constrained least squares problem,

argmin
A,S

� ��� ��� � � subject to ��� � � (8)

Equation 7 provides an updating rule for estimating �
and � subject to the constraints of non-negativity. However
one problem is that, due to noise, the observations, � , can
have negative values. Since the observations are used in
updating � and � , this means that a possible solution is
recovered spectra with negative amplitudes. One option is
to only utilize those values of � which are in fact non-
negative. Though this solution yields correct results in the
noise-free case, it does not recover the correct spectra in
the case of real-mixtures (see results in Figure 3).

It is instructive to view the factorization in Equation 1
as representing a subspace reduction from a

�
dimensional

space into a constrained � dimensional space. Except
for the positivity constraints, the decomposition is com-
pletely arbitrary within that � -dimensional space. How-
ever, spectra and concentrations are non-negative and so
the � -dimensional degrees of freedom within that sub-
space are constraints by � � � � � � linear boundary con-

Fig. 3. Spectral separation results enforcing non-negative
factorization by only using non-negative � . Note that nei-
ther spectra is physically meaningful, though the top spec-
tra has a mixture of features that might be indicative of
muscle or brain spectra. Truth for the dataset was estab-
lished by visual inspection and prior knowledge of the tis-
sue distributions (see [2] for details). Compare to Figures 5
and 6

straints (Equation 2). This is the portion of the space that
corresponds to realistic solutions of the factorization. We
wish to further constrain the space of possible solutions
by exploiting the fact resonances typically occur in only
a small fraction of bands, i.e. the spectra are zero in a large
fraction of bands. We will disallow small spectral magni-
tude values and instead assume that they are due to baseline
noise. We thus allow non-zero solutions within the linear
subspace only when there is sufficient evidence to explain
them above a minimum noise floor. We enforce this by
introducing a threshold constraint on � ,

- �
% � �
� - ��% � - ��% ��� �
� - ��% ��� � (9)

where
�

determines the noise floor and � is some very small
value. 2 We treat A symmetrically, using the same thresh-
old constraint as mentioned above. This ensures A remains
non-negative, given the possibility of negative values in X.

To summarize, the procedure for updating � and � is,

1. Initialize: Choose dimensions of � and � and ini-
tialize with non-negative values (e.g. random � and
constrained least-squares for � ).

2. Update �
3. Force small values of � to be approximately zero.

2Note that the spectral amplitudes cannot be set to exactly zero given
the update rules for � and � .



0 5 10 15 20 25 30 35 40 45 50

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

x 10
6

STEPS

F

Fig. 4. Evolution of the negative log likelihood ( ! ) of
cNMF, for ten random initializations of � and � . The fig-
ure is an empirical demonstration of convergence.

4. Update �
5. Force small values of � to be approximately zero.

6. Iterate (back to 2).

We call this the constrained non-negative matrix factoriza-
tion (cNMF) algorithm.

We can develop an intuitive understanding of cNMF
via geometrical considerations. The manifold of possible
solutions specified by Equations 1 and 2 represent an �
dimensional polygonal cone spanned by the � rows of � .
Positivity constraints on the spectra require that the row
vectors of � , representing the edges of the cone, lie in the
positive quadrant of the

�
dimensional space of the obser-

vations. Positivity on � and the linear relation of Equa-
tion 1 state that the

�
dimensional points defined by the

rows of the observations � must fall within that polygonal
cone. The additive noise in the probabilistic model allows
points to fall outside this cone with a certain likelihood.
The aim of maximum likelihood is to find cone edge vec-
tors that tightly envelope the observed

�
-points with the

smallest possible deviation on the boundaries. By con-
straining small values of the vectors � to be zero we force
some polygon edges onto the boundaries (or edges) of the
positive quadrant. This will possibly increase the noise re-
quired to explain points that fall outside the � -polygonal
cone.

In theory this heuristic procedure is not guaranteed to
converge. However, in practice our algorithm always con-
verges. An example of the evolution of the negative log
likelihood is shown in Figure 4. We hypothesize that the
many degrees of freedom in ����� , and � allow alterna-
tive solutions with an equivalent goodness-of-fit and hence

A

B

Fig. 5. Spectral separation results using BSD. (A) BSD
recovered spectra, (top) source 1 and (bottom) source 2.
Source 1 shows sharp � ATP lines centered a -18.62 ppm
with PCr at -2.52 ppm. This is indicative of muscle tissue.
Source 2 shows � ATP centered at -18.92 ppm with PCr at
-2.52 ppm. This indicates brain tissue. (B) Fifth axial slice
of mixing matrix showing relative concentrations of muscle
and brain spectra. Note that these images are constructed
by interpolating the 8-by-8 abundance values to 64-by-64.



A

B

Fig. 6. Spectral separation results using cNMF. (A)
cNMF recovered spectra, (top-source 1) muscle spectra
and (bottom-source 2) brain spectra. (B) Fifth axial slice
of mixing matrix showing relative concentrations of mus-
cle and brain spectra. Compare to Figure 5

our heuristic does not alter convergence. More importantly,
however, our solutions are more realistic in that small ob-
served spectral magnitudes are explained as noise rather
than small spectral resonances.

3. RESULTS ON
���

P CSI BRAIN DATA

To demonstrate performance of the cNMF algorithm we
compare results to the MCMC Bayesian Spectral Decom-
position (BSD) method reported in Ochs et al. [2]. Such
Bayesian formulations of source separation have been shown
to be very flexible, in that they enable explicit definitions
on the forms of the likelihood and priors.

We use the same preprocessing as described in [2]. 512���
P spectra (8-by-8-by-8 voxels) of human brain data were

collected, with each spectra represented as a 369 point vec-
tor. Using principle component analysis (PCA) and visual
inspection of the data, it was determined that 256 of the
voxels contained signal and that there were primarily two
constituent sources. Thus, the dimensionality of the prob-
lem is � � ( � � � (���� � � ������� .

The recovered spectra using BSD is shown in Figure 5(A).
One can see that the recovered spectra are highly correlated
and therefore an orthogonality or independence assumption
is inappropriate and would not lead to the correct results.
The results are consistent with the underlying biochemi-
cal characteristics of the tissue, with the top spectra being
indicative of muscle tissue and the bottom of brain tissue.
Figure 5(B) shows an axial slice (the fifth axial slice) of
the mixing matrix � , which can be viewed as the relative
concentration of the recovered spectra. In this case we see
the muscle spectra concentrated near the skull border with
brain spectra largely internal to the muscle signal. The so-
lution using BSD required 12000 seconds (1.2 GHz Intel
processor).

Results using the cNMF procedure are shown in Fig-
ure 6. Note that the recovered spectra and relative concen-
trations distributions are nearly identical to the BSD ap-
proach. However the cNMF algorithm required only 0.48
seconds to converge (2.3 GHz Intel Processor).

4. DISCUSSION AND CONCLUSIONS

In this paper we have described an approach for recover-
ing constituent (source) spectra in multi-voxel CSI. The
approach, which we term cNMF, is based on an extension
of the Lee and Seung NMF algorithm, and can be viewed
as a maximum likelihood approach for finding basis vec-
tors in a subspace. The basis vectors are found such that
they envelope the observed

�
-points with the smallest pos-

sible deviation from boundaries. We apply this algorithm
to
���

P brain data used by Ochs et al. and report results
that show cNMF is able to recover the same source spec-
tra as BSD however in

��� ��	
the time. Both the cNMF and

BSD impose non-negativity constraints, however BDS also
imposes a sparsity constraint through priors on � and � .
Neither algorithm forces orthogonality or independence, as



with many BSS algorithms [5, 7] which would lead to in-
correct results in the case of CSI spectra. Finally, the speed
of the cNMF algorithm enables near real-time analysis of
CSI data, potentially enabling a more directed diagnostic
work-up.
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