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ABSTRACT

We consider the problem of detecting note onsets in
music under the hypothesis that the onsets, and events
in general, are essentially surprising moments, and that
event detection should therefore be based on an explicit
probability model of the sensory input, which generates
a moment-by-moment trace of the probability of each
observation as it is made. Relatively unexpected events
should thus appear as clear spikes. In this way, several
well known methods of onset detection can be under-
stood in terms of an implicit probability model. We
apply ICA to the problem as an adaptive non-Gaussian
model, and investigate the use of ICA as a conditional

probability model. The results obtained using several
methods on two extracts of piano music are presented
and compared. Finally, we tentatively suggest an in-
formation theoretic interpretation of the approach.

1. INTRODUCTION

A wide variety of methods of onset detection have been
proposed in the literature, (e.g. [1, 2, 3]) many of which
perform adequately in their intended domains. What
seems to be missing is any sense of an underlying de-
sign principle; the algorithms appear to the be result
of an heuristic process relying on the insight and inven-
tiveness of the engineer. Some systems [2] do make use
of psychoacoustic data to guide the design process, but
such imitation does not explain why those processing
strategies should be used, or, indeed, why the human
auditory system is as it is. Neither are the resulting al-
gorithms applicable in other domains, such as detecting
events in EEG traces, where there is no biological sys-
tem to serve as a guide. Instead, the heuristic design
process must be begun anew, as insights gained in one
domain may not be relevant in another.

There is, however, a common motif in many of the
algorithms, where a two-stage approach is adopted.

First, the acoustic signal is processed to produce one
or more new signals, which ideally are non-oscillatory,
of lower bandwidth, and manifest a clear peak or other
easily detected feature for each onset in the original sig-
nal. Subsequently, these reduced signals are analysed
to locate the peaks and assign a time to each event thus
detected—this is the stage where categorical decisions
are made. The success of the second stage depends on
the degree to which the reduced signals record a con-
sistent, easily categorised response to any onset whilst
rejecting other aspects of the sound, which may be con-
sidered “noise” in this application. This paper is con-
cerned only with the first stage: we propose that the
reduced signal should derive from the statisitical struc-
ture of the data, which in turn should be learned by an
adaptive probability model.

1.1. A Probabilistic Approach

The underlying premise is that onsets in music, or more
generally, significant events, are perceived as such be-
cause they are relatively surprising moments, during
which the signal behaves in an unexpected or unpre-
dictable way. This judgement is to be made by an ob-
server relative to a statistical model of the signal, which
generates a moment-by-moment trace of the probabil-
ity of the signal under the model. When an event oc-
curs, there will be a sudden dip in probability, but if the
event is a stereotypical one familiar to the model, the
initial surprise will be followed by a largely predictable
consequent, so the dip in probability should be localised
to the onset. Thus, for signals which are strongly event-
based, we expect this “probability signal” to have some
sparse temporal structure, from which event times can
reliably be extracted.

Whether the surprises reflect genuine events or mere-
ly the observer’s inability to make accurate predictions
depends on the goodness of fit between observer’s model
and the data; it is therefore important to use an appro-
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Figure 1: In the memoryless system (a) the signal is split
into blocks x[k]. The probability density P (x) is then mod-
elled as if the blocks were statistically independent. In the
conditional system, (see § 3) each block is partitioned into
two parts, x1 and x2, with the intention of modelling the
conditional density P (x2|x1).

priate class of model, to fit the parameters to the data
adaptively, and, for signals with temporal dependen-
cies, to use previous obervations to make conditional

probability assessments.
The approach fits well with a wider perceptual the-

ory (see [4] for a fuller discussion) which maintains that
the goal of a perceptual system is to produce an efficient
representation of its sensory input by learning about its
statistical structure. One of the most direct responses
such a system can make to any sensory scene is an esti-
mate of the probability of that scene under the model
embodied by the system.

In the rest of the paper, we will describe how this
methodology translates into specific algorithms under
different assumptions about the signal’s statistical struc-
ture. In particular, when the unexpectedness of an
observation is measured as a negative log-probability

(a quantity which Attneave [5] called the “surprisal”)
some known methods of onset detection result directly.
These can therefore be understood in terms of an im-
plicit probability model, and hence judged objectively
and quantitatively on the accuracy of that model.

2. MEMORYLESS MODELS

We will first consider models which do not condition
their probability assessments on previous observations.

The audio data is broken up into a sequence of n-tuples
x[k] ∈ R

n, with k ∈ Z, as shown in fig. 1(a). These are
then treated as if they were independent and identically
distributed, so the model amounts to an expression for
P (x), where the time index k has been dropped as it is
no longer relevant. In this case, the “surprisal” is just
a function of x:

S(x) = − log P (x). (1)

A number of simple models fit this framework and
translate directly into some well known methods of on-
set detection. (In all the following expressions, P (·)
implicitly denotes a probability relative to the model
under consideration, not the “true” probability, which
is presumed unknown.)

2.1. Gaussian and non-Gaussian IID models

If the individual elements of x (that is, the original au-
dio samples) are assumed to be independent and Gaus-
sian with zero mean and variance σ2, then the following
probability density function is obtained:

P (x) =

n
∏

i=1

1

σ
√

2π
exp− x2

i

2σ2
, (2)

which yields a measure of surprise which is essentially
the signal energy (to within an additive constant):

S(x) =
1

2σ2

n
∑

i=1

x2
i + const. (3)

Hence, the energy is a measure of the unexpectedness
of the observation if the signal is assumed to be Gaus-
sian white noise. Alternatively, the samples may be
assumed to be independent but non-Gaussian, with,
for example, a Laplacian (or double-sided exponential)
distribution, P (xi) = 1

2
e−λ|xi|. This yields

S(x) = λ

n
∑

i=1

|xi| + const., (4)

which is equivalent to a rectification and smoothing of
the original signal, a common method of computing the
amplitude envelope of the signal.

It has been observed [2] that neither the energy nor
the amplitude envelope provides a good basis for onset
detection, except for very percussive instruments. We
suggest that this is because they both imply an under-
lying statistical model which is a poor fit to the data:
for most real sounds, the audio samples are far from
being independent.



2.2. Multivariate Gaussian models

One approach to modelling the dependencies between
the xi is to assume that x is Gaussian with a non-
diagonal covariance matrix C = E xxT (where E de-
notes the expectation operator.) From the standard
multivariate Gaussian density function:

P (x) =
exp− 1

2
xT C−1x

√

(2π)n detC
, (5)

we obtain

S(x) = − 1

2
xT C−1x + const. (6)

This is a weighted energy measured in a frame of ref-
erence defined by the eigenvectors of the covariance
matrix: if ui denotes the ith eigenvector of C, with
eigenvalue σ2

i
, then C =

∑

n

i=1
σ2

i
uiu

T

i
, and

S(x) =

n
∑

i=1

(uT

i
x)2

2σ2
i

+ const. (7)

The uT

i
x are the coordinates of x relative to the or-

thonormal basis formed by the ui. In this frame of ref-
erence, the “surprisal” is simply a sum of component-
wise functions, similar to those in (3) and (4).

For audio data, we may reasonably assume that
the covariance of two elements of x depends only on
the time lag between them, so the covariance matrix
will be Toeplitz, and when n is large, the eigenvectors
will form an approximate Fourier basis [6]. Environ-
mental sounds tend to have more energy at low fre-
quencies than at high, so S(x) is essentially a spectral
energy measure weighted preferentially towards high
frequencies, echoing Masri’s [7] HFC (high frequency

content) based onset detection system. In the present
framework, greater weight is given to energy at high
fequencies precisely because it is less expected, and the
weights are assigned in a principled way.

2.3. A non-Gaussian model using ICA

A number of studies (e.g. [4, 6, 8]) have shown that nat-
ural and musical sounds have very non-Gaussian statis-
tics. It should therefore be possible to improve on the
Gaussian system described above. However, the Gaus-
sian system demonstrated the utility of transforming
the data to a representation whose elements are as-
sumed to be independent, since the log-probability be-
comes a sum over those elements. These considerations
motivate the use of ICA as a non-Gaussian probabil-
ity model whose specific objective is to find a factorial
representation.

The application of ICA to natural sounds has been
described elsewhere [8, 9]; briefly, the data vectors x ∈
R

n are assumed to be generated by a linear transfor-
mation x = As, where the n components of s are non-
Gaussian and independent, and the square (n×n) ma-
trix A is fixed, initially unknown, but may be estimated
from the data using a maximum-likelihood algorithm
[10]. If the independent components si have marginal
densities fi(si), then the resulting probability model
for x is

P (x) = detA−1fs(A
−1x), (8)

where fs(s) =

n
∏

i=1

fi(si). (9)

The “surprisal” is then a sum over the components:

S(x) = log detA −
n

∑

i=1

log fi(si). (10)

Previous work [4] has shown that a generalised expo-

nential, f(s) ∝ exp−|s|α, with α ≈ 0.3, is a reasonably
good approximation to the observed marginals, giving

S(x) =

n
∑

i=1

|si|α + const. (11)

This is related to a non-Euclidean norm of s, which,
compared with the Euclidean norm, “expects” sparse
activity in s and is “surprised” by non-sparse activa-
tions. An alternative is to use measured histograms to
estimate the f(si). The ICA algorithm requires deriva-
tives of the fi(si), so the noisy histograms are not suit-
able for that purpose, but in practice, they do seem
to be adequate for the computation of S(x) even with
very little data.

3. A CONDITIONAL ICA MODEL

Consider the system illustrated in fig. 1(b), in which
the audio data is arranged into overlapping blocks x of
length n, each of which is partitioned into two pieces,
x1 and x2, of lengths m and n − m respectively, so if
x ≡ (x1, . . . , xn), then x1 ≡ (x1, . . . , xm) and x2 ≡
(xm+1, . . . , xn). If we have a model of P (x), then
we automatically have a model of the joint density
P (x1,x2), from which we may compute the conditional
density

P (x2|x1) =
P (x1,x2)

P (x1)
=

P (x)

P (x1)
, (12)

where P (x1) =

∫

P (x1,x2) dx2. (13)
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Figure 2: Joint probability densities and the conditional
densities obtained by taking a horizontal slice (dashed line.)
ICA can model a multimodal conditional density, whereas a
Gaussian model can only ever produce a unimodal Gaussian
conditional density.

For example, if x is Gaussian, then x2|x1 is also Gaus-
sian with an expectation linearly related to x1. By
comparison, an ICA model of the full density P (x) is
capable of modelling a multimodal conditional density,
as shown in fig. 2.

Generally, then, we have

S(x) = log P (x1) − log P (x), (14)

where the form of P (x1) is implicit in P (x). The prob-
ability associated with an observation x (or strictly,
with the segment x2) is conditioned on the expecta-
tions set up by the previous observations contained in
x1. If ICA is used to model P (x), then the associated
generative model can be written as

(

x1

x2

)

=

(

A1

A2

)

s, (15)

where the matrix A has been partitioned into the m×n

matrix A1 and the (n−m)×n matrix A2, as described
in a previous application of ICA to regression problems
[11]. However, in regression, the aim is to predict a
value of x2 given x1, using either a conditional expecta-
tion or the maximum of the conditional density. In con-
trast, we wish to compute the conditional probability
of x2 after it has been observed, and thus cannot avoid
computing P (x1). By inspection of (15), x1 = A1s;
since n > m, this is equivalent to overcomplete ICA
(see fig. 3), which is known to be a difficult problem
[12]. There is no requirement to train the overcomplete
system, since that is handled by the larger n × n ICA
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Figure 3: A square ICA model for P (x) ≡ P (x1,x2) im-
plies an overcomplete ICA model for P (x1), since there are
more independent components than there are data compo-
nents. For example, if the full system is three-dimensional,
the distribution P (s1, s2, s3) has a six-pronged shape. The
two-dimensional distribution P (x1, x2), obtained by pro-
jecting onto a plane, also has six prongs, and hence cannot
be modelled by a 2 × 2 ICA system.

model, but the integral in (13) is generally intractible
and some approximation is needed. Furthermore, the
saddle-point approximation used in [12] is not applica-
ble with the very strongly super-Gaussian priors needed
to model the sort of multimodal conditional densities
illustrated in fig. 2(a).

The approach we have initially taken is to avoid
using the implicit model of P (x1), and instead to fit
a separate m × m ICA system using x1 as training
data. We do not expect this to fit the data as well as
the overcomplete system, but the results illustrated in
fig. 4 suggest that it does at least partially achieve the
desired objective. Alternative methods of modelling
P (x1) are discussed in § 5.2.

4. RESULTS

Fig. 4 illustrates the results obtained with two short ex-
tracts of piano music. In both cases, the energy profile
(and the amplitude profile, not illustrated) are suffi-
cient to detect only the most intense and percussive
onsets. A weighted energy was computed as in (7), by
measuring second order statistics using a longer extract
of music, and computing principal components via an
eigenvalue decomposition. The principal components
were indeed approximately sinusoidal, and thus the
PCA-derived traces are essentially measures of spec-
tral energy weighted by the reciprocal of the power
spectrum. Note that both energy measures are plot-
ted on a logarithmic scale; on a linear scale, the dy-
namic range is very high. In contrast, the ICA-derived
traces have a built-in compressive nonlinearity due to
the non-Gaussian marginal densities fi(si).

The conditional ICA results were computed as the
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Figure 4: Comparative results for several methods applied
to short extracts from two piano pieces. The tick marks on
the axes indicate the actual onset times.

difference of the traces obtained from two separate ICA
models: a 512 component model for x1 and a 768
component model for x. The onset peaks are visibly
sharper, though this seems to be at the expense of an
increased “noisiness” in the trace. Whether this is in-
trinsic to the conditional ICA framework or due to the
approximation used for P (x1) is unknown at present.

5. DISCUSSION AND CONCLUSIONS

The material presented here was originally motivated
by a particular application—that of onset detection in
music—but is intended to illustrate two concepts that
should be more widely applicable in problems of artifi-
cal perception and data analysis. The first is the use of
independent component analysis (ICA) as a conditional
probability model, which was initially investigated by
Hyvärinen [11] in the context of regression. The second
is the idea that, when a statistical model of the data
is available, the probability assigned by the model to
each observation is itself a useful form of data, with
its own structure amenable to further analysis. When
the observations are made in a temporal sequence, the
probability assessments can be made as the data arrive,
and hence can be imagined as a new signal emanating
from the model, summarising the flow of expectation
and surprise as time passes.

5.1. Relationships with other methods

The approach bears some similarity with the concept
of a “novelty filter” [13]. However, we have not used
that term since the events we are interested are not
novel in the sense that they are unfamiliar. This would
imply that they do not fit the model, or that the model
needs changing. Rather, they are familiar but relatively

unlikely. After the initial onset, the rest of the event
should be well desribed by the conditional model, so
that the probability signal records only a spike marking
the onset time.

We have already noted how energy based methods
correspond to Gaussian signal models. Other methods
can be interpreted in this way too: for example, al-
gorithms based on spectral difference [7] imply a con-
ditional model for the short-term power spectrum in
which the expected spectrum is equal to the previously
observed one. Putting these methods on an equal foot-
ing in terms of an implied probability model allows
objective comparisons to be made, by measuring the
Kullback-Leibler divergence between the model and the
observed data. The best model is the one with the low-
est expectation E S(x), something which can only be
determined empirically.



5.2. Further Work

It should be clear from the discussion so far that the
way to improve the performance of the system is to im-
prove the fit of the models used for P (x) and P (x1).
In particular, it has been shown [4] that ICA of au-
dio data does not produce independent components,
and that residual dependencies remain. These could be
modelled using independent subspaces or topographic
ICA [14].

The approximation used for P (x1) remains to be
validated by computing the integral in (13), which may
be possible using Monte Carlo methods. An alternative
approach is to use a more tractable overcomplete gen-
eralisation of ICA [15] which would be capable of mod-
elling the multiple “spikes” of the distribution shown in
fig. 3. The causal interpretation afforded by the addi-
tive ICA model would be absent, but this is unimpor-
tant since all that is required is a function for P (x1).

It may be objected that, for continuously distributed
variables, P (x) and hence S(x) are not invariant to in-
vertible transformations of x, so if, for example, x is
transformed into y and P (y) modelled instead, a dif-
ferent probability signal will result. This discrepancy
can be resolved by acknowledging that, in a physical
system, continuous variables cannot be measured to
infinite precision, and there will always be some noise.
This means that an observation is characterised not
by a precise value of x, but a posterior distribution,
P (x|D), where D denotes the observational data. If
we let P (x|M) denote the distribution defined by the
current the current state of observer’s model, we may
define a generalised “surprisal” as

S(D) =

∫

P (x|D) log
P (x|D)

P (x|M)
dx, (16)

which is the Kullback-Leibler divergence between the
two distributions. This is invariant to invertible trans-
formations of representation, and has a satisfying inter-
pretation as the information gained during the obser-
vation, leading directly to the hypothesis that sensory
data is perceived as event-based precisely to the extent
that information arrives in bursts, and that events are
essentially concentrated “packets” of information.
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