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ABSTRACT

This papers proposes a fast algorithm for estimating the
mutual information, difference score function, conditional
score and conditional entropy, in possibly high dimensional
space. The idea is to discretise the integral so that the den-
sity needs only be estimated over a regular grid, which can
be done with little cost through the use of a cardinal spline
kernel estimator. Score functions are then obtained as gra-
dient of the entropy. An example of application to the blind
separation of post-nonlinear mixture is given.

1. INTRODUCTION

Blind source separation consists in extracting independent
sources from their mixtures, without relying on any specific
knowledge of the sources and the mixing operation. There-
fore the underlying principle is to construct the separating
system such that the recovered sources are as independent
as possible. An independence measure which is well known
and widely used is the mutual information. It is directly re-
lated to the (Shannon) entropy: letY1, . . . , YK , be random
variables with densitiespY1 , . . . , pYk

, their mutual informa-
tion can be computed as

I(Y1, . . . , YK) =
K∑

k=1

H(Yk)−H(Y) (1)

whereY = [Y1 · · · YK ]T andH(Yk) = −E log pYk
(Yk)

andH(Y) = −E log pY(Y) are the entropies ofYk and of
Y, E denoting the expectation operator andpY the density
of Y. (We also refer topY andH(Y) as the joint den-
sity and joint entropy ofY1, . . . , Yk.) Thus a separation
method based on minimizing the mutual information cri-
terion would require estimating the entropies, which would
involve the estimation of densities.

Density estimation in high dimensional space can be
costly and subjected to large statistical fluctuation. There-
fore it could be a good thing that the estimation ofH(Y)
can be avoided. Indeed, sinceY is the output of the
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separation system, which is linked to the observationsX
through the de-mixing operationY = g(X), one has
H(Y) = H(X) + E log det g′(X), provided that the trans-
formationg is one-to-one and admits a continuous matrix of
derivativesg′. Therefore, sinceH(X) is fixed, minimizing
I(Y1, . . . , YK) is the same as minimizing

∑K
k=1H(Yk) −

E log det g′(X) and estimatingE log det g′(X) is easy be-
cause it is an expectation. However, there are cases when
one would minimize the mutual information directly.

• The transformationg is not one-to-one. This happens
for example in the convolutive mixture case. The de-
mixing transformation is then a convolution of the ob-
servation sequence{X(n)} with some filter, and for
obvious practical reasons, one would consider only
finite segments of the reconstructed sources, henceg
is not one-to-one as it maps a whole sequence to a
vector of finite dimension. Even if one uses a FIR (fi-
nite impulse response) filter, the mapping is still not
one-to-one as the inverse filter cannot be FIR.

• Density estimation is biased, which entails bias in the
estimated entropies. By working with the mutual in-
formation, the bias effect of the marginal entropies
H(Yk) can be canceled by that of the joint entropy
H(Y) if some care are taken (see below). By con-
trast, avoiding the estimation ofH(Y) as above can
lead to large bias in the separating system, in the non-
linear mixture case.

The need to estimate the joint entropy also arises when
one would like to exploit the temporal dependency of the
source signal. In [1], blind separation of instantaneous mix-
tures of Markovian sources is considered and a maximum
likelihood approach leads to a criterion based on the con-
ditional entropy ofYk(n) given Yk(n − 1), . . . , Yk(n −
p), where{Yk(n)} denotes the sequence of reconstructed
sources. For a stationary sequence of random variables
{Y (n)}, the conditional entropy ofY (n) givenY (n − 1),
. . . , Y (n − p) is the same as that ofY (p) givenY (p − 1),
. . . ,Y (1) and is defined as

H[Y (p)|Y (1 : p− 1)] = −E log pY (p)|Y (1:p−1)[Y (1 : p)]



where the notationY (1 : p) stands for the vector with com-
ponentsY (1), . . . , Y (p) and

pYk(p)|Yk(1:p−1) = pYk(1:p)/pYk(1:p−1) (2)

is the conditional density ofY (p) givenY (1 : p−1), pY (1:p)

denoting the density of the vectorYk(1 : p). Simple calcu-
lation shows that

H[Y (p)|Y (1 : p− 1)] = H[Y (1 : p)]−H[Y (1 : p− 1)]
(3)

which again leads us to considering joint entropy.
This paper proposes a method for estimating the joint

entropy ofmoderately large number of variables with an
affordable computational cost. From the above discussion,
we are in fact interested in the estimation of the mutual in-
formation and conditional entropy, that of the joint entropy
is only an intermediate step. Further, we are more interested
in the estimation of the (joint) score function, which arises
when one computes the gradient of the (joint) entropy (see
below). Again, when mutual information and conditional
entropy are involved, one actually needs only the difference
between certain score functions, the so called score differ-
ence function [2] and the conditional score function, defined
in next section.

2. SCORE FUNCTIONS AS GRADIENT OF THE
ENTROPY FUNCTIONAL

Let Y be a random vector with componentsY1, . . . , YK

and densitypY. The score functionψY of Y (also called
the joint score function ofY1, . . . , YK and denoted by
ψY1,...,Yk

) is defined as the gradient of− log pY. It can be
viewed as the gradient of the entropy functional, in the sense
that for a “small” random increment∂Y of the vectorY,
one has

H(Y + ∂Y)−H(Y) ≈ E[ψT
Y(Y)∂Y] (4)

up to the first order. A brief intuitive proof of this statement
is given as follows (a more rigorous proof can be found in
[3]). One writesH(Y + ∂Y)−H(Y) as

E
[
log

pY(Y)
pY(Y + ∂Y)

]
+ E

[
log

pY(Y + ∂Y)
pY+∂Y(Y + ∂Y)

]
.

But the last term can be written as

E
[
log

pY(Y + ∂Y)
pY+∂Y(Y + ∂Y)

− pY(Y + ∂Y)
pY+∂Y(Y + ∂Y)

+ 1]

and sincelog x = x− 1− (x− 1)2/2 + . . ., this expression
can be expected to be of higher order than∂Y and thus can
be ignored. Then, by a Taylor expansion oflog pY(Y +
∂Y), one gets the desired result.

From the above result and (1), the mutual information
I(Y1, . . . , Yk) admits the following first order expansion

I(Y1 + ∂Y1, . . . , Yk + ∂Yk)− I(Y1, . . . , Yk) ≈
K∑

k=1

E{[ψYk
(Yk)− ψk,Y1,...,YK

(Y1, . . . , YK)]∂Yk}

whereψk,Y1,...,YK
is thek-th component of the joint score

function ofY1, . . . , YK . The functionsψYk
− ψk,Y1,...,YK

have been introduced in [2] under the name of score differ-
ence functions (SDF). They can be viewed as the compo-
nents of the gradient vector of the mutual information func-
tional.

Similarly, by the above result and (3), for a sequence of
random variables{Y (n)}, the conditional entropy ofY (p)
givenY (1), . . . , Y (p− 1) admits the first order expansion

H[Y (p) + ∂Y (p)|Y (1 : p− 1) + ∂Y (1 : p− 1)]−
H[Y (p)|Y (1 : p− 1)] ≈

E{ψT
Y (p)|Y (1:p−1)[Y (1 : p)]∂Y (1 : p)}

where

ψY (p)|Y (1:p−1) = ψY (1:p) −
[
ψY (1:p−1)

0

]
(5)

The above function is no other than the gradient vector
of − log pY (p)|Y (1:p−1), wherepY (p)|Y (1:p−1) is the condi-
tional density ofY (p) givenY (1), . . . , Y (p − 1), defined
in (2). This function will be referred to as the conditional
score function ofY (p) givenY (1), . . . , Y (p− 1).

3. ESTIMATION METHOD

The main idea is to estimate first the entropy (joint, marginal
and conditional) then taking their gradient as estimation of
the score difference and conditional score functions, accord-
ing to the relations described in previous section. This way,
one gets both an estimated criterion for blind source separa-
tion and its gradient. An independent estimate of the score
function would provided only an estimate of the gradient of
the theoretical criterion, which often differs from the gradi-
ent of estimated criterion. One may take, for example, the
negative of the logarithmic gradient of the estimated density
as a score estimator, but thisis not the same as our score es-
timator.

3.1. Estimation of entropy

To estimate the entropy, we need an estimator of the den-
sity. we shall adopt the kernel method, which estimates
the densitypY of a random vectorY from a sample
Y(1), . . . ,Y(N) as

p̂Y (y) =
1
N

N∑
n=1

κ[h−1(y −Y(n)]
deth

= Ê
κ[h−1(y −Y]

deth
,



whereκ is a multivariate density andh is smoothing pa-
rameter matrix [4]. Here and in the sequel, the nota-
tion Ê denotes the sampling mean operator. A natural
estimator forH(Y) is then−

∫
p̂Y (y) log p̂Y (y)dy but

it requiresmultiple integration in a possibly high dimen-
sional space. Therefore we shall discretize the above in-
tegral to reduce it to a sum over some regular grid, yield-
ing−

∑
i p̂Y (gi) log p̂Y (gi) detg, where the summation is

done over all vectorsi with signed integer components and
g is a matrix which defines the size and orientation of the
grid. Note that one can also avoid integration by estimat-
ing the entropy ofY as(1/N)

∑N
n=1 p̂Y[Y(n)]. But this

method entails a computational cost of the orderN2, as
eachp̂Y[Y(n)] itself requires a summation ofN terms1.
Our method, through a clever choice of grid and of kernel
(with compact support), has a computational cost increas-
ing only linearly withN , as it will be shown below. More
importantly, it allows the canceling of bias mentioned in the
introduction.

We shall need to takeg proportional toh. This also
makes sense sinceh controls the amount of smoothing and
the smoother̂pY is the larger the grid size can be. The
choice of the proportionality coefficient should take into ac-
count the calculation cost and the loss of accuracy due to the
discretization. For the kernel considered below, we found
that takingg = h is most convenient and does not result in a
too coarse grid. It is possible to takeg = h/m for some in-
tegerm, which reduces the grid size but increases the com-
putation cost by a factormK . We will not consider this
choice for simplicity and besides forK moderately large,
mK can be too large a factor even form = 2.

Thus we are led to the estimator

Ĥ(Y) = −
∑
i

π̂Y(i)[log π̂Y(i)− log deth], (6)

where

π̂Y(i) =
1
N

N∑
n=1

κ[i− h−1Y(n)] = Êκ(i− h−1Y). (7)

The π̂Y(i) may be viewed as the estimated probability that
the random vectorh−1Y belongs to a cell centered ati of
unit volume.

In practice, the multivariate kernelκ is generated from
a univariate kernelK by one of the two main methods [4]:

(i) tensor product:κ = K×K theK times tensor product
of K with itself, defined asK×K(y) =

∑K
k=1K(yk),

yk denoting the components ofy.

(ii) spherical symmetry:κ(y) = CK(||y||) whereC is a
normalizing constant so thatκ integrates to 1.

1even if one uses a kernel of compact support, so that only a limited
number of terms in this sum is non zero, one still need to compute the
pairwise differencesY(n)−Y(m)

Note that the Gaussian kernel is both a tensor product
and spherically symmetric. But it does not have compact
support. We shall used instead the tensor product of cardinal
spline or third order. Recall that the cardinal spline of order
r is the density of the sum ofr independent uniform random
variables in[−1/2, 1/2]. It tends to the Gaussian density
(up to a scaling) asr increases, by the central limit Theorem.
We choose the third cardinal spline because it is the simplest
one which has continuous derivative (we need this condition
for gradient calculation). Besides, it is already quite close
to the Gaussian density. Explicitly, it is given by

K(u) =

 3/4− u2, |u| ≤ 1/2
(3/2− |u|)2/2, 1/2 ≤ |u| ≤ 3/2

0, otherwise
.

The fast computation of thêπY comes from the fact
that it is evaluated on a regular grid and the kernel is a
product kernel with support of length a multiple of the
grid size. Indeed, letY ′

k be the components ofh−1Y, the
term K×K [i − h−1Y(n)] in (7) can be non zero only if
ik = 〈Y ′

k(n)〉 or ik = 〈Y ′
k(n)〉± 1, k = 1, . . . ,K, whereik

is thek-th component ofi and〈y〉 denotes the signed inte-
ger closest toy. Thus, one can compute thêπY(i) quickly
by the following algorithm: One first initializes thêπY(i)
to 0, then forn = 1, . . . , N , updates them as

π̂Y[〈Y ′
1(n)〉+ i1, . . . , 〈Y ′

K(n)〉+ ip] =
π̂Y[〈Y ′

1(n)〉+ i1, . . . , 〈Y ′
K(n)〉+ ip] +

1
N

K∏
k=1

K[ik + 〈Y ′
k(n)〉 − Y ′

k(n)], ik = −1, 0, 1.

Note that foru ∈ [−1/2, 1/2]

K(u) = 3/4− u2, K(±1 + u) = (1/2∓ u)2/2

and thus are very simple to compute.
The above algorithm requires a loop through all the data,

updating3K probabilities at each step. Consequently the
number of indicesi for which π̂Y(i) is not zero cannot ex-
ceed3KN and in general is much less than that. Thus the
cost for computing thêπY(i), as well as the entropy estima-
tor, isO(3KN) whichgrows linearlywith N .

The cardinal spline functions possess a nice properties
called the partition of unity:

∑∞
i=−∞K(u+ i) ≡ u regard-

less ofu. Therefore
∑

i π̂Y(i) = 1. Thus theπ̂Y(i) con-
stitute a (discrete) probability distribution and the entropy
estimatorĤ(Y) is simply the entropy of this distribution
plus the termlog deth. This estimator however has a small
defect in that it is not translation invariant. Adding a con-
stant to the random vectorY does not change its entropy,
so one would like that the entropy estimator is unchanged
too. Therefore we shall modify this estimator slightly by
first centering the data, that is in computing theπ̂Y(i), we
take asY ′

k(n) not thek-th component ofh−1Y(n) but of
h−1[Y(n)− Ȳ], whereȲ = ÊY is the sample mean ofY.



3.2. Estimation of mutual information

An obvious way to estimate the mutual information is to
subtract the estimated joint entropy to the sum of the es-
timated marginal entropies. However, to favor the cancel-
ing of bias, we need to choseh diagonal, with diagonal el-
ementsh1, . . . , hK wherehk is the smoothing parameter
for estimation the marginal density ofYk. Then, the proba-
bilities π̂Yk

(j) needed for estimating the entropy estimator
Ĥ(Yk), given by

π̂Yk
(j) =

1
N

N∑
n=1

K[j − Y ′
k(n)] = ÊK(j − Y ′

k),

would involve the same variablesY ′
k = [Yk − Ȳk]/hk as the

one encountered in the computation ofπ̂Y(i) in subsection
3.1. Thus, by the partition of unity property ofK,

π̂Yk
(j) =

∑
i:ik=j

π̂Y(i),

that is theπ̂Yk
(j) are simply the marginal probabilities of

theπ̂Y(i). The mutual information estimator is then

Î(Y1, . . . , YK) =
∑
i

π̂Y(i) log
π̂Y(i)∏K

k=1 π̂Yk
(ik)

.

From this form, one may expect that the bias inπ̂Y(i) be
more or less canceled by those inπ̂Yk

(ik), as the latter them-
selves are computed from thêπY(i). More importantly, if
the vectorY has independent components,Î(Y1, . . . , YK)
will converges to 0 asn → ∞, regardless the choice of
h, since the limit ofπ̂Y(i) is the expectation of a product
of independent random variables which equals the product
of expectations. Thus one can choseh fairly large with-
out worrying that this would invalidatêI(Y1, . . . , YK) as an
empirical independence criterion.

3.3. Estimation of score and score difference function

Let Ĥ(Y) be the entropy estimator defined in subsection
3.1. From the result of section 2, we define the score esti-
matorψ̂Y of Y, at the data pointY(n), as the gradient of
NĤ(Y) with respect toY(n). This function is defined only
on the data points, but it can be easily be extended to the
whole space. Hence, by the definition ofψ̂Y, an infinites-
imal change∂Y(n) in the Y(n) induces a corresponding
change inĤ(Y):

Ĥ(Y + ∂Y)− Ĥ(Y) =
1
N

N∑
n=1

ψ̂T
Y [Y(n)]∂Y(n)

which equalŝE[ψ̂T
Y (Y)∂Y)]. This formula thus appears as

the sample analogue of (4).

Before computing the gradient of̂H(Y), one should
note that this estimator depends on the data only through
Y′(n) = h−1[Y(n) − Ȳ], but the matrixh itself depends
also on the data. Here we takeh diagonal withk-th diago-
nal element being a constant multiple of the sample standard
deviationσ̂Yk

of Yk. Let the vectorsY(n) be changed by
an infinitesimal amount∂Y(n), the corresponding change
∂Y′(n) in Y′(n) is

h−1∂Y(n)− Ê(h−1∂Y)− h−1∂hh−1[Y(n)− Ȳ]

where∂h is the corresponding change inh. Such change
would induce a change tr(h−1∂h) in log deth, where tr
denotes the trace. Therefore the corresponding change in
Ĥ(Y), is, by (6) and (7),∑

i

Ê[K̇×K(i−Y′)T∂Y′] log π̂Y(i) + tr(h−1∂h),

where K̇×K denotes the gradient ofK×K (and thus∑
i K̇×K(i) = 0, since

∑
i K̇×K(i + y) ≡ 1). Plugging

in the expression for∂Y′(n), the last expression becomes

Ê{[ψ̃Y′(Y′)− Êψ̃Y′(Y′)]T h−1∂Y}+
tr{h−1∂h− Ê[Y′ψ̃T

Y(Y′)]h−1∂h} (8)

where

ψ̃Y′ [Y′(n)] =
∑
i

K̇×K [i−Y′(n)] log π̂Y(i). (9)

Sinceh−1∂h is a diagonal matrix, one may replace, in
the above expression, the matrixÊ[Y′ψ̃T

Y′(Y)] by the di-
agonal matrix having the same diagonal, which we denote
by Λ for simplicity. On the other hand, thek-th diagonal
element ofh−1∂h isN−1

∑N
n=1[Yk(n)− Ȳk]∂Yk(n)/σ̂2

Yk
.

Therefore, we obtain from the above results

ψ̂Y[Y(n)] = h−1{ψ̃Y′ [Y′(n)]− Êψ̃Y′(Y′)}+
(I−Λ)σ−2

Y [Y(n)− Ȳ],

where σ̂Y denotes the diagonal matrix with diagonal ele-
mentsσ̂Yk

.
The computation cost of̂ψY is still O(3KN) since the

computation ofψ̃Y′ , by (9) requires only a summation of
3K terms for each data point

3.4. Estimation of the conditional entropy and condi-
tional score

Since the conditional entropyH[Y (p)|Y (1 : p − 1)] is the
difference between two joint entropies, the above estima-
tion method is still applicable. However, while in estimating
the mutual information one is mostly interested in the case
where the random variables are nearly independent, here



the sequence{Y (n)} would be highly correlated. Hence
it is desirable to perform a prewhitening first. LetT be the
Cholesky factor of̂cov[Y (1 : p)], the covariance matrix of
Y (1 : p), that isT is the lower triangular matrix satisfying
TTT = ĉov[Y (1 : p)]. Prewhitening consists in replacing
Y (1 : p) by the vectorT−1Y (1 : p), which is then has
uncorrelated components of unit variance. One would then
using a smoothing parameter matrixh multiple of the iden-
tity, which amounts to working with the original data, but
takingh a multiple ofT.

With this choice ofh, the entropy ofY (1 : p) can then
be estimated by the same method as in section 3.1:

Ĥ[Y (1 : p)] = −
∑
i

π̂Y (1:p)(i) log π̂Y (1:p)(i) + log deth

whereπ̂Y (1:p)(i) are computed as in 3.1 withY ′
k being the

k-th component ofh−1[Y (1 : p) − Ȳ (1 : p)]. But by con-
struction, the smoothing parameter matrixh for the entropy
estimator of the random vectorY (1 : p − 1) is no other
than the one forY (1 : p) with last row and column deleted.
Therefore, the probabilitieŝπY (1:p−1)(i1, . . . , ip−1) in-
volved in this estimator are no other than the marginal of
theπ̂Y (1:p)(i1, . . . , ip):

π̂Y (1:p−1)(i1, . . . , ip−1) =
∑
ip

π̂Y (1:p)(i1, . . . , ip).

The estimated conditional entropŷH[Y (p)|Y (1 : p− 1)] of
Y (p) givenY (1), . . . , Y (p) is thus given by∑

i1,...,ip

π̂(i1, . . . , ip) log
π̂(i1, . . . , ip)
π̂(i1, . . . , ip−1)

+ hpp

wherehpp is the last element ofh.
To construct the conditional score estimator, we view

NĤ[Y (p)|Y (1 : p − 1)] as a function of the data
Y(1), . . . ,Y(N) where Y(n) now denotes the vector
Y (n : n+ 1− p). Then, as in subsection 3.3, the estimated
conditional score function ofY (p) givenY (1 : p−1) is de-
fined as the function taking the value atY(n) the gradient
of NĤ[Y (p)|Y (1 : p− 1)] with respect toY(n). It clearly
can again be expressed as the difference between two score
estimators. However the last differ from the ones obtained
in subsection 3.3, since the smoothing parameter matrixh is
here not diagonal. But one can repeat the same calculations
in this subsection, up to the expression (8) and (9), which
provide the infinitesimal increment of̂H(Y) induced by an
infinitesimal increment∂Y of Y.

To proceed further, we note that the matrixh−1∂h is
lower triangular, therefore we can replace, in the expression
(8), the matrixÊ[Y′ψ̃T

Y′(Y′)] by the symmetric matrix with
the same upper triangular part, which we denote again by
Λ. But for a symmetric matrixΛ, tr(ΛA) = tr(AΛ) =

tr(ΛAT ) for any matrixA. Hence, one can rewrite (8) as

Ê{[ψ̃Y′(Y′)− Êψ̃Y′(Y′)]T h−1∂Y}+
1
2
tr[(I−Λ)(h−1∂h + ∂hT h−1T ]

The last term can be rewritten as

1
2
tr[h−1T (I−Λ)h−1(∂hhT + h∂hT )]

But hhT = h2ĉov(Y) for some scalar constanth, yielding

∂hhT + h∂hT = h2Ê[(Y − Ȳ)∂YT + ∂Y(Y − Ȳ)T ].

Since the matrixh−1T (I − Λ)h−1 is symmetric, by the
same argument as before, the expression (8) can be further
rewritten as

Ê{[ψ̃Y′(Y′)− Êψ̃Y′(Y′)]T h−1∂Y +
h2[h−1T (I−Λ)h−1∂Y(Y − Ȳ)T ]}

This expression shows that the estimated score function of
Y is given by

ψ̂Y[Y(n)] = h−1 T {ψ̃Y′ [Y′(n)]− Êψ̃Y′(Y′)}+
(I−Λ)h2Y′(n)}.

To compute the estimated conditional score function,
one must subtract the above score function with the one cor-
responding to the vectorY with its last component deleted.
But since the matrixh is lower triangular, deleting the last
component ofY amounts to deleting the last row and col-
umn of h and the last element ofY′. This also results in
deleting the last row and column ofΛ. Therefore, putting

ψ̃Y ′
p |Y ′

1 ...,Y ′
p−1

(y′) = ψ̃Y′(y′)−
[
ψ̃Y ′

1 ...,Y ′
p−1

(y′1, . . . , y
′
p−1)

0

]
Y ′

k andy′k being the components ofY′ andy′, one gets

ψ̂Y (p)|Y (1:p−1)[Y(n)] = h−1T {ψ̃Y ′
p |Y ′

1 ,...,Y ′
p−1

[Y′(n)]−

Êψ̃Y ′
p |Y ′

1 ,...,Y ′
p−1

(Y′) + (Ep −Λ)h2h−1Y′(n)},

whereEp is the matrix with 1 at the(p, p) place and 0 else-
where andΛ is the symmetric with the upper triangular part
equal toÊ[Y′ψ̃T

Y ′
p |Y ′

1 ,...,Y ′
p−1

(Y′)]

4. APPLICATION TO THE POST-NONLINEAR
MODEL

As an example, we have applied our estimator to the post-
nonlinear mixture model. This model, introduced in [5],
consists of a linear mixing stage followed by a nonlinear
non-mixing transformation. More precisely, the observation



Xk(n) is given byfk[
∑K

j=1AkjSj(n)]. whereSj(n) repre-
sent the sources,Akj are the elements of the mixing matrix
andfk are monotonous mappings. The separation system
is naturallyYk(n) = gk[

∑K
j=1BkjXj(n)] whereBk,j are

elements of the separating matrix andgk are monotonous
mappings. We estimateBk,j andgk by minimizing the esti-
mated mutual information betweenY1, . . . , YK . This is the
same principle as in [5] and [6]. But in these papers, the
criterion is transformed as described in the introduction to
contain only the marginal entropies, while we work directly
with the estimated mutual information. Our implementation
is the same as in [6], in that we use the same parameteriza-
tion technique and we really minimize the criterion and not
solving a estimating system of equations as in [5].
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Fig. 1. Compensated observation 2 versus compensated ob-
servation 1, with “ICA axes”

We have simulated two sources of length 200, one uni-
form in [−

√
3,
√

3], the other a sine wave with amplitude√
2 (so that they both have unit power). The mixing matrix

is

[
1 0.6

0.7 1

]
and the post-nonlinear mappingsf1, f2 are

given byf1(x) = tanh(4x+0.1x) andf1(x) = x3 +0.1x.
Figure 1 plotsg2(X2), the compensated observation 2,

versusg1(X1), the compensated observation 1, together
with the ICA axes (these axes are so that one can read the
reconstructed sources by projecting the compensated obser-
vations on them).

Figure 2 plots the functiongk ◦ fk, called the compen-
sators. One can see that they are quite linear, meaning that
the nonlinearities introduced byf1 andf2 are fully com-
pensated. If we apply the method in [6], the compensators
(not shown here for lack of space) are more curve near their
end points and therefore the separation is not as good. One
should note however, that this is an extreme case where the
source densities have a large (or infinite) jump at the end of
its support, hence the density estimator is highly biased near
these points. For smooth density, the advantage of the new
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Fig. 2. Compensators for observation 1 (upper graph) and 2
(lower graph)

method may be less clear.
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