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ABSTRACT

The problem of extracting a blood vessel-related com-
ponent from dynamic brain PET images is similar to
the ICA analysis of fMRI data. Unique characteris-
tics of this problem are: (1) the spatial distribution
of vessels can be acquired by PET, and therefore the
property of the probability distribution of the vessel
component is known; and (2) independent maps and
the mixing matrix are all nonnegative. We have pro-
posed a method for extracting the pTAC based on ICA
(EPICA). EPICA is a method designed for extracting
the vessel component. We investigate (A) the varia-
tion of the estimated pTAC with changing parameters
of a contrast function of EPICA, and (B) the effect of
the nonnegative constraints in ICA using the ensem-
ble learning algorithm. Our results show that (A) a
penalty term influences the tail of the estimated pTAC,
and (B) a nonnegative assumption in ICA is feasible for
extracting a vessel component.

1. INTRODUCTION

An aim of this study is to propose a practical modi-
fication of independent component analysis (ICA) in
nuclear medicine. In positron emission tomography
(PET), radioisotpe labeled pharmaceutical is admin-
istrated to a patient, and its kinetic in a tissue can be
measured as a spatial distribution of radioactivity. For
fully quantitative measurement, a relationship in con-
centration history of radioactivity between in an arte-
rial blood and in target organs should be investigated
using a compartment model [1]. This data analysis is
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known as a kinetic analysis and it enables the various
functionalities in living tissue to be visualized. For ex-
ample, 2-deoxy-2-18F-fluoro-D-glucose (FDG) is used
for the measurement of the regional cerebral metabolism
of glucose. In the compartment model, the input and
output functions are time courses in plasma of arte-
rial blood (plasma time–activity curve; pTAC) and in
a target tissue (tissue time–activity curve; tTAC), re-
spectively. In an actual PET measurement, serial ar-
terial blood sampling by a catheter inserted in a radial
artery is required to measure pTAC. However, this is
often a cumbersome operation and may result in infec-
tion, bleeding, and thrombosis [2][3]. Therefore, it is a
serious problem to obtain pTAC without serial arterial
blood sampling.

The previously reported algorithm to estimate pTAC
from dynamic cardiac PET images is factor analysis of
dynamic structures (FADS) [4][5][6]. FADS performs
principal component analysis (PCA) and oblique ro-
tations. The volume ratio of blood vessels to whole
brain is approximately three percent in human FDG-
PET images [7] and there are no voxels filled only with
blood; therefore variance of the pTAC map is so small
that FADS cannot estimate pTAC properly. In this
paper, dynamic PET images are assumed to be decom-
posed into independent source maps (pTAC map and
tTAC map), and pTAC is extracted as a column of the
estimated mixing matrix using a spatial ICA.

Spatial ICA has been proposed for the extraction of
the artifacts, or task-related activations from dynamic
functional magnetic resonance imaging (fMRI) data [8].
The pTAC extraction algorithm is conceptually similar
to the ICA analysis of fMRI. The differences between
the two problems are:

(1) The statistical properties of pTAC and tTAC maps



are available, which can be measured using 15O-CO
inhalation by PET [7]. Therefore, the statistical
properties of the pTAC component can be assumed
based on the measured data. In fMRI, artifacts or
task-related activations are unknown.

(2) The signs of fMRI data can be both positive and
negative, while the elements of the mixing matrix
(pTAC and tTAC) and source matrix (pTAC and
tTAC maps) should be all nonnegative.

As pTAC cannot be estimated successfully using
conventional ICA [9], an appropriate transformation of
brain PET images to satisfy the assumptions of ICA
and design of a contrast function for extracting pTAC
are required. We have proposed a novel method for
extracting the pTAC-related component based on Fas-
tICA [10]: extraction of the pTAC using ICA (EPICA)
[9][11]. EPICA performs the appropriate preprocessing
(negative images and difference enhanced images) and
spatial ICA using a contrast function designed for ex-
tracting the pTAC. The cost function of EPICA has
two parameters, and we investigate the relation be-
tween the estimated pTAC and the shape of the cost
function defined by the two parameters. The EPICA-
estimated pTAC coincides closely to the measured pTAC;
however, EPICA has an inherent problem in that ICA
allows both signs in the estimated maps, although these
should be nonnegative. Therefore, a nonnegative con-
straint should be incorporated into the estimation scheme
for dynamic PET images. A recently developed ensem-
ble learning (EL) algorithm for ICA assumes indepen-
dent and nonnegative priors [12], which is therefore ex-
pected to overcome the problem of the sign of the maps.
In this study, EPICA and EL for ICA are applied to
FDG-PET images, and we will discuss the possibility
that the nonnegative constraints extract more precise
pTAC-related information.

2. MODEL

In a kinetic analysis in PET, a sequence of PET mea-
surement is performed after administration of radio-
pharmaceutical. A voxel value at position q and frame
f , x(q, f), (q = 1, . . . , Q, f = 1, . . . , F ), is assumed
to be a linear combination of pTAC, cp(f), and tTAC,
ct(f), because a voxel covers both tissue and vessel.
Figure 1 illustrates human brain FDG-PET images.
Based on the compartment model [1], it is known that
the relationship between pTAC, cp(f), and tTAC, ct(f),
is:

ct(f) =
K1

k2 + k3
[k3 + k2 exp {−(k2 + k3)f}] ⊗ cp(f),

(1)
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Fig. 1. Illustration of human brain FDG-PET image
sequence. A voxel of FDG-PET image is a linear com-
bination of pTAC and tTAC.

Table 1. Maximum and minimum inner products. All
TACs (pTAC, tTACs) have unity norm.

inner product
maximum minimum

(1) pTAC and a
group of tTACs

0.37 0.29

(2) one tTAC and
the other tTACs

0.99 0.98

where K1, k2, and k3 are parameters that describe the
transfer rate of FDG. These parameters vary from voxel
to voxel; therefore tTAC is not strictly common to all
voxels. In order to examine the number of tTACs that
should be assumed as the bases for independent maps,
two similarities were examined: (1) between pTAC and
a group of tTACs, and (2) between one tTAC and the
other tTACs. tTACs were calculated using a mea-
sured pTAC and physiologically reasonable parame-
ters, K1 = 1, k2 = (0.08, 0.10, 0.12, 0.14), and k3 =
(0.06, 0.08, 0.10, 0.12). Sixteen tTACs were calculated.
Inner products using these tTACs and pTAC were cal-
culated. The result is shown in Tab. 1. Whereas tTACs
are similar to each other, and pTAC and a group of
tTACs are dissimilar. Therefore the model that as-
sumes two components (pTAC and tTAC components)
is reasonable. A time–activity curve (TAC) is repre-
sented as a column vector, and each voxel’s TAC, x(q),
can be represented as:

x(q) = sp(q)cp + st(q)ct + n(q), (2)



where sp(q) and st(q) are the qth voxel’s value of the
pTAC and tTAC maps, cp and ct are the pTAC and
tTAC, respectively, and n(q) is a noise component. In
matrix notation:

X = cpsT
p + ctsT

t + [n(1), . . . , n(q)] = CS + N, (3)

where sp and st are called the pTAC and tTAC maps,
respectively. The pTAC map, sp, corresponds to the
blood volume image acquired with 15O-CO inhalation,
and the tTAC map, st, is determined by the scale of
the tTAC and the ratio of tissue to the voxel.

3. METHODS

3.1. EPICA

The EPICA procedure consists of four steps:

Step 1. Append the negative images, −X, to the mea-
sured PET images.

Step 2. Standardize each voxel’s TAC using the time
integral.

Step 3. Perform the fast fixed-point algorithm using
the proposed cost function.

Step 4. Adjust the scale of the estimated pTAC using
one-point blood sampling by arterial puncture.

Steps 1 and 2 are used as preprocessing for applying
FastICA to the measured PET data. Step 3 extracts
pTAC from dynamic PET images using FastICA. As
ICA has an ambiguity in the scale of the estimated
component, Step 4 determines the scale of the pTAC.

Step 1 forces the distributions of the pTAC and
tTAC maps to be symmetric with zero mean.

XN = [X,−X] = cp[sT
p ,−sT

p ] + ct[sT
t ,−sT

t ] (4)

In Step 2, the difference between the probability
distributions of pTAC and tTAC maps is enhanced
by standardization as shown in Fig. 2. The enhanced
TAC, xE(q, f), is given as below:

xE(q, f) =
x(q, f)∣∣∣∫ F

0
x(q, f)df

∣∣∣ . (5)

As pharmaceutical administration is performed by a
bolus injection to the antecubital vein, pTAC has a
pulse-like shape. And the ratio of the vessel’s volume
to each voxel is very small. Therefore, the time in-
tegral of tTAC is much larger than that of pTAC in
almost all voxels. Standardization using the time inte-
gral is nearly equal to standardization using the tTAC
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Fig. 2. Histograms of the original pTAC and tTAC
maps and the enhanced pTAC and tTAC maps.

time integral. Therefore, the pTAC map is converted
to the heavy tailed distribution and the tTAC map is
concentrated to around 1 or −1 during Step 2 (Fig. 2).
Step 2 is intended to convert an unknown distribution
in the measured dynamic PET images to a statistically
characterized distribution that is utilized to design a
contrast function at Step 3. Step 3 applies the fast
fixed-point algorithm to the PET images preprocessed
by Steps 1 and 2. Each TAC is normalized under the
L1 norm by Step 2 and each map is normalized under
the L2 norm by whitening. The contrast function is
sensitive to the heavy tailed distribution and has the
penalty term that prevents the voxel values from being
concentrated close to zero.

G(u) = u6 − λ

k
exp

(
−|u|

k

)
, (6)

where u is the whitened PET images, and λ and k are
positive parameters. The pTAC-related component is
estimated by maximizing the contrast function (6).

3.2. ICA with Nonnegative Constraint by EL

EL [12] is a recently developed method for approxi-
mating an intractable actual posterior distribution by
factorial simpler distributions. The priors for the mix-
ing matrix and the source images are assumed to be a
rectified Gaussian and an exponential distribution, re-
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Fig. 3. (A) The estimated pTACs using EPICA from
the simulated FDG-PET images and (B) the corre-
sponding cost functions. The parameters of the cost
functions are (λ, k) = (0, 0.3), (50, 0.3), (80, 0.3). True
pTAC is shown with crosses.

spectively, to incorporate the nonnegative constraint.

p (ci(f)) = G(R) (ci(f)|0, βi) (7)

G(R) (ci(f)|a, b)∝
{

exp
(
− b

2 (ci(f)−a)2
)

if ci(f)≥0
0 if ci(f)<0

(8)

p (si(q)) =

{
1
d exp

(
− si(q)

d

)
if si(q) ≥ 0

0 if si(q) < 0
(9)

The noise, n(q, f), is assumed to be additive Gaussian
noise.

p(x(q)|s(q), C, Σ) = G(x(q)|Cs(q), Σ) (10)

Using these priors, EL minimizes the mismatch be-
tween the posterior distribution, P (s, C, β, d, Σ|x, H )
(H denotes the model) and the approximating distri-
bution, Q(s, C, β, d, Σ).

4. EXPERIMENTAL RESULTS

4.1. Simulation: Parameters of the Cost Func-
tion

The influence of the parameters in (6) on an extracted
pTAC was investigated using computer-generated im-
ages. The simulated data were generated based on
measured PET data. FDG-PET scans were performed
on volunteers using a Headtome-V scanner (Shimadzu
Corp., Japan) in 2D mode. The simulated PET images
have 24 frames and seven slices, each of which has 128
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Fig. 4. (A) The estimated pTACs using EPICA from
the simulated FDG-PET images and (B) the corre-
sponding cost functions. The parameters of the cost
functions are (λ, k) = (50, 0.1), (50, 0.3), (50, 0.6). True
pTAC is shown with crosses.

× 128 voxels. Serial arterial plasma sampling was per-
formed simultaneously. Kinetic parameters, (K1, k2, k3),
of each voxel’s TAC in (1) were estimated and the
noise-free tTACs were calculated using the estimated
kinetic parameters and the measured pTAC based on
(1). The noise-free simulated data were generated us-
ing the equation:

xsim(q, f) = VB(q)cp(f) + (1 − VB(q))ct(q, f), (11)

where VB(q) is the blood volume, cp(f) is the measured
pTAC, and ct(q, f) is the calculated noise-free tTAC.
The Gaussian noise, n(q, f), was added to the noise-
free simulated data. It was assumed to be represented
by the equation:

n(q, t) ∼ N
(

0, α
xsim(q, f)

δf

)
, (12)

where α is the noise level and δf is the width of a frame.
The noise level was set to 30.

EPICA was applied to the simulated PET images
in two cases: (Case 1) λ was varied from 0 to 100 in
steps of 10 and k was fixed at 0.3, and (Case 2) λ was
fixed at 50 and k was varied from 0.1 to 1 in steps
of 0.1. Figures 3 and 4 show the estimated pTACs
using EPICA from the simulated PET data and the
cost functions. As the value of λ increases and the
value of k decreases, i.e., the contribution of the penalty
term to the contrast function increases, the tail of the
estimated pTAC decreases more rapidly.
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Fig. 5. (A) Blood volume image measured with 15O-CO inhalation. (B) pTAC map estimated using EPICA. (C)
pTAC map estimated using EL.
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Fig. 6. Scatter plots between the blood volume image
and the estimated pTAC map using (A) EPICA and
(B) EL.

4.2. Human FDG-PET Experiment

EPICA and EL were applied to the measured PET
data. The number of frames was 27, and the frame ar-
rangements were 10 s × 6, 30 s × 3, 1 min × 5, 2.5 min
× 5, and 5 min × 8. Thirty slices, each of which has 128
× 128 voxels, were scanned. The 24 arterial blood sam-
ples were taken simultaneously via an inserted catheter
in the brachial artery. The blood volume images were
also scanned with 15O-CO inhalation. By performing
PCA, the dimension of PET images was reduced to
two before applying EPICA or EL. In EPICA, all vox-
els were used for the estimation and three slices were
used for EL. The parameters of the contrast function
in (6) were λ = 100, k = 0.3.

Figure 5 shows the measured blood volume image
and the estimated pTAC maps; figure 6 shows the scat-
ter plots between the measured blood volume image
and the estimated pTAC maps by EPICA (A) and
EL (B). Correlation coefficients between the measured
blood volume image and the pTAC maps estimated by
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Fig. 7. Estimated pTACs by (A) EPICA (solid line)
and (B) EL (solid line). The measured pTAC was plot-
ted with open circles. A magnified view of the first 3
min of the estimated pTAC is shown in the inset.

EPICA and EL were 0.71 (y = 0.87x− 0.036) and 0.87
(y = 0.71x + 0.035), respectively. Figure 7 shows the
estimated pTACs by EPICA (A) and EL (B). The scale



of the estimated pTACs was adjusted by the peak value
of the measured pTAC. The calculation time was 10 sec
in EPICA and 4000 sec in EL.

5. DISCUSSION

We have investigated the way in which parameters of
the contrast function in EPICA affect the estimated
pTAC using simulated FDG-PET data. Figures 3 and
4 show that the penalty term of the contrast function
determines the tail of the estimated pTAC. In this pa-
per, the possibility of a nonnegative constraint was also
examined. As shown in Fig. 7, the estimated pTACs
by EPICA and EL were similar to the measured pTAC.
The blood volume image estimated by EL had non-
negative voxels whereas that estimated by EPICA in-
cluded negative voxels. There was a direct correspon-
dence between the voxel values of the two pTAC maps
(Fig. 6). EL, with nonnegative priors, calculated the
nonnegative blood volume image while maintaining the
accuracy of the pTAC estimation, compared with that
using EPICA. EL, however, requires greater computa-
tional time; the reduction of calculation time will be
therefore the subject of future work.
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