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ABSTRACT

We address the problem of blind separation of linear
instantaneous mixtures of stationary, mutually uncor-
related sources with distinct spectra, where the mixing
matrix is time-varying (rendering the observations non-
stationary). The time variation of the mixing is param-
eterized using the assumption of linear time-dependence.
Relying on second-order statistics in the framework of
Second-Order Blind Identification (SOBI Algorithm,
Belouchrani et al., 1997), we offer an expansion of SOBI,
such that the further parameterization is properly ac-
commodated. In actual situations of slowly varying
mixtures, such first-order parameterization thereof en-
ables the estimation of the necessary statistics over
longer observation intervals than those possible with
classical static methods (essentially zero-order approx-
imations). The prolonged validity of the approximate
model is thus utilized in improving the statistical stabil-
ity of the estimates. In this paper we identify the ”raw”
statistics that need to be estimated from the data, and
then propose several approaches for the estimation of
the mixing model parameters, pointing out some trade-
offs involved. We demonstrate the enhanced perfor-
mance relative to conventional SOBI when applied to
time-varying mixtures.

1. INTRODUCTION

Traditionally, the blind source separation (BSS) prob-
lem addresses so-called ”static” mixture models, whereby
the term ”static” encompasses two distinct assump-
tions - namely that the mixtures are both time-invariant
and instantaneous. For non-static mixtures, consider-
able work has been addressed towards mixtures that
are not instantaneous (namely, convolutive mixtures).
However, the possibility of time-variations of (instanta-
neous) mixtures has seen little explicit treatment. It is
common practice to rely on the adaptive form of most
static BSS algorithms (see, e.g., [1]) to be able to track
slow changes in the mixing parameters.
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Nevertheless, adaptive algorithms rely on an ex-
plicit or implicit memory span, which can often be
tuned by proper setting of some effective adaptation
"step-size”. When time-variations in the true mixing
coefficients are slow enough, the step-size can be set to
a relatively small value, which in turn implies a longer
memory span. In such cases the necessary statistics
are in effect estimated using a considerable amount of
history data. Consequently, at the cost of slow track-
ing ability, the statistical stability of the estimation is
improved. Conversely, when the changes in the true
mixing coefficient are faster, the use of a long mem-
ory span can introduce bias into the estimation pro-
cess. Therefore, the adaptation step-size has to be in-
creased, which effectively results in improved tracking
at the cost of decreased statistical stability.

A similar effect is introduced by time-varying mix-
tures into the framework of batch processing BSS algo-
rithms, where the estimation of the mixing parameters,
as well as the demixing, are performed on a given data
block. When such algorithms assume a static model,
they can accommodate time-varying mixtures with ac-
ceptable performance only up to a certain extent of
variation rate. Faster variation rates pose an upper
limit on the block-length that can be used under the
false assumption of a constant mixing. Consequently,
when the block length is reduced, the statistical stabil-
ity of the estimation is degraded.

In this paper we propose further parameterization
for time-varying mixtures, involving an explicit term
for linear variation in time. Using proper estimation of
the necessary statistics, we present an algorithm for the
estimation of the time-variation parameters in addition
to the mixing parameters. We then apply the respec-
tively estimated time-varying demixing, and demon-
strate an improved overall Interference to Signal Ratio
(ISR).

While in practical situations the time variations
may not obey the presumed linear time-dependence
model, such a model nonetheless offers a first-order ap-



proximation thereof. Often this approximation is supe-
rior at least to the implied zero-order approximations
used when applying algorithms that are originally in-
tended for truly static mixtures.

Although this concept of linear modeling of time-
varying mixtures can be applied to various BSS algo-
rithms, we chose to demonstrate it under the frame-
work of second order demixing of stationary source
signals with distinct spectra (the static version is the
well-known Second Order Blind Identification (SOBI)
algorithm, by Belouchrani et al., [2]).

2. PROBLEM FORMULATION

Let s[n] = [s1[n]sz[n]...sar[n]]T be a vector of M zero-
mean Wide-Sense Stationary (WSS) mutually uncorre-
lated source signals with unknown but distinct spectra.
By the term " distinct” spectra we refer to the property
that no pair of signals in the set have spectra (or auto-
correlation sequences) that are merely scaled versions
of one another.

A general time-varying (noiseless) mixture model
would be

x[n] = Aln]s[n] (1)

[#1[n]xa[n]...zar[n]]T are the M observed

where x[n]
signals.

We now assume that the variation of A[n] in time
is linear, according to the following model:

Aln] = (I —n€&)Ay (2)
where I is the M x M identity matrix, Ag is the mixing
matrix at time n = 0, and the matrix € reflects the
time-dependence parameters, and will be referred to as
the "relative rate” matrix. Note that this formulation
involves no loss of generality with respect to a linear
time change in A[n], provided that Aq is nonsingular.
Thus, if A[n] is to change linearly in n from A, at
time n = 0 to some Ay at time n = N, this would be
attained by setting € = & (AyAy " — I).

When slow variations are involved, &£ is usually a
small matrix (€ << I), and we chose to use the for-
mulation of (2), which is reminiscent of the notion of a
"relative” or "natural” gradient ([3, 4, 5]), in order to
facilitate further derivations. In addition, for further
simplification, and for reasons to be revealed later on,
we shall assume (without loss of generality) that the
observation interval is [-N : N|, symmetrically posi-
tioned around n = 0. To conclude, the model is given
by:

z[n] = (I +n€)Aps[n] , n=—-N,—N+1,..N (3)
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3. DERIVATION OF THE ALGORITHMS

Although the source signals are WSS, the observations
are obviously nonstationary, due to the time-varying
mixture. Let us denote the following;:

R.[n,0) £ E [wn + a" [n]
—E [(I + (n+ 1)E)Ags[n + 1)sT [n] AT (I + nS)T]
= I+ (n+DE)ARLA] (I +nE)" (4)

where R;[l] = E[s[n + []sT[n]] are the source signal’s
diagonal autocorrelation matrices at lag [, which we
shall from now on denote, for convenience, as A;. For
additional convenience we shall also denote R;[n,!] as
Ry[n]. We then have

Rl[n] = AOAlA’(J; (5)
+ (EAN AL + AN ATE )N
+ (EA N AT ETR?
+ (EAA AN

We now make some approximating assumption, namely

that for most values of n in the interval [-N : N], the
term which depends linearly on [ (the last term in (5))
is negligible with respect to the term that depends lin-
early on n (the second term in (5)) for all [ in which the
correlations are nonzero. This is equivalent to assum-
ing that the observation interval’s length (2N + 1) is
much larger than the correlation lengths of the source
signals, or, in our context, that the change of the mix-
ing parameters over intervals of the order of the signals’
correlation lengths are negligible relative to the change
over the observation length. Thus we can write the
following approximate expression for R;[n]:
Rin] ~ R + RMn + RPn? (6)

where
R £ AgA AT, (7a)

RW 2 £4,M AT + AAATET = ER) + RV ET
(7b)
and

R 2 £A,0MATET = eRVET. (7¢)

3.1. Estimating Rl(o), Rl(l) and Rl(z)
)

We now wish to estimate the unknown matrices Rl(0 ,

Rl(l) and Rl(z) from the available data [—N] to x[N].
We shall take the following linear least-squares estima-
tion approach: Since the (4, j)-th element of R;[n] is the



expected value of the product z;[n + {]z;[n], this prod-
uct can be regarded as a "noisy” measurement of its ex-
pected value (with zero-mean noise). We can therefore
arrange these samples in the following manner, apply-
ing the model specified by (6) casted as a linear least
squares model in the unknown parameters:

zi[—N 4 ]z;]1] [ R,[-N](i, )
o wmnramn || R
y(l.i.5) = w2402 |7 R§[2](i73>
| NN | | RINIGL)
[1 —N N2
i 1 1:2 RI(O) bJ A
¥l 22 R (i,j) | = HO(i,j))
2 e
|1 N N? |

(8)

where 0(1, i, j) denotes the unknown parameters, namely
the (i,j)-th elements of the three matrices Rl(o)7 Rl(l)

and Rl(z), and therefore needs to be estimated for each
1 < 4,7 < M and for all desired lags, say 0 < [ < L,
where L is some maximum lag to be used. It is also
assumed implicitly in (8), that N+ L samples are actu-
ally available, so that end effects are mitigated at the
cost of not exploiting all the available samples for the
shorter lags. Assuming L << N, the associated loss is
quite negligible.
The LS estimator is then given by

6(1,i,j) = (H"H) *H"y(1,i,5)

So 0 S ] ' N zi[n + l]x;[n]
=0 S 0 nz;[n+lx;n] |,
Sy 0 Sy n=1| n’z;[n+lz;n]
(9)

where S, 2 Zg:_N nP, so that So = 2N + 1, Sy =
sN(N + 1)(2N + 1) and Sy = =N(N + 1)(2N +
1)(3N? + 3N —1).

When the relative rate matrix £ is particularly small
and the observation length N is not particularly large,
so that we have NE€ << I, it may become desirable
to neglect the quadratic term (€ AgA; A2 €7)n? in (5),
namely to assume that Rl(2) is practically zero. In that
way, over—parameterization is avoided, and the variance
and Rz

in estimating Rz can be reduced at the cost
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of a negligible bias. The parameters vector 0(l,i,7)
would then be reduced to a two-parameters vector, de-
noted @(l, 1, j), and, eliminating the third column of H
accordingly, the LS estimate of 8(1,4, j) would be given
by:

-1
T zi[n + lz;[n]
o(l,i.7) = { 0 S ] Zl { na;[n + lx;[n]

(10)

Naturally, in this case, due to the symmetric ob-
servation interval, the estimate of Rl(o) reduces to the
conventional correlation estimate. This guarantees the

positive-definiteness of the estimate I%éo), which in turn
guarantees the existence of a ”whitening matrix” (to
be discussed later). Since, in general, this is not guar-
anteed with non-symmetric observation intervals, we
chose to use the symmetric formulation.

Once the parameters vectors, either (1,1, j) or 8(1, 1, 7
are estimated for each 4, j and [, the results can be
plugged into the respective estimated matrices, obtain-
ing Rl(o), Rl(l) and possibly Rl(z).

Note that while the true matrices Rl(o), Rl(l) and

Rz(2) are all symmetric, their estimated counterparts
may be non-symmetric for [ # 0. It is therefore pro-
posed to’ symmetrize the estimates by replacing each

(;v) ~ ()T
R with J(R” + R”") . p=0.12.
Usmg these estimated matrices, we now proceed to
obtain estimates of the unknown mixing parameters Ag

and &.

3.2. Estimating Ay and &

Recalling the relations (7a,7b,7c) between A and £ and
the matrices Rl@, Rl(l) and RI(Q), several approaches
can be taken in extracting estimates of A and &£ from
the estimates of the correlation matrices. These ap-
proaches would differ in the different trade-offs they
offer between computational simplicity and accuracy.

The ”brute-force” LS approach would be to min-
imize the following, with respect to all the unknown
parameters:

L
i 5 (0) T2
min wo - BY _ AAA
Ao,&Ao,Ah...AL{ 0 ;H d oA Ag || %

L
SR EANAT - AN ATET
=0

L
~(2)
+ws - Z IR, — sAOAlAOTgTH?F} . (11)



where the arbitrary weights wgy, w; and wy are essen-
tial in order to bring the scales of the three terms to
compatible levels, or, in other words, to compensate for
the fact that the three terms are of essentially different
units. Moreover, an optimally weighted LS criterion
canAbgz used})if the Ac&xgariance of the estimation errors
in R ", R, " and R; * are known. For example, if the
source signals are known to be Gaussian Moving Av-
erage processes of some known maximum order ¢, this
covariance can be estimated from the estimated corre-
lations up to lag ¢, as done, e.g., in [6] and [7]. Such
estimates would in turn lead to asymptotically optimal
weight matrices. However, in the current context the
derivation of such weighting is fairly complex and is
beyond the scope of this paper.

The resulting weighted LS problem is a highly in-
volved nonlinear and non-convex minimization prob-
lem. While several minimization strategies can be con-
sidered, we choose to use one of the most simple (but
suboptimal) possible, which in effect addresses the three
terms separately. In addition, we shall employ the
pre-whitening strategy, transforming the minimization
with respect to Ag into a unitary minimization prob-
lem, which can be solved, e.g., using Jacobi rotations
[8] (as opposed to using direct, non-orthogonal approx-
imate joint diagonalization, as in [9, 10]).

Let 1%80)

- (0
position of Rl( ), where U is a unitary matrix and D

SN 1 N
is diagonal. Defining W = D 3UT as the ”estimated

spatial whitening matrix”, we construct the estimated
= (0)

= UDU?Y denote the eigenvalue decom-

whitened correlation matrices R, as follows:
= (0) 5 ~(0) s
R, =WR"W" | i=01,.I (12

= (0
(leading, of course, to R, = I, which accounts for the
term ”spatial whitening”). In order to estimate Ay we
now seek to minimize the following term with respect
to a unitary matrix V:
|

which, as mentioned above, can be accomplished using
sequential Jacobi rotations [8]. Denoting the minimiz-
ers as V. (and Ao, A4, ...[\L), the estimate A of Ay is
given by

L
=(0)
SR, —VAVTE

min
VAA, A, | &=

Ag=W V. (14)
An estimate of € can be obtained from the second
term of (11). Observing the expression for Rgl) in (7b),

two options of the minimization are evident, both can
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be stated as
Y
i {Z IR, - £Q, - Q7£T||%} (15)
=0

where the symmetric matrices @ can either be given
by

Q, = AhjA, | 1=01,..L (16a)

or by
Q=R" , i1=0,1,.L (16b)

Since the estimated matrices cannot (almost surely)
be exactly jointly diagonalized (for L > 1), the two
expressions for Q; are (almost surely) different. How-
ever, it has been observed empirically (in our prelim-
inary tests), that the resulting performance is nearly
insensitive to the choice of either (16a) or (16b) for
Q;. Note only, that in a parallel computation setup,
(16b) is somewhat preferable, since it does not require
prior estimation of Ag and Ag, A1, ...Ar, and therefore
allows estimation of £ in parallel.

Fortunately, the minimization criterion (15) is quadratic

in £, and can therefore be minimized as follows. Denot-
ing by €, the rows of £ such that ET = [€1€2...0] and
by ¢!, the columns of @, such that Q, = [¢}d}...d!,],
we have

(e@ +afe"),

T 1 IT
=€ndm +qn Em- (17)
n,m
Denoting by vec(e) the operation of concatenating all
the columns of the argument M x M matrix into one

M? x 1 column, we then have

r g’ T
qr
qi"
qs’
qr
€1
T
ql2 €9
vec(€Q;) = :
EM
——
A
= £
q'y l
q'y
I qhy |
2 H
(18)



and, similarly,

Mg 1
qs"
ath
g’
qs"
Qﬂ €1
€2
VeC(QngT) =
EM
qir
g’
I gl
A
S H,
(19)

Consequently, the linear LS minimization problem
(15) can be restated as

L
. Q) ]
Hgn{ZIVGC(Rz )—[H§+H§}€|2} (20)
=0

whose solution is
- l 1T l l -
& = [Hl + Hz] [Hi + H2} (21)
=0
L
=0

T A~
[Hll + Hé} -vec(Rgl)).
1

Once the minimizing € = vec(éT) is computed, &
can be easily constructed by inverting the vec(e) op-
eration. In our sub-optimal minimization scheme we
deliberately ignore (or neglect) the last term of (11),
especially since in practical situations the estimates of
Rl(z) are relatively inaccurate when the variation rate
is slow.

The estimates AO and € can now be used for demix-
ing the data by respectively inverting the time-dependent
mixing:

8ln] = A, (I+né) 'z , n=12..N (22)

The signals §[n] are the estimated source signals, up to
the inherent scale and permutation ambiguities induces
in any BSS problem. Note, however, that these ambi-
guities are absorbed in the estimated Ag only. There
are no such ambiguities in the estimate of £.
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4. SIMULATION RESULTS

We demonstrate the performance of the separation al-
gorithm using a simulated example with M = 2 source
signals, both zero-mean Gaussian MA processes. They
were created by passing independent white Gaussian
unit-variance noise sequences through the systems Hy (z) =
14227105272 — 273 + 274 (for s1[n]) and Ha(z) =
1— 271 4327242273 (for sz[n]).

The true mixing parameters were Ay = [,32 }1] and
£ =[73%1]-107*. We demonstrate the performance
using observation lengths with N = 100 to N = 10000.
For the shorter observation lengths the mixture is nearly
constant; for the longest observation length the mix-
ture changes considerably from A(—-N) = [I9] to
A(N) =[5 2]. All algorithms were applied with
five correlation lags up to L = 4.

In order to measure the performance of the algo-
rithm, our measure of ISR is defined over the entire
observation interval: Defining as T'[n] the total (time-
dependent) mixing-demixing effect, we have
Tin) = Ay (I+n€) " (I+n€)Ag, n = N, N+1,...N

(23)
Then, in order to evaluate the total leakage of energy
between reconstructed sources, we compute

N
T = _Z;N T[n] ® T[n] (24)

where ® denotes Hadamard’s (element-wise) product
(implying element-wise squaring in this case). Once T
is calculated, the permutation ambiguity is resolved by
selecting the permutation which maximizes T"s trace,
and then the average ISR is the average (over the two
rows) of the ratios of off-diagonal to diagonal energy in
each row.

For reference, we present results for the conven-
tional SOBI algorithm, compared to the two versions of
our ” Time-Variable SOBI” (TV-SOBI) algorithm: TV-
SOBI; using the ”linear estimation model” (10) (esti-

mating just Rl(o) and Rl(l)) and TV-SOBI, using the

”quadratic estimation model” (9) (estimating Rl(z) as
well).

It is evident, that with short observation lengths,
when the actual mixing variation is negligible, SOBI
yields better performance, because the introduction of
additional parameters into TV-SOBI unnecessarily in-
creases the estimation variance. However, as N in-
creases, the assumption of constant mixing departs from
reality, and the performance of SOBI begins to deteri-
orate rapidly. This is where the compensating effect of
the TV-SOBI algorithm(s) evolves. It is seen, in this
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Figure 1: Performance in terms of average ISR [dB] for SOBI, TV-SOBI; (linear estimation model (10)) and TV-
SOBI, (quadratic estimation model (9)) vs. N (half the observation length). Each point represents the average of

400 trials. All algorithms used the same data.

example, that the use of TV-SOBI; can enable pro-
longed observation intervals, offering improvement of
over 20dB over conventional SOBI. When N is further
increased, a similar trade-off is observed between TV-
SOBI; and TV-SOBI;, where the addition of quadratic
parameters in TV-SOBI; increases the estimation vari-
ance at first, but eventually ”pays off” by outperform-
ing TV-SOBI; at large values of N.

All algorithms exhibit certain degradation in perfor-
mance as N increases to extreme values, because with
large N, small errors in the estimate of £ are strongly
amplified towards the edges of the observation interval,
and the resulting poor ISR at the edges overrides the
good average at the middle.

5. CONCLUSION

We presented an expansion of the SOBI algorithm,
named TV-SOBI, which addresses time-varying instan-
taneous mixtures using a linear model for the time-
variation. We have shown that this expansion enables
the use of longer observation interval, resulting in im-
proved performance, when the mixtures are indeed time-
varying. Various approaches can be taken in the differ-
ent stages of the estimation procedure, and we have
chosen to present in here just the most simple ap-
proach, capturing the essence of the model. Further
improvement can be attained using more elaborate ap-
proaches, which are the subject of on-going research.
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