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ABSTRACT 

 
This paper describes a fixed-point independent component 
analysis (ICA) algorithm in combination with the null 
beamforming technique to sieve out speech signals from their 
convoluted mixture observed using a linear microphone array. 
The fixed-point algorithm shows fast convergence to the 
solution, however it is highly sensitive to the initial value from 
which iteration starts. A good initial value leads to faster 
convergence and yields better results. We propose the use of a 
null beamformer-based initial value for iteration and explore its 
effects on separation performance under different acoustic 
conditions by examining the noise reduction rate (NRR) and 
convergence speed. The result of the simulation confirms the 
efficacy and accuracy of the proposed algorithm. 
 
 
1. INTRODUCTION 
 
Blind source separation (BSS) addresses the problem of 
estimating unobserved signals or sources from several observed 
mixtures without observing the sources and knowing the mixing 
procedure. This complete lack of a priori knowledge is 
compensated by assuming statistical independence of each 
source, and typically observed signals are obtained using an 
array of sensors that contains spatially sampled signals of the 
unobserved sources. This technique has wide applicability, and 
in recent years, it has gained much research attention. This 
technique has been coined as a solution to the cocktail party 
problem in spoken communication, which is related to a 
human’s ability to focus auditory attention on a particular 
speech in the presence of multiple speech sources. One 
technical characterization of this ability is to separate a 
particular signal from mixtures of signals. This is what BSS 
does for speech signals and hence it has applicability in 
developing a noise-robust speech recognition system and hands-
free communication systems. 

The independent component analysis (ICA)-based BSS 
technique is performed in both the time domain and the 
frequency domain [1,2,3]. In the frequency-domain ICA 
(FDICA), a complex-valued separation matrix is calculated in 
the frequency domain, and in time-domain ICA, the inverse of 
the mixing FIR filter matrix is calculated in the time domain. 
Several algorithms have been developed for blind separation in 
an artificially controlled acoustic environment and in a real 
acoustic environment, however, the separation performance is 
still poor [4]. Real-world application requires faster methods to 

perform on-line separation. To date, the algorithms developed 
are not sufficiently fast to satisfy real-time requirements. 
Frequency-domain approaches are relatively fast due to the 
power of FFT, yet the gradient-based FDICA techniques require 
a larger number of iterations to estimate the separating matrix. 
However, other algorithms like fastICA methods [5] based on 
Newton’s iterative methods are fast but sensitive to the initial 
value from which iterative learning starts. In order to enhance 
the separation performance and to solve the problem of 
permutation and scaling arising in FDICA, the beamforming 
technique has been combined with the gradient-based ICA 
algorithm [6,7] and relatively good separation performance has 
been reported. In this paper, we focused on the new 
combination of the null beamforming (NBF) technique and the 
fixed-point ICA algorithm. Using the NBF technique, we solved 
the permutation and scaling problem and also generated a good 
initial value for the fixed-point ICA methods. In this way, the 
use of beamforming achieves three aims. 
 
 
2. SIGNAL MIXING AND UNMIXING MODEL 
 
In the real recording environment, signals reaching each 
microphone are not only direct-path signals but also delayed 
and attenuated versions of the source signal. Therefore, the 
speech signal picked up by a microphone array is modeled as a 
linear convolutive mixture of impinging signals, in which the n-
dimensional signal vector 1 2( ) [ ( ), ( ),......... ( )]Tnx t x t x t x t=  picked 
up by an n-element linear microphone array is given by  

( ) ( ) ( )x t h k s t k
∞
∑= −

−∞ , 

where ( ) [ ( ), ( ), ......... ( )]
1 2

Ts t s t s t s t
m

=  is an unobservable 

source signal; h m nk = ×  mixing matrix in which ijh  

represents the impulse response between the i th source and the 
j th microphone. 

However we are dealing with frequency-domain ICA, so 
the same signal model in the frequency domain is expressed in 
terms of simple multiplication as follows: 

( ) ( ) ( )X f A f S f= , 
where ( ) [ ( ), ( ), ......... ( )]1 2

TX f X f X f X fn= is the observed signal 

vector; ( ) [ ( ), ( ), ........ . ( )]
1 2

TS f S f S f S f
m

= is the original 

signal source, and 
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is the complex-valued mixing matrix. 
In this study, we have considered the case of a two-

microphone two-source, i.e., n=m=2, BSS problem for which 
mixing and demixing processes are shown in Figure 1. 

Samaragdis [2] exploited the transformation of 
convolutive mixing into simple multiplicative operation and 
proposed the application of short-time Fourier transform 
(STFT) to the mixed signal x(t) and then to separate 
independent components in every frequency bin. Thus, in the 
frequency domain, the entire process of convolved signal 
separation is transformed into the computation of the separation 
matrix W(f) in each frequency bin for each source. 
 
 
3. FIXED-POINT ICA 
 
Fixed-point ICA was first developed and proposed in [5] for the 
separation of the instantaneous mixture. The key feature of this 
algorithm is that it converges faster than other algorithms, like 
natural gradient-based algorithms, with almost the same 
separation quality. In [8], fast algorithm has been extended to 
complex-valued signals, however this algorithm has no strategy 
for solving the problem of permutation and scaling arising in 
speech signal separation. In [9], Mitianoudis et al. have 
proposed the application of the fixed-point algorithm for speech 
signal separation with a time-frequency-model-based likelihood 
ratio jump scheme as a solution for permutation. The 
nonlinearity used in [9] to measure negentropy is also different 
from that used in [8]. There are also other methods used to 
solve the permutation problem. In order to combine array signal 
processing techniques with fixed-point ICA, we propose to use 
a directivity-pattern-based technique to solve the permutation 
and scaling problem. Fixed-point-iteration-based ICA is very 
sensitive to the initial value from which iteration starts. A good 
initial value results in early convergence and better separation 
quality. Hence we have used a null-beamformer-based initial 
value for the separation matrix.  

The fixed-point ICA algorithm is based on two-step 
approaches, namely, prewhitening or sphering and rotation of 

the observation vector. Sphering is half of the ICA task and 
results in spatially decorrelated signals; the remaining involves 
rotating the whitened signal vector by the separation matrix. In 
the deflation-type algorithm, the rotation step consists of one-
unit ICA which is used to estimate one separation vector w (one 
row of the separation matrix) such that the separated component 
Y(f)=wT X(f) equals one independent component. Here we place 
the derivation of such a one-unit fixed-point algorithm using  
negentropy as the measurement of nongaussianity of the 
separated signal. The negentropy J(y) of the separated signal y 
is given by 

( ) ( ) ( )J y H y H ygauss= − , 

where guassy   is the gaussian random vector with the same 

variance as that of the estimated independent componet y, and 
H(.) denotes the differential entropy. 

The idea of using negentropy as a measure of 
nongaussianity is grounded in the central limit theorem which 
states that a mixture of two or more nongaussian variables is 
more gaussian than the individuals. Thinking in reverse, it 
advocates that nongaussianity of individuals ensures statistical 
independence. Thus maximizing nongaussianity leads to 
separate components. Hyvarinen et al. [10] proposed the 
approximation of negentropy using the nonquadratic nonlinear 
function G as follows: 

( ) [ { ( ) { ( )}]J y E G y E G yguassσ= − , 
where σ  is a positive constant. 

The performance of the fixed-point algorithm depends on 
the nonquadratic nonlinear function G used. Some of the 
nonquadratic functions used for complex-valued signal 
separation are  
 

1 1( )G y a y= +  ; 1 .01a =  

2 2( ) log( )G y a y= + ; 2 .01a =  

3 ( ) yG y y=  ; 0y∀ ≠ . 

 
Based on negenotropic measurement of nongaussianity, we 
derive here a one-unit fixed-point ICA learning equation using 
the Lagrangian multipliers method of constraint optimization. 
The speech signal is also modeled as a spherically symmetric 
variable, and as pointed out in [10], for a spherically symmetric  
variable, modulus-based contrast function can be used to 
measure nongaussianity. Accordingly, we use the same contrast 
function  

( ) { (| | ^2)}HJ y E G w x= , 
where w is an n-dimensional complex vector such that 

2{| | } 1 1HE w x w= ⇒ = . 
This contrast function may have m local or global optimum 
solutions iw (i=1,2, …, m); the corresponding iy  will give an 
estimation of m separated sources. Thus the source separation 
problem calls for the following constraint optimization: 

Maximize 2( ) { (| | )}HJ y E G w x= , 

Fig. 1.  ICA in frequency domain. 
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under constraint 2{| | } 1 1HE w x w= ⇒ = . 
The maxima of J(y) can be found by solving the Lagrangian 
function ( , , )HL w w λ  of the above, given as 

2( , , ) { (| | )} [ { } 1}H H HL w w E G w x E w xλ λ= ± − . 
For the maxima of the contrast function, the following 
simultaneous equations must be solved. 

0L
w

∂ =
∂

; 0H

L
w
∂ =

∂
; 0L

λ
∂ =
∂

 

These give 

{ (| | ^2) } 0H H HL E g w x w w
w

λ∂ = + =
∂ ,

 

{ (| | ^2)( ) } 0H H
H

L E g w x x w x w
w

λ∂ = + =
∂ ,

 

2| | 1 0L w
λ

∂ = − =
∂ .

 

 
From here, we proceed further in light of the following 

two theorems [11]: 
 
THEOREM 1: If function f(z,z*) is analytic with respect to z 
and z*, all stationary points can be found by setting the 
derivative with respect to either  z or  z* 
 
THEOREM 2: If f(z,z*) is a function of the complex-valued 
variable z and its conjugate, then by treating z and z* 
independently, the quantity directing the maximum rate of 
change of f(z,z*) is * ( )z f z∇  
Accordingly, the final solution using Newton’s iterative method 
is given by 

1

( )new H H

L Lw w
w w w

−∂ ∂ ∂   = −   ∂ ∂ ∂    .
 

After each iteration, updated w is normalized as  
/ ( )new new neww w norm w= . 

This leads to a simplified earning equation as follows. 
2 2 2( { (| | ) (| | ) '(| | )})

2{ (| | )( ) }

H H Hw w E g w x w x g w xnew
H HE g w x x w x

= + − 

This is the update equation for w. 
Following the findings in [10], we use nonquadratic 

function (6b) whose first- and 2nd-order derivatives are given 
by 

2

1
( ( ^ 2)H

g
a w x

=
+

,

 

and    
2

2

0.5'
( ( ^ 2))H

g
a w x

= −
+

. 

 
 
4. ESTIMATION OF SEPARATION MATRIX 

 
The above update equation is used to estimate separation vector 
w for each source one by one. First the observation signals are 
windowed using overlapping Hanning windows. Then P point 
STFT is carried out in each frame of each mixed signal. Next 
the time series ( , ) [ ( , ), ( , ), ......... ( , )]1 2

TX f t X f t X f t X f tn=  is 
obtained by stacking signal samples of same frequency bins of 
every frame of every microphone signal. Then signal separation 
is performed on the time series data X(f, t) of every frequency 
bin. As stated in the previous section, before performing ICA, 
the time series data in every frequency bin is centered and 
whitened using the Mahalanobis transform [12]. The whitened 
signal in the p th bin is obtained as 

( , ) ( ) ( , )X f t Q f X f tw p p p=  
with 

0.5( )Q f Vp x x
−= Λ , 

where 

1 2

1 1 1{ , , ....., }x
n

diag
λ λ λ

Λ =  

is the diagonal matrix with positive eigenvalues 
1 1 ........ nλ λ λ> > >  of the covariance matrix of the observed 

vector in the p th frequency bin pf , and 

xV =Orthogonal matrix. 
After whitening, whitened data is used in the ICA stage where 
weight vector w is computed using iterative learning equation 
(16). After each iterative update, w is normalized since updating 
changes the norm and it is essential to keep the norm unity. As 
this is a deflationary algorithm, independent sources are 
extracted one by one in the order of decreasing negentropy from 
the mixed signal. Thus, after each iteration, it is also essential 
to decorrelate w to prevent its convergence to the previously 
converged point. For this, Gram-Schmidt sequential 
orthogonalization has been used, in which components of all 
previously obtained separation vectors falling in the direction of 
the current vector are subtracted as  

1

1

( )
i

T
i i i j i

j

w w w w w
−

=

= −∑
.

 

After finishing ICA in every frequency bin for m sources (less 
than or equal to the number of microphones), a separation 
matrix ( )W f  is obtained in every frequency bin for every 
source: 

11 1

1

( ) .. ( )
( ) . .. .

( ) .. ( )

n

m mn

w f w f
W f

w f w f

 
 =  
   .

 

Each row of this separation matrix corresponds to a separation 
vector for each source. Because this separation matrix has been 
obtained using whitened signals, its premultiplication with 
whitened signals in the frequency domain gives time series 

( , ) [ ( , ), ( , ), ......... ( , )]1 2
T

Y f t Y f t Y f t Y f tm=  of the separated 
signal, i.e., 

(9) 

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17a) 

(17b) 

(18)

(19)

(20)

(22)

(21)

(23)



( , ) ( ) ( , )Y f t W f X f tw= . 
However, in order to use W(f) of Equation (23) in the time 
domain to form an FIR filter, it is essential to dewhiten the 
separation filter as follows: 

1( ) ( )( ( )W f W f Q f −= . 
Then using dewhitened W, an FIR filter of length P can be 
formulated to separate the signal as  

0
( ) ( ) ( )

p

r
y t w r x t r

=
= −∑ . 

 
 
5. PERMUTATION AND SCALING PROBLEM 
 
As mentioned earlier, each row of the separation matrix 
corresponds to a separation vector for different sources. 
However, the row order of W is arbitrary in every frequency bin, 
but for source separation, it is also essential to ensure the same 
order and arrangement of separation vector for each source in 
every frequency bin. For this, the directivity-pattern-based 
method is used, which requires the direction of arrival (DOA) 
of each source to be known. In the totally blind setup, this 
cannot be known so it is estimated from the directivity pattern 
(DP) of the separation matrix. The directivity pattern ( , )kF f θ  
of the microphone array is given by [13] 

( )( , ) ( ) exp[ 2 sin / ]
1

m ICAF f W f j d cl lk kk
θ π θ∑=

=
 , 

where ( ) ( )ICAW flk  is an element of the separation matrix.  

The DP of the separation matrix contains nulls in each 
source direction only. However, the position of nulls varies in 
each frequency bin for the same source directions. Hence by 
calculating the null direction in each frequency bin, the DOA of 
the source can be estimated as 

/ 2

1

2 ( )
P

l l p
p

f
N

θ θ
=

= ∑
) , 

where ( )f plθ  denotes the null direction in the 
pf  th  frequency 

bin for the l th source. 
As an alternative, DOA can also be estimated by plotting 

a histogram of null directions occurring in each frequency bin. 
The center of the histogram corresponding to the maximum 
score of the null directions gives the DOA of the sources. 
However, this method is sensitive to permutation of the 
separation matrix. Therefore, before plotting the histogram, the 
separation matrix is depermuted using techniques based on 
similarity in the separation matrix for different successive bins. 
In each frequency bin (say the p th bin), separation matrix W(fp) 
is permuted by interchanging rows to generate separation 
matrix ( )PerW f p  and then it is compared with separation 

matrix 
1( )pW f −

 of the immediately prior frequency bin as 

follows: 

1 1
,

( ) ( )ij p ij p
i j

D w f w f −= −∑ , 

2 1
,

( ) ( )per
ij ij p ij p

i j

D w f w f −= −∑ . 

The separation matrix is selected as 
1 2

1 2

( )
( )

( )
p

perp
p

W f if D D
W f

W f if D D
<

=  >
 . 

Then the histogram method is used to compute DOA of the 
sources. 
After estimating DOA, the gain value in each frequency bin is 
normalized in each source direction. Gain in the m th source 
direction in the p th frequency bin is given  by   

1
( , )m

m p mF f
α

θ
= ) , 

where mθ
)

 is the estimated direction of the m th source. Thus, a 
scaled separation matrix is obtained as 

1 11 1

1

0.. 0 ( ) .. ( )
( ) : : : 0 . .. .

0 0.. ( ) .. ( )

p n p

m m p mn p

w f w f
W f

w f w f

α

α

  
  =   
     

 . 

 
This scaled and depermuted matrix is used, with Equation 

(22), to separate the signal in each frequency bin. Then by using 
the overlap-add technique, the signal is reconstructed. It is 
important to note that the estimated separation matrix have 
been estimated from whitened data so the separated signal is 
dewhitened in every frequency bin. If the signal is to be 
separated in the time domain, the separation matrix is 
dewhitened and then the P point FIR filter is used to separate 
signals, with Equation (26). 

As the Newton’s iterative formula is sensitive to the initial 
value of separation matrix, we use here NBF-based initial value 
for separation vector. The NBF-based initial value of W(f) is 
generated as calculated in [13]. We give here the same result 
for the 

pf th frequency bin in Equations (34(a,b,c,d)) which are 

based on forming the null in the source direction to be rejected, 
and gain is set to be unity in the source direction to be separated. 

exp[ sin ] { exp[ (sin sin )]11 1 2 2 1 2
1exp[ (sin sin )]}2 1 2

BFw q q

q

θ θ θ

θ θ

= − − × − − +

−−
, 

exp[ sin ] { exp[ (sin sin )]12 2 2 1 1 2
1exp[ (sin sin )]}2 1 2

BFw q q

q

θ θ θ

θ θ

= − − × − − +

−−
, 

exp[ sin ] { exp[ (sin sin )]21 1 1 1 2 1
1exp[ (sin sin )]}2 2 1

BFw q q

q

θ θ θ

θ θ

= − − × − − −

−−
, 

exp[ sin ] { exp[ (sin sin )]22 2 1 1 2 1
1exp[ (sin sin )]}2 2 1

BFw q q

q

θ θ θ

θ θ

= − − × − − −

−−
, 

where  

1 1 12 sinpq j d f cπ θ= , 

(24)

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34a) 

(34b) 

(34c) 

(34d) 

(34e) 

(26) 

(25)



2 2 22 sinpq j d f cπ θ= , 

and 
1θ  and 2θ  are estimated DOAs of source 1 and source 2. 

 
 
 
 

 
          Fig. 2. Convergence curve for source 1 in 2 kHz.  
 
 
6. EXPERIMENTS AND RESULTS 
 
In the experiment, we used simulated data for a two-element 
linear microphone array with interelement spacing of 4 cm. 
Voices of two speakers (male and female) at a distance of 1.15 
meters in the direction of 30− o  and 40o  are used to generate 
mixed signals. Mixed signals at each microphone are obtained 
by convolving the seed speech with room impulse response, 
recorded under different acoustic conditions, characterized by 
different reverberation times (RTs), e.g., RT=0 ms, RT=150 ms 
and RT=300 ms. The unconvolved speech reaching each 
microphone are used as reference signals. The signal analysis 
conditions are shown in Table 1. 

In the first phase of the experiment, we set random initial 
values of the separation matrix in each frequency bin and then 
used the proposed algorithm to compute the separation matrix 
for RT=0 ms, RT=150 ms and RT=300 ms data. The 
convergence curve for RT=150 ms is shown in Figure 2. The 
algorithm begins to converge after 20 iterations and stops when 
the stopping criterion is satisfied. As the stopping criterion, we 
measure the difference between separation vectors before and 
after the update and if the difference goes below 0.001, the 
iteration is stopped. Using directivity-pattern-based methods, 
DOAs of the sources are estimated. The directions of the 1st 
source S1 and 2nd source S2 estimated using Equation (26) and 
the histogram of the directivity pattern are presented in Table 2. 

The histogram of the null directions for RT=150 ms is shown in 
Figure 3 and Figure 4. Using the estimated source direction, the 
separation matrix is scaled using Equation (29). As in the 
random-initial-value-based method, there is no information on 
DOA. Therefore, before calculating DOA by the histogram 
method, the separation matrix W(f) is depermuted using 
Equation (30). 

In order to evaluate the performance of the algorithm with 
NBF, the initial value of W(f) is generated for every frequency 
bin in accordance with Equations (32(a,b,c,d)). Using these 
initial values in each frequency bin, ICA is performed using 
Equation (16). The separation performance for both the cases of 
NBF-based initial value and random initial values of the 
separation vector have been studied in different acoustic 
conditions. In every frequency bin, the speed of convergence 
and Noise Reduction Rate (NRR; output SNR - input SNR in 
dB) improvement of the algorithm have been computed. 
Corresponding results are shown in Fig. 5 and Fig. 6, 
respectively. It is obvious from Fig. 6 that NRR improvements 
for nonreverberant cases are almost the same for both random 
initial value and NBF-based guess values of the separation 
matrix. However, for reverberant conditions, NBF-based guess 
value gives good result in the performance as well as the 
convergence speed (see Fig. 5). For the second source, the 
algorithm shows the convergence in very few steps because the 
algorithm is deflationary and test data is mixtures of two signals 
only. So after extracting one signal source, it converges rapidly 
for second source (which is also last). 
 
7. CONCLUSION 
 
In this study, we derived a fixed-point learning rule using the 
Lagrangian multipliers optimization technique. We introduced 
the fixed-point ICA algorithm for convoluted audio source 
separation in the frequency domain. The performance of the 
developed algorithm was evaluated with different initial guess 
of the separation matrix. The algorithm converged rapidly, and 
convergence and NRR performance were improved when a good 
initial value of the separation matrix was used. Also, the 
histogram-based method for DOA estimation deteriorated under 
the heavily reverberant condition. Both methods can estimate 
DOA in the presence of two sources only. 

However the effect on performance of using other initial 
values based, e.g., on signal subspace or transfer function 
between source and microphones, is yet to be investigated. The 
effect of combining gradient-based FDICA with fixed-point ICA 
is also left for future work. The slow convergence near the 
convergence point of the gradient-based ICA might be improved 
by adopting the fixed-point algorithm. 
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Table 1. Signal analysis conditions 
Frame length 20ms 

Step size 10ms 
Window Hanning 

FFT length 512 points 
 

Table 2. DOA results 

RT RT= 0 ms RT=150 ms RT=300 ms 
Methods S1 S2 S1 S2 S1 S2 
Averaging -31.1 40.0 -32.2 39.0 -28.1 42.1 
Histogram -30.6 40.8 -30.9 37.8 -27.0 39.0 
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Fig. 4. Histogram of directivity pattern showing more nulls 
in the direction of 2nd source. 

Fig. 5. Average number of iterations (Y-axis) required in 
different acoustic conditions characterized by 
different values of RT (X-axis) using random and 
NBF-based initial guess value. 

 
Fig. 6. NRR improvement using NBF guess and random 

initial value in different acoustic environment. 
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