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ABSTRACT

The instantaneous noise-free linear mixing model in inde-
pendent component analysis is largely a solved problem un-
der the usual assumption of independent nongaussian sources
and full rank mixing matrix. However, with some prior in-
formation on the sources, like positivity, new analysis and
perhaps simplified solution methods may yet become possi-
ble. In this paper, we consider the task of independent com-
ponent analysis when the independent sources are known to
be non-negative and well-grounded, which means that they
have a non-zero pdf in the region of zero. We propose the
use of a ‘Non-Negative PCA’ algorithm which is a special
case of the nonlinear PCA algorithm, but with a rectifica-
tion nonlinearity, and we show that this algorithm will find
such non-negative well-grounded independent sources. Al-
though the algorithm has proved difficult to analyze in the
general case, we give an analytical convergence result here,
complemented by a numerical simulation which illustrates
its operation.

1. INTRODUCTION

The problem of independent component analysis (ICA) has
been studied by many authors in recent years (for a review,
see e.g. [1]). In the simplest form of ICA we assume that we
have a sequence of observations{x(k)} which are samples
of a random observation vectorx generated according to

x = As (1)

wheres = (s1, . . . , sn)T is a vector of real independent
random variables (thesources), all but perhaps one of them
nongaussian, andA is a nonsingularn × n realmixing ma-
trix. The task in ICA is to identifyA given just the observa-
tion sequence, using the assumption of independence of the
sis, and hence to construct an unmixing matrixB = RA−1

giving y = Bx = BAs = Rs whereR is a matrix which
permutes and scales the sources. Typically we assume that
the sources have unit variance, with any scaling factor being

absorbed into the mixing matrixA, soy will be a permuta-
tion of thes with just a sign ambiguity.

Common cost functions for ICA are based on maximiz-
ing nongaussianities of the elements ofy and they may
involve higher-order cumulants such as kurtosis. The ob-
servationsx are often assumed to be zero-mean, or trans-
formed to be so, and are commonly pre-whitened by some
matrixz = Vx so thatE{zzT } = I before an optimization
algorithm is applied to find the separating matrix.

Recently, one of the current authors considered an addi-
tional assumption on the sources: that they arenon-negative
as well as independent [2, 3]. Non-negativity is a natural
condition for many real-world applications, for example in
the analysis of images [4, 5], text [6], or air quality [7]. The
constraint of non-negative sources, perhaps with an addi-
tional constraint of non-negativity on the mixing matrixA,
is often known aspositive matrix factorization[8] or non-
negative matrix factorization[9]. We refer to the combina-
tion of non-negativity and independence assumptions on the
sources asnon-negative independent component analysis.

Non-negativity of sources can provide us with an alter-
native way of approaching the ICA problem, as follows. We
call a sourcesi non-negativeif Pr(si < 0) = 0, and such a
source will be calledwell-groundedif Pr(si < δ) > 0 for
anyδ > 0, i.e. thatsi has non-zero pdf all the way down to
zero. One of the authors proved the following [2]:

Theorem 1. Suppose thats is a vector of non-negative
well-grounded independent unit-variance sourcessi, i =
1, ..., n, andy = Us whereU is a square orthonormal ro-
tation, i.e.UT U = I. ThenU is a permutation matrix, i.e.
the elementsyj of y are a permutation of the sourcessi, if
and only if allyj are non-negative.

This result can be used for a simple solution of the non-
negative ICA problem: note thaty = Us can also be written
asy = Wz with z the pre-whitened observation vector and
Wan unknown orthogonal (rotation) matrix. It therefore



suffices tofind an orthogonal matrixW for whichy = Wz

is non-negative. This brings the additional benefit over other
ICA methods that we know of that, if successful, we always
have a positive permutation of the sources, since both thes

andy are non-negative. The sign ambiguity present in usual
ICA vanishes here.

In the next Section 2, we present the whitening for non-
zero mean observations and further illustrate by a simple
example why a rotation into positive outputsyi will give
the sources. Then, in Section 3 we show the relation of
non-negativity to ”non-negative PCA” and in Section 4 give
a gradient algorithm, whose global convergence is proven.
Section 5 relates this orthogonalized algorithm to the non-
orthogonal ”nonlinear PCA” learning rule previously intro-
duced by one of the authors. Section 6 illustrates the non-
negative PCA principle by a pictorial example, and Section
7 gives some conclusions.

2. PRE-WHITENING AND AXIS ROTATIONS

In order to reduce the ICA problem to one of finding the cor-
rect orthogonal rotation, the first stage in our ICA process is
to whitenthe observed datax. This gives

z = Vx (2)

where then × n real whitening matrixV is chosen so that
Σz = E{(z − z̄)(z − z̄)T } = In, with z̄ = E{z}. If E

is the orthogonal matrix of eigenvectors ofΣx = E{(x −
x̄)(x − x̄)T } andD = diag(d1, . . . , dn) is the diagonal
matrix of corresponding eigenvalues, so thatΣx = EDET

andETE = EET = In, then a suitable whitening matrix
is V = Σ

−1/2
x = ED−1/2ET where

D−1/2 = diag(d−1/2

1 , . . . , d−1/2
n ).

Σx is normally estimated from the sample covariance [1].
Note that for non-negative ICA, we do not remove the mean
of the data, since this would lose information about the non-
negativity of the sources [2].

Suppose that our sourcessj have unit variance, such that
Σs = In, and letU = VA be thes-to-z transform. Then
In = Σz = UΣsU

T = UUT so U is an orthonormal
matrix. It is therefore sufficient to search for a further or-
thonormal matrixW such thaty = Wz = WUs is a
permutation of the original sourcess.

Figure 1 illustrates the process of whitening for non-
negative data in 2 dimensions. Whitening has succeeded in
making the axes of the original sources orthogonal to each
other (Fig. 1(b)), but there is a remaining orthonormal rota-
tion ambiguity. A typical ICA algorithm might search for a
rotation that makes the resulting outputs as non-gaussian as
possible, for example by finding an extremum of kurtosis,
since any sum of independent random variables will make
the result ‘more gaussian’ [1].
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Fig. 1. Original data (a) is whitened (b) to remove 2nd order
correlations.

However, Figure 1 immediately suggests another ap-
proach: we should search for a rotation where all of the
data fits into the positive quadrant. As long as the distribu-
tion of the original sources is ‘tight’ down to the axes, then
it is intuitively clear that this will be a unique solution, apart
from a permutation and scaling of the axes. This explains
why Theorem 1 works.

3. NON-NEGATIVITY AND NONLINEAR PCA

The result of Theorem 1 has a connection with Principal
Component Analysis (PCA) as follows. Recall the classical
result saying that, given ann dimensional vectorx, its k

dimensional principal component subspace can be found by
minimizing the representation error:

eMSE = E‖x − WTWx‖2

whereW is a k × n matrix. The minimum ofeMSE is
given by a matrix with orthonormal rows, and the matrix
WT W is then the projector on the dominant eigenvector
subspace ofx, spanned by thek dominant eigenvectors of
the covariance matrix ofx [10].

If k = n, the criterion is meaningless, because the whole
space is the principal component subspace andWTW = I.
The erroreMSE attains the value zero. However, ifWx is
replaced by a nonlinear functiong(Wx), applied element
by element, then the problem changes totally: the repre-
sentation error usually does not attain the value of zero any
more even fork = n, and in some cases the minimiza-
tion leads to independent components [11]. Let us write
this nonlinear MSE criterion, first introduced by Xu [12],
for the whitened vectorz instead:

eMSE = E‖z − WT g(Wz)‖2. (3)

Let us choose for the nonlinearityg the rectification
nonlinearity

g(yi) = g+(yi) = max(0, yi)

which is zero for negativeyi, andyi otherwise. Then the
criterion (3) can be called “Non-Negative PCA” because for



the positive elements ofWz it coincides with usual PCA
and for the negative elementsg is zero, having no effect.

We are now ready to state

Theorem 2. Assume then-element random vectorz
is a whitened linear mixture of non-negative well-grounded
independent unit variance sourcessi, ..., sn, andy = Wz

with W constrained to be a square orthogonal matrix. If
W is obtained as the minimum ofE‖z− WT g+(Wz)‖2,
then the elements ofy will be a permutation of the original
sourcessi.

Proof. BecauseW is square orthogonal, we get

eMSE = E‖z − WT g+(Wz)‖2 (4)

= E‖Wz − WWT g+(Wz)‖2 (5)

= E‖y − g+(y)‖2 (6)

=

n∑
i=1

E{[yi − g+(yi)]
2} (7)

=

n∑
i=1

E{min(0, yi)
2} (8)

=

n∑
i=1

E{y2
i |yi < 0}P (yi < 0). (9)

This is always non-negative and becomes zero if and
only if eachyi is non-negative with probability one.

On the other hand, becausey = Wz with W orthog-
onal, then it also holds thaty = Us with U orthogonal.
Theorem 1 now implies thaty must be a permutation ofs
QED.

4. A CONVERGING GRADIENT ALGORITHM

Theorem 2 leads us naturally to consider the use a gradient
algorithm for minimizing (3) under the orthogonality con-
straint. This problem was considered by one of the authors
[13], and the ensuing gradient descent algorithm becomes

∆W = −η[f(y)yT − yf(y)T ]W (10)

where now
f(yi) = min(0, yi) (11)

andη is the positive learning rate.
The skew-symmetric form of the matrixf(y)yT−yf(y)T

ensures thatW tends to stay orthogonal from step to step,
although to fully guarantee orthogonality, an explicit or-
thonormalization of the rows ofW should be done from
time to time.

Instead of analyzing the learning rule directly, let us
look at the averaged differential equation corresponding to
the discrete-time stochastic algorithm (10). It becomes

dW

dt
= −MW (12)

where we have denoted the continuous-time deterministic
solution also byW, and the elementsµij of matrixM are

µij = E{min(0, yi)yj − yi min(0, yj)}. (13)

Note thatM is a nonlinear function of the solutionW,
becausey = Wz. Yet, we can formally write the solution
of (12) as

W(t) = exp[−

∫ t

0

M(s)ds]W(0). (14)

The solutionW(t) is always an orthogonal matrix, if
W(0) is orthogonal. This can be shown as follows:

W(t)W(t)T =

exp[−

∫ t

0

M(s)ds]W(0)W(0)T exp[−

∫ t

0

M(s)T ds]

= exp[−

∫ t

0

(M(s) + M(s)T )ds].

But matrixM is skew-symmetric, henceM(s)+M(s)T =
0 for all s andW(t)W(t)T = exp[0] = I.

We can now analyze the stationary points of (12) and
their stability in the class of orthogonal matrices. The sta-
tionary points (for whichdW

dt = 0) are easily solved. They
must be the roots of the equationM = 0. We see that if
all yi are positive or all of them are negative, thenM = 0.
Namely, ifyi andyj are both positive, thenmin(0, yi) and
min(0, yj) in (13) are both zero. If they are both negative,
then min(0, yi) = yi and min(0, yj) = yj and the two
terms in (13) cancel out. Thus, in these two casesW is
a stationary point. The case when allyi are positive cor-
responds to the minimum value (zero) of the cost function
eMSE . By Theorem 1,y is then a permutation ofs, which is
the correct solution we are looking for. We would hope that
this stationary point would be the only stable one, because
then the ode will converge to it.

The case when all theyi are negative corresponds to the
maximum value ofeMSE , equal to

∑n
i=1

E{y2
i } = n. As

it is stationary, too, we have to consider the case when it is
taken as the initial value in the ode.

In all other cases, at least some of theyi have opposite
signs. ThenM is not zero andW is not stationary, as seen
from (14).

We could look at the local stability of the two station-
ary points. However, we can do even better and perform a
global analysis. It turns out that (4) is in fact a Lyapunov
function for the matrix flow (12); it is strictly decreasing al-
ways whenW changes according to the ode (12), except at
the stationary points. Let us prove this in the following.

Theorem 3. If W follows the ode (12), thendeMSE

dt <

0, except at the point when allyi are non-negative or all are
non-positive.



Proof. Consider theith term in the sumeMSE . Denot-
ing it by ei, we haveei = E{(min(0, yi))

2} whose deriva-
tive with respect toyi is easily shown to be2E{min(0, yi)}.
If wT

i is theith row of matrixW, thenyi = wT
i z. Thus

dei

dt
=

dei

dyi

dyi

dt
= 2E{min(0, yi)(

dwT
i

dt
z)}. (15)

From the ode (12) we get

dwT
i

dt
= −

n∑
k=1

µikw
T
k

with µik given in (13). Substituting now this in (15) gives

dei

dt
= −2

n∑
k=1

µikE{min(0, yi)yk}

= −2

n∑
k=1

E2{min(0, yi)yk}

+ 2

n∑
k=1

E{min(0, yk)yi}E{min(0, yi)yk}.

If we denoteαik = E{min(0, yi)yk}, we have

deMSE

dt
=

n∑
i=1

dei

dt
= 2[−

n∑
i=1

n∑
k=1

α2
ik +

n∑
i=1

n∑
k=1

αikαki].

By the Cauchy-Schwartz inequality, this is strictly negative
unlessαik = αki, and thuseMSE is decreasing.

We still have to look at the condition thatαik = αki and
show that this implies non-negativity or non-positivity for
all theyi.

Now, becausey = Us with U orthogonal, eachyi is
a projection of the positive source vectors on one ofn or-
thonormal rowsuT

i of U. If the vectorsui are aligned with
the original coordinate axes, then the projections ofs on
them are non-negative. For any rotation that is not aligned
with the coordinate axes, one of the vectorsui (or −ui)
must be in the positive octant, due to the orthonormality
of the vectors. Without loss of generality, assume that this
vector isu1; then it holds thatP (y1 = uT

1 s ≥ 0) = 1
(or 0). But if P (y1 ≥ 0) = 1, then min(0, y1) = 0
and α1k = E{min(0, y1)yk} = 0 for all k. If symme-
try holds for theαij , then alsoαk1 = E{min(0, yk)y1} =
E{y1yk|yk ≤ 0}P (yk ≤ 0) = 0. But y1 is non-negative,
soP (yk ≤ 0) must be zero, too, for allk. The same argu-
ment carries over to the case whenP (y1 ≥ 0) = 0, which
implies that if oneyi is non-negative, then allyk must be
non-negative in the case of symmetricalαij QED.

The behaviour of the learning rule (10) is now well un-
derstood. Even if the starting point would happen to be the

“bad” stationary point in which allyi are non-positive, then
numerical errors will deviate the solution from this point
and the cost functioneMSE starts to decrease. This was
proven only for the continuous-time averaged version of
the learning rule; the exact connection between this and the
discrete-time on-line algorithm has been clarified in the the-
ory of stochastic approximation. See e.g. [14]. The cost
function is decreasing and non-negative and will conver-
gence to the stationary minimum, corresponding to all non-
negativeyi. By Theorem 1, these must be a permutation of
the original sourcessj which therefore have been found.

5. RELATION TO THE NONLINEAR PCA
LEARNING RULE

For the general nonlinear MSE criterion, given in (3), the
full matrix gradient is [15]

∂eMSE

∂W
= −E{F(y)WrzT + g(y)rT } (16)

wherer is the representation error

r = z − WT g(Wz)

and
F(y) = diag(g′(y1), ..., g

′(yn)).

Now, consider the present case ofg(y) = g+(y) and look at
the first term on the right hand side of (16). We have

F(y)WrzT = F(y)W[z − WT g+(Wz)]zT

= F(y)[y − g+(y)]zT .

The ith element of vectorF(y)[y − g(y)] is g′+(yi)[yi −
g+(yi)] which is clearly zero: ifyi ≤ 0, theng′+(yi) = 0,
and ifyi > 0, then this term becomes1 × [yi − yi] = 0.

This means that the first term in the gradient vanishes
altogether and what remains is the term

−g+(y)rT = −g+(y)(z − WT g+(y))T .

This shows that the on-line gradient descent rule for the
eMSE criterion can also be written as

∆W = ηg+(y)(z − WT g+(y))T . (17)

This has the form of the Nonlinear PCA learning rule, ear-
lier suggested by one of the authors in [11].

Note that in the analysis above we used the assumption
that matrixW stays orthogonal. This is strictly not true in
the gradient algorithm, unless an explicit orthogonalization
is performed at each step. The approximation is the bet-
ter, the closerW is to orthogonality. It can be shown that
stationary points of the gradient algorithm, even without ex-
plicit orthogonalizations, will be orthogonal matrices; thus



asymptotically, the orthogonality assumption holds and the
approximating gradient coincides with the exact gradient.
For computational reasons it may therefore be easier to use
algorithm (17) instead of (10) for finding the positive inde-
pendent components.

6. EXPERIMENTS

We illustrate the operation of non-negative PCA using a
blind image separation problem (see e.g. [16]). This is suit-
able for non-negative ICA, since the source images have
non-negative pixel values.

The original images used in this section are shown in
Fig. 2. They are square128 × 128 images (downsampled
by a factor of 4 from the original512 × 512 images) with
integer pixel intensities between 0 and 255 inclusive, which
were then scaled to unit variance. Each source sequence
sj(k), j = 1, 2, 3 is considered to be the sequence of pixel
values obtained as we scan across the image from top left
(k = 0) to bottom right (k = 1282).

Fig. 2. Source images and histograms used for the non-
negative ICA algorithms.(The images were kindly supplied
by Włodzimierz Kasprzak and Andrzej Cichocki.)

We found that face images tended to have significant
correlation with other face images, breaking the indepen-
dence assumption of ICA methods. Consequently we used
one face and two artificial images as the sources for these
demonstrations.

Note that the histograms indicate that the face image has
a non-zero minimum value, which does violate our assump-
tion that the sources arewell-grounded[2]. Nevertheless,
we will see that we will get reasonable (although not per-
fect) separation performance from the nonnegative ICA al-
gorithm.

To measure the separation performance of the algorithm,
we use two performance measures: first, the nonnegative re-
construction error

eNNR =
1

np
‖Z − WTY+‖

2

F (18)

whereZ andY+ are the matrices whose columns are the
p = 1282 pre-whitened observation vectorsz of dimension

n = 3 and the rectified versions of vectorsy = Wz, re-
spectively. Thus, this is the sample version of the error in
(4). The other performance measure is the cross-talk error

eXT =
1

n2
‖abs(WVA)T abs(WVA) − In‖

2

F (19)

where abs(WVA) is the matrix of absolute values of the el-
ements ofWVA. This measure is zero only ify = WVAs

is a permutation of the sources, i.e. only if the sources have
been successfully separated.

Fig. 3 gives an example learning curve for the non-negative
PCA algorithm (17) of section 5. The learning rate was
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Fig. 3. Learning curve for the non-negative PCA algorithm,
showing nonnegative reconstruction error (lower curve),
and cross-talk error (upper curve).

manually adjusted to improve the convergence time, using
η = 104 initially, η = 103 for 10 ≤ t < 50, andη = 102

for t ≥ 50. As the algorithm progresses, the images are suc-
cessfully separated, and the histograms become less Gaus-
sian and closer to those of the original sources (Fig. 4). As
a non-negative algorithm, we never see inverted sources re-
covered, such as we might expect from traditional ICA al-
gorithms.

From the curves, we see that the reconstruction error
is decreasing steadily after the initial stage. However, the
crosstalk error, measuring the distance away from separa-
tion, reaches a minimum of5.73 × 10−3 after 200 epochs.

7. DISCUSSION

We have considered the problem ofNon-Negative ICA, that
is, independent component analysis where the sources are
known to be non-negative. Elsewhere, one of us introduced
algorithms to solve this based on the use of orthogonal ro-
tations, related to Stiefel manifold approaches [3].

In this paper we considered gradient-based algorithms
operating on pre-whitened data, related to the ‘nonlinear
PCA’ algorithms investigated by one of the present authors
[11, 13]. We refer to these algorithms, which use a rectifica-
tion nonlinearity, asNon-Negative PCAalgorithms. Theo-
retical analysis of algorithm (10), which includes a matrixof



(a)

(b)

(c)

Fig. 4. Image separation process for the non-negative PCA
algorithm, showing (a) the initial state, and progress after
(b) 50 epochs and (c) 200 epochs.

skew-symmetric form, shows that it will tend to find a per-
mutation of the non-negative sources. The related algorithm
(17) is simpler in form, but is more difficult to analyze. Nev-
ertheless, simulations indicate that this also reliably finds a
permutation of the non-negative sources.
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