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ABSTRACT absorbed into the mixing matriX, soy will be a permuta-

The instantaneous noise-free linear mixing model in inde- tion of thes with just a sign ambiguity.
pendent component analysis is largely a solved problem un- ~ Common cost functions for ICA are based on maximiz-
der the usual assumption of independent nongaussian sourc®g nongaussianities of the elementsyofand they may
and full rank mixing matrix. However, with some prior in-  involve higher-order cumulants such as kurtosis. The ob-
formation on the sources, like positivity, new analysis and Servationsx are often assumed to be zero-mean, or trans-
perhaps simplified solution methods may yet become possi-formed to be so, and are commonly pre-whitened by some
ble. In this paper, we consider the task of independent com-matrixz = Vx so thatE{zz" } = I before an optimization
ponent analysis when the independent sources are known t@lgorithm is applied to find the separating matrix.
be non-negative and well-grounded, which means that they ~ Recently, one of the current authors considered an addi-
have a non-zero pdf in the region of zero. We propose thetional assumption on the sources: that theyrsme-negative
use of a ‘Non-Negative PCA' algorithm which is a special as well as independent [2, 3]. Non-negativity is a natural
case of the nonlinear PCA algorithm, but with a rectifica- condition for many real-world applications, for example in
tion nonlinearity, and we show that this algorithm will find the analysis of images [4, 5], text [6], or air quality [7].&h
such non-negative well-grounded independent sources. Al-constraint of non-negative sources, perhaps with an addi-
though the algorithm has proved difficult to analyze in the tional constraint of non-negativity on the mixing matx
general case, we give an analytical convergence result hergs often known agositive matrix factorizatio8] or non-
complemented by a numerical simulation which illustrates negative matrix factorizatiof]. We refer to the combina-
its operation. tion of non-negativity and independence assumptions on the
sources ason-negative independent component analysis
1. INTRODUCTION Non-negativity of sources can provide us with an alter-
native way of approaching the ICA problem, as follows. We
The problem of independent component analysis (ICA) hascall a sources; non-negativéf Pr(s; < 0) = 0, and such a
been studied by many authors in recent years (for a review,source will be calledvell-groundedf Pr(s; < §) > 0 for
see e.g. [1]). In the simplest form of ICA we assume that we anyé > 0, i.e. thats; has non-zero pdf all the way down to
have a sequence of observatigmgk)} which are samples ~ zero. One of the authors proved the following [2]:
of a random observation vectergenerated according to
Theorem 1. Suppose that is a vector of non-negative
well-grounded independent unit-variance sourggs: =
wheres = (si,...,s,)7 is a vector of real independent 1:-- 7, andy = Us whereU is a square orthonormal ro-
random variables (thsource$, all but perhaps one of them ~ tation, i.e.UTU = 1. ThenU is a permutation matrix, i.e.
nongaussian, and is a nonsingulan x n realmixing ma-  the elements;; of y are a permutation of the sources if
trix. The task in ICA is to identifyA given just the observa- ~ and only if ally; are non-negative.
tion sequence, using the assumption of independence of the
5;S, and hence to construct an unmixing maBix= RA ! This result can be used for a simple solution of the non-
givingy = Bx = BAs = Rs whereR is a matrix which negative ICA problem: note that= Us can also be written
permutes and scales the sources. Typically we assume thaasy = Wz with z the pre-whitened observation vector and
the sources have unit variance, with any scaling factorgoein ' Wan unknown orthogonal (rotation) matrix. It therefore

x = As Q)
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suffices tdind an orthogonal matri®V for whichy = Wz :
is non-negativeThis brings the additional benefit over other s
ICA methods that we know of that, if successful, we always 2
have a positive permutation of the sources, since bothk the . :
andy are non-negative. The sign ambiguity presentin usual 4 -

ICA vanishes here. e S— B T —
In the next Section 2, we present the whitening for non- % 2
zero mean observations and further illustrate by a simple (a) (b)

example why a rotation into positive outpugs will give

the sources. Then, in Section 3 we show the relation of
non-negativity to "non-negative PCA” and in Section 4 give
a gradient algorithm, whose global convergence is proven.
Section 5 relates this orthogonalized algorithm to the non-
orthogonal "nonlinear PCA" learning rule previously intro However, Figure 1 immediately suggests another ap-
duced by one of the authors. Section 6 illustrates the non-proach: we should search for a rotation where all of the
negative PCA principle by a pictorial example, and Section data fits into the positive quadrant. As long as the distribu-

Fig. 1. Original data (a) is whitened (b) to remove 2nd order
correlations.

7 gives some conclusions. tion of the original sources is ‘tight’ down to the axes, then
it is intuitively clear that this will be a unique solutiorpart
2 PRE-WHITENING AND AXIS ROTATIONS from a permutation and scaling of the axes. This explains

why Theorem 1 works.

In order to reduce the ICA problem to one of finding the cor-
rect orthogonal rotation, the first stage in our ICA process i 3. NON-NEGATIVITY AND NONLINEAR PCA

to whitenthe observed data. This gives
The result of Theorem 1 has a connection with Principal

z=Vx (2) Component Analysis (PCA) as follows. Recall the classical
where then x n real whitening matrixV is chosen so that ~ esult saying that, given an dimensional vectox, its k
Y, = B{(z—2)(z — 2)T} = I,, withz = BE{z}. If E dimensional principal component subspace can be found by

is the orthogonal matrix of eigenvectorsBf, = E{(x —  Minimizing the representation error:

)E)(x'— x)T} andD = digg(dl, ...,dy) is the diagor}al errse = E|[x — WIWx|?
matrix of corresponding eigenvalues, so thgt = EDE . . o .
andETE = EET = I,,, then a suitable whitening matrix WhereW is ak x n matrix. The minimum ofe/sg is

isV = 272 = ED1/2ET where given by a matrix with.orthonormal rows, and the matrix
Lo . 12 Lo WTW is then the projector on the dominant eigenvector
D~/2 =diagd, /*,...,d;"/?). subspace ok, spanned by thé dominant eigenvectors of

the covariance matrix of [10].

If & = n, the criterion is meaningless, because the whole
space is the principal component subspaceWhidw = 1.
The errorey s attains the value zero. However,Wx is
replaced by a nonlinear functioffWx), applied element
by element, then the problem changes totally: the repre-
sentation error usually does not attain the value of zero any
more even fork = n, and in some cases the minimiza-
tion leads to independent components [11]. Let us write
this nonlinear MSE criterion, first introduced by Xu [12],
for the whitened vectaz instead:

3« is normally estimated from the sample covariance [1].
Note that for non-negative ICA, we do not remove the mean
of the data, since this would lose information about the non-
negativity of the sources [2].

Suppose that our sourceshave unit variance, such that
¥, = I, and letU = VA be thes-to-z transform. Then
I, = ¥, = U, UT = UUT soU is an orthonormal
matrix. It is therefore sufficient to search for a further or-
thonormal matrixW such thaty = Wz = WUs is a
permutation of the original sources

Figure 1 illustrates the process of whitening for non-
negative data in 2 dimensions. Whitening has succeeded in emse = E|lz — WTg(Wz)|?. ()
making the axes of the original sources orthogonal to each
other (Fig. 1(b)), but there is a remaining orthonormal+ota L€t us choose for the nonlinearity the rectification
tion ambiguity. A typical ICA algorithm might search fora Nonlinearity
rotation that makes the resulting outputs as non-gaussian a
possible, for example by finding an extremum of kurtosis,
since any sum of independent random variables will make which is zero for negative;, andy; otherwise. Then the
the result ‘more gaussian’ [1]. criterion (3) can be called “Non-Negative PCA” because for

9(yi) = g+(yi) = max(0, y;)
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the positive elements oWz it coincides with usual PCA
and for the negative elementss zero, having no effect.
We are now ready to state

Theorem 2. Assume then-element random vectar

where we have denoted the continuous-time deterministic

solution also byW, and the elemenis;; of matrix M are
wij = E{min(0, y;)y; — y; min(0, y,)}. (13)

Note thatM is a nonlinear function of the solutioW,

is a whitened linear mixture of non-negative well-grounded becausey = Wz. Yet, we can formally write the solution

independent unit variance sourcss..., s,, andy = Wz

with W constrained to be a square orthogonal matrix. If

W is obtained as the minimum df||z — W1g, (Wz)|?,
then the elements of will be a permutation of the original
sources;.

Proof. BecauséW is square orthogonal, we get

eMSE E|z - WT9+ (VVZ)”2 (4)
= E|Wz-WW'g (Wz)|> (5
= Ely-g:)? (6)
= > Bllyi —g+)*} (7)
=1
= Z E{min(0,y;)*} 8)
=1
= Y E{y}lyi <0}P(y; <0).  (9)

=1

of (12) as

t
W(t) = exp[—/ M(s)ds|W(0). (14)
0
The solutionW () is always an orthogonal matrix, if
‘W (0) is orthogonal. This can be shown as follows:

W(HW(H)T =

exp|— /O M(s)ds]W (0)W (0)7 exp[— /O M(s)7ds]

exp[— / (M(s) + M(s)")ds].
0

But matrix M is skew-symmetric, hendel(s) +M(s)? =

0 forall s andW ()W (t)T = exp[0] = L.

We can now analyze the stationary points of (12) and
their stability in the class of orthogonal matrices. The sta
tionary points (for which‘% = () are easily solved. They
must be the roots of the equatidi = 0. We see that if

This is always non-negative and becomes zero if and )| y; are positive or all of them are negative, tieh= 0.

only if eachy; is non-negative with probability one.

On the other hand, becauge= Wz with W orthog-
onal, then it also holds that = Us with U orthogonal.
Theorem 1 now implies that must be a permutation &f
QED.

4. A CONVERGING GRADIENT ALGORITHM

Namely, ify; andy; are both positive, themin(0, y;) and
min(0, y;) in (13) are both zero. If they are both negative,
thenmin(0,y;) = y; andmin(0,y;) = y; and the two
terms in (13) cancel out. Thus, in these two ca¥€ésis

a stationary point. The case when gjlare positive cor-
responds to the minimum value (zero) of the cost function
eymse- By Theorem ly is then a permutation af which is

the correct solution we are looking for. We would hope that

Theorem 2 leads us naturally to consider the use a gradienthis stationary point would be the only stable one, because

algorithm for minimizing (3) under the orthogonality con-

straint. This problem was considered by one of the authors

then the ode will converge to it.
The case when all thg are negative corresponds to the

[13], and the ensuing gradient descent algorithm becomes maximum value ok, 5z, equal toy 1, B{y?} = n. As

AW = —q[f(y)y" —yf(y)"IW (10)

where now
f(yi) = min(0, y;) (11)
andn is the positive learning rate.

The skew-symmetric form of the matriy)y” —y f(y)”
ensures thaW tends to stay orthogonal from step to step,
although to fully guarantee orthogonality, an explicit or-
thonormalization of the rows oW should be done from
time to time.

Instead of analyzing the learning rule directly, let us
look at the averaged differential equation corresponding t
the discrete-time stochastic algorithm (10). It becomes

dW

—r = MW (12)
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it is stationary, too, we have to consider the case when it is
taken as the initial value in the ode.

In all other cases, at least some of thehave opposite
signs. TherM is not zero andW is not stationary, as seen
from (14).

We could look at the local stability of the two station-
ary points. However, we can do even better and perform a
global analysis. It turns out that (4) is in fact a Lyapunov
function for the matrix flow (12); it is strictly decreasing a
ways whenW changes according to the ode (12), except at
the stationary points. Let us prove this in the following.

Theorem 3. If W follows the ode (12), thefeise <
0, except at the point when aJi are non-negative or all are
non-positive.



Proof. Consider theth term in the sune,;sg. Denot-
ing it by e;, we havee, = E{(min(0,y;))?} whose deriva-
tive with respect tgy; is easily shown to b2E{min(0, y;) }.
If w! is theith row of matrixW, theny; = wl'z. Thus

PR =2F i t . 1
W= qy ar ~ 2P0 (=) (19)

From the ode (12) we get
dw?l ~
e S
k=1

with p;, given in (13). Substituting now this in (15) gives

de;

= —2> " pix E{min(0, y; )yx }

k=1

-2 Z E*{min(0,y;)yx }

k=1

+ 2 Z E{min(0, y)y;  E{min(0, y;)yx }-
k=1

If we denoter;;, = E{min(0, y;)yx }, we have
d n d n n n n
GMSE gd_: ZZak+ZZ ka;”

i=1 k=1 i=1 k=1
By the Cauchy-Schwartz inequality, this is strictly negati
unlessw;;, = axg, and thus s g is decreasing.

We still have to look at the condition that;, = «ay,; and
show that this implies non-negativity or non-positivityr fo
all they;.

Now, becausgs = Us with U orthogonal, eacly; is
a projection of the positive source vectoon one ofn or-
thonormal rowai! of U. If the vectorsu; are aligned with
the original coordinate axes, then the projections ah

them are non-negative. For any rotation that is not aligned

with the coordinate axes, one of the vectars(or —u;)

must be in the positive octant, due to the orthonormality
of the vectors. Without loss of generality, assume that this

vector isuy; then it holds thatP(y; = ufs > 0) =

(or 0). Butif P(y; > 0) = 1, thenmin(0,y1) = 0
and oy, = E{min(0,y1)yx} = 0 for all k. If symme-
try holds for thew;;, then alsaxy; = E{min(0, yx)y1 } =
E{yiyrlyr < 0}P(yx < 0) = 0. Buty; is non-negative,
so P(yr < 0) must be zero, too, for akt. The same argu-
ment carries over to the case whBfy; > 0) = 0, which
implies that if oney; is non-negative, then alj; must be
non-negative in the case of symmetriog} QED.

“bad” stationary point in which alj; are non-positive, then
numerical errors will deviate the solution from this point
and the cost functior,,sg starts to decrease. This was
proven only for the continuous-time averaged version of
the learning rule; the exact connection between this and the
discrete-time on-line algorithm has been clarified in thee th
ory of stochastic approximation. See e.g. [14]. The cost
function is decreasing and non-negative and will conver-
gence to the stationary minimum, corresponding to all non-
negativey;. By Theorem 1, these must be a permutation of
the original sources; which therefore have been found.

5. RELATION TO THE NONLINEAR PCA
LEARNING RULE

For the general nonlinear MSE criterion, given in (3), the
full matrix gradient is [15]

deymse
oW

wherer is the representation error

= —B{F(y)Wrz" + g(y)r"}

(16)

r=z—- W'g(Wgz)

and
F(y) = diagg'(y1), -, 9" (yn))-

Now, consider the present casey¢f) = g+ (y) and look at
the first term on the right hand side of (16). We have

Fy)Wes" = F(y)Wla - Wg, (Wa)Ja"
= Fy)ly —g+)z"

The ith element of vectoF (y)[y — g(y)] is ¢/ (vi)[y:
g+(y;)] which is clearly zero: ify; < 0, theng/, (v;) =
and ify; > 0, then this term becomdsx [y; — ;] = 0.
This means that the first term in the grad|ent vanishes
altogether and what remains is the term

—g+(y)r" = =g+ (y)(z— WTg ().

This shows that the on-line gradient descent rule for the
emsg criterion can also be written as

AW =g, (y)(z - Whg ()"

This has the form of the Nonlinear PCA learning rule, ear-
lier suggested by one of the authors in [11].

Note that in the analysis above we used the assumption
that matrixW stays orthogonal. This is strictly not true in
the gradient algorithm, unless an explicit orthogonaiat
is performed at each step. The approximation is the bet-
ter, the closeiW is to orthogonality. It can be shown that

(17)

The behaviour of the learning rule (10) is now well un- stationary points of the gradient algorithm, even without e
derstood. Even if the starting point would happen to be the plicit orthogonalizations, will be orthogonal matricekus
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asymptotically, the orthogonality assumption holds ared th n = 3 and the rectified versions of vectoys= Wz, re-
approximating gradient coincides with the exact gradient. spectively. Thus, this is the sample version of the error in
For computational reasons it may therefore be easier to us€4). The other performance measure is the cross-talk error
algorithm (17) instead of (10) for finding the positive inde- )
pendent components. exT = —2|\abs{WVA)Tabs{WVA) — Ian: (19)

n

6. EXPERIMENTS where ab§W VA) is the matrix of absolute values of the el-
ements oW VA. This measure is zero onlyyf = WVAs

We illustrate the operation of non-negative PCA using a is a permutation of the sources, i.e. only if the sources have

blind image separation problem (see e.g. [16]). This is suit 0€en successfully separated. _
able for non-negative ICA, since the source images have Fig. 3 gives an example learning curve for the non-negative
non-negative pixel values. PCA algorithm (17) of section 5. The learning rate was

The original images used in this section are shown in
0

Fig. 2. They are square28 x 128 images (downsampled 100
by a factor of 4 from the originad12 x 512 images) with ¥

integer pixel intensities between 0 and 255 inclusive, Whic

were then scaled to unit variance. Each source sequence E 10°
sj(k), 7 =1,2,3is considered to be the sequence of pixel .
values obtained as we scan across the image from top left
(k = 0) to bottom right ¢ = 1282). 1070 ‘ ‘ ‘ .
0 50 100 150 200
Epoch, t

Fig. 3. Learning curve for the non-negative PCA algorithm,
showing nonnegative reconstruction error (lower curve),
and cross-talk error (upper curve).

Fig. 2. Source images and histograms used for the non-
negative ICA algorithms(The images were kindly supplied
by Wiodzimierz Kasprzak and Andrzej Cichocki.)

manually adjusted to improve the convergence time, using
n = 10* initially, » = 103 for 10 < ¢ < 50, andn = 102

fort > 50. As the algorithm progresses, the images are suc-
cessfully separated, and the histograms become less Gaus-
sian and closer to those of the original sources (Fig. 4). As
a non-negative algorithm, we never see inverted sources re-

, o covered, such as we might expect from traditional ICA al-
We found that face images tended to have s'gn'f'ca“tgorithms.

correlation with_ other face images, breaking the indepen-~ .o the curves, we see that the reconstruction error
dence assumption of ICA methods. Consequently we usedg gecreasing steadily after the initial stage. Howeves, th
one face and two artificial images as the sources for these,qqstalk error, measuring the distance away from separa-

demonstrations. - o _ tion, reaches a minimum 673 x 10~ after 200 epochs.
Note that the histograms indicate that the face image has

a non-zero minimum value, which does violate our assump-
tion that the sources amgell-grounded2]. Nevertheless,
we will see that we will get reasonable (although not per-

fect) separation performance from the nonnegative ICA al- . "~ :
is, independent component analysis where the sources are

gorithm. : .
. . known to be non-negative. Elsewhere, one of us introduced
To measure the separation performance of the algorithm, . .
algorithms to solve this based on the use of orthogonal ro-

we use tV\{o performance measures: first, the nonnegative refations, related to Stiefel manifold approaches [3].
construction error

In this paper we considered gradient-based algorithms
1 T 5 operating on pre-whitened data, related to the ‘nonlinear
ENNR = n_pHZ ~ WYL g (18) PCA algorithms investigated by one of the present authors
[11, 13]. We refer to these algorithms, which use a rectifica-
whereZ andY . are the matrices whose columns are the tion nonlinearity, as\on-Negative PCAlgorithms. Theo-
p = 1282 pre-whitened observation vectar®f dimension retical analysis of algorithm (10), which includes a matrix

7. DISCUSSION

We have considered the problemMdn-Negative ICAthat
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component analysis,IEEE Signal Processing Lettersol.
9, no. 6, pp. 177 —180, June 2002.

M. D. Plumbley, “Algorithms for non-negative independe
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L. Parra, C. Spence, P. Sajda, A. Ziehe, and K.-R. Mjiller
“Unmixing hyperspectral data,” idvances in Neural In-
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942-948, MIT Press.
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Fig. 4. Image separation process for the non-negative PCA [9]

algorithm, showing (@) the initial state, and progressrafte

(b) 50 epochs and (c) 200 epochs.

skew-symmetric form, shows that it will tend to find a per-
mutation of the non-negative sources. The related alguarith
(17) is simpler in form, but is more difficult to analyze. Nev-

ertheless, simulations indicate that this also reliablgdia
permutation of the non-negative sources.
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