4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), April 2003, Nara, .

QUADRATIC DEPENDENCE MEASURE FOR
NONLINEAR BLIND SOURCES SEPARATION

Sophie Achard, Dinh Tuan Pham

Univ. of Grenoble
Laboratory of Modeling and Computation,
IMAG, C.N.R.S.
B.P. 53X, 38041 Grenoble Cedex, France
Sophie.Acharde@imag. fr,
Dinh-Tuan.Pham@imag. fr

ABSTRACT

This work focuses on a quadratic dependence measure which
can be used for blind source separation. After defining it, we
show some links with other quadratic dependence measures
used by Feuerverger and Rosenblatt. We develop a prac-
tical way for computing this measure, which leads us to a
new solution for blind source separation in the case of non-

linear mixtures. It consists in first estimating the theoreti-

cal quadratic measure, then computing its relative gradient,
finally minimizing it through a gradient descent method.

Some examples illustrate our method in the post nonlinear
mixtures.

1. INTRODUCTION

Blind source separation (BSS) consists in extracting inde-
pendent sources from their mixtures without relying on spe-
cific assumptions about the mixture and the sources distri-
bution other than their independence. Therefore most meth-
ods which have been proposed are based on minimizing
some criterion related to independence. Such criterion of-
ten possesses the contrast property in the sense that it can
be minimized if and only if the output of the separation
system are mutually independent [1, 2]. In the context of
linear mixtures, contrast functions can be constructed from
cumulants [1] or even correlations if lagged correlations are
included [3, 4]. This is possible because of the strong con-
straint of linearity of the mixture, since it is well known that
the independence between a set of random variables cannot
in general be inferred from the fact that some of their corre-
lations and cumulants are zero. (One needs to consider all of
them.) In the nonlinear mixtures problem, it is therefore of
interest to consider dependence measures which completely
characterizes independence, in the sense that the measure
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can be zero if and only if independence has been achieved.
Of course, such measure can be of interest in the linear mix-
ture context too.

The mutual information is a well known and widely
used dependence measure. Its use in nonlinear BSS has
been introduced in Taleb and Jutten [5, 6] and Babaie-Zadeh
[7], among others. This measure is however difficult to esti-
mate, as it involves the estimation of entropy which requires
density estimation. This can cause severe difficulty for high
dimensional data. Although it is possible to reduce a cri-
terion based on mutual information to the one based only
on the marginal entropies, this approach can lead to large
bias due to bias in density estimation. For these reasons, it
could be of interest to consider other dependence measures.
Such a measure is considered in Murata [8] and in Eriksson,
Kankainen and Koivunen [9], which can be traced back to
Rosenblatt, [10] and another one in Jordan [11]. The lat-
ter measure does not seem easy to compute, while the for-
mer is nothing but a weighted sum of squared distances be-
tween the joint characteristic function and the product of
the marginal characteristic functions, and is thus much sim-
pler. This measure had been used by Feuerverger [12] to
construct a test of dependence.

In this paper we study the above dependence measure,
which we call quadratic dependence measure. We also make
some extensions by introducing the use of scale factors (to
make the measure scale invariant) and the use of general
kernel functions. Further, we derive the gradient of our cri-
terion in the general context of nonlinear BSS problem and
we investigate the estimation of this gradient as well as the
criterion itself. The criterion can thus be minimized through
a gradient descent and one can control the step size of the al-
gorithmto ensure that it decreases at each step. Then we fo-
cus on the particular case of the post nonlinear (PNL) mix-
ture model. Some simulation results are given showing the
good performance of the algorithm.



Section 2 defines the quadratic dependence measure and
provides some interpretations. The next section applies this
measure to the nonlinear BSS problem by providing a prac-
tical formula for the computation of an empirical version of
the criterion and of its gradient. The special case of PNL
is developed in greater detail in section 4 and some experi-
mental results are provided in the last section.

2. THE QUADRATIC DEPENDENCE MEASURE

We first recall that a set of &' random variables Y7, . ..
are mutually independent if and only if

aYK
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for any set of K summable functions of a real variable f;,
..., fx. Infact, taking f; as the indicator functions of some
measurable set, the above property is nothing but the usual
definition of independence. That it also holds for arbitrary
summable function is an easy extension. Thus we do not
need to check the above equation for all summable func-
tions, but only for a much smaller class of functions. A
well known example is given by the class of complex ex-
ponential functions. Indeed, taking fr to be of the form
fu(x) = exp(itgx) for some real number ¢, the above
equality means that the joint characteristic function of Y7,
..., Y and the product of their marginal characteristic func-
tions are equal. But it is well known that this property is a
necessary and sufficient condition of mutual independence.
In general there are many possibilities to construct a set of
“test” functions f1, . . ., fx which can characterize indepen-
dence. A general method of construction is given in the fol-
lowing Lemma.

LemmaZ2.1l Let K beasummablekernel functionwith Fourier

transform different from zero almost everywhere. Then the
randomvariablesY, ..., Yk areindependent if and only if
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To prove this result, one simply remarks that the Fourier
transform of a convolution product of functions is a product
of the Fourier transforms of the functions. Therefore the
abc;ye equality is equivalent to

K
H Ui(te)Uyv,, v (1, .. tk) = H Vi (L) Yy, (L)
k=1 k=1
forall ¢1,...,tx, where ¢« denotes the Fourier transform
of £ and vy, v, and ¢y, denote the joint and marginal
characteristic functions of Y7, ..., Yk, respectively. This
yields the desired result.
The above result leads to the definition of a quadratic
measure of dependence, as follows
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Definition 2.1 Let K be a square summable kernel func-
tion with Fourier transform different from zero almost ev-
erywhere. For a set of K randomvariablesY, ..., Yk, we
define the quadratic measure of their (mutual) dependence
as

1
Q(Yl,...,YK) = §/Dy(y1,...,y}()2dy1...dyK.

whereY =[Y; -- Y] and

Dy(y1,. . yx) =
K K
Y, Y,
clfiee 2] fielee )]
k=1 TV k=1 TV

oy, i1sa scale factor, that isa positive functional of the dis-
tributionof Yy, suchthat oy, = |A|oy,, for all real constant

A It is worthwhile to note that in the above definition we
assume that the kernel function is square summable (and not
necessarily summable). We shall see later that this condition
is sufficient for the integral in this definition to be well de-
fined. Note also the presence of the scale factors oy, whose
purpose is to make the measure scale invariant (multiply-
ing the random variables Y}, by arbitrary constants does not
change this measure).

From the above Lemma, the functional () is clearly a
dependence measure which completely characterizes inde-
pendence: Q(Y1,...,Yx) = Oifandonly if Y7,..., Yk
are mutually independent. This measure may be related to
those introduced by Feuerverger [12] or Rosenblatt [10].

A situation of interest is when the kernel X is an approx-
imation to the Dirac function. Thus take K (u) = K(u/h)/h,
where & is a (small) bandwidth parameter and K a den-
sity function. It is clear that E[Hfil K(y; — Yi/oy,)] and
Hf; E[K(y; — Y;/ov,)] converge respectively to the joint
density and the product of the marginal densities of the ran-
dom variables Y, /oy, , ..., Yk /oy, when h tends to zero.
Therefore, for small h, ) appears as the quadratic distance
between an approximate smoothed version of the joint den-
sity function and the product of the marginal density func-
tions, of the random variables Y, /oy,, ..., Yk /oy, . But
as it is shown above, @ is always a dependence measure
whether h is small or not. In density estimation, the choice
of the bandwidth parameter A must realize a compromise
between bias and variance (which is not easy). Here we may
choose h larger since we need not bother very much about
bias, as we do not really need () to be exactly a quadratic
distance between the densities.

One can also express the measure () interms of the char-
acteristic functions. After applying the Parseval formula
(which states that the Fourier transform conserves the norm
in ?) and a change of integration variable :

Q(Yl,...,YK) =

K
1 )
5/1_“% |DS (6) Pty .. . dtg. (1)
k=1



where Y =[Y; ---Yx]¥ and

DS (ty, .. k) = by (te,. .. 1k @)

H Uy, (L)

The measure (1) has been considered by Eriksson et al. [9]
and Feuerverger [12], but only in the particular case where
K is the Gaussian kernel and oy, = 1.

Equation (1) shows that () is well defined as soon as
the function +/ - is square summable, since the characteristic
functions are bounded. That justifies our previous assump-
tion on K when we define Q.

Thus we have at our disposal a whole class of quadratic
measures, depending on the choice of the kernel X and also
on the bandwidth & if we choose the kernel to be a scaled
kernel of the form K'(-/h)/h. Let us stress that the kernel
K does not need to be a density, and i does not need to be
very small. Thus we have a lot of degrees of freedom in
choosing them. Since we do not know how these choices
will affect the performance of the method, we will have to
choose them in an ad hoc manner.

3. BLIND SOURCE SEPARATION VIA THE
QUADRATIC DEPENDENCE MEASURE

We now apply the quadratic dependence measure defined
above to the nonlinear BSS problem. Here the observa-

tions Xy, ..., Xk are related to the independent sources
S1, ..., Sk through the relation,

X =(Xy,...,Xg)T = f(S)
where 8 = (S1,...,5k)T and f is an invertible mapping.

However, without further assumptions on the mapping f, it
would be impossible to reconstruct the sources based on the
sole hypothesis of their independence. Therefore one has to
assume that the mapping f belongs to a restricted subclass
of invertible mappings . For example, F can be the class
of linear invertible maps, in which case we are in presence
of linear mixtures. In the case of nonlinear mixtures, only
the PNL mixtures will be investigated in detail.

Our goal is to find a mapping ¢ in 71, so that the com-
ponents Y, of Y = ¢(X) are as independent as possible,
according to the quadratic measure ). However () is a theo-
retical measure which depends on the unknown distribution
of the data. Therefore, two methods can be investigated :

1. replace @ by an estimate and then proceed to min-
imize the estimated criterion instead, which would
(generally) require to compute its gradient.

proceed with the theoretical criterion, compute its gra-
dient to obtain a system of equations and only then
replace the unknown gradient by some estimator to
get an estimating system of equations.
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We prefer the first approach as it provides us a mean to con-
trol the decrease of the (empirical) criterion at each step of
the algorithm. Thus it results in a more robust algorithm in
terms of convergence properties.

Inthe sequel, the observed data will be denoted by X, (n),
n=1,...,N,k=1,..., K, N being the sample size. The
corresponding samples of Y}, are then Yy, (n), the k-th com-
ponents of Y (n) = g(X(n)).

3.1. Estimation of ()

Let us remark that the dependence measure () involves only
the expectation operator E. Thus a natural estimator of ()
can be obtained by just replacing this operator with the sam-
ple average F, defined as E¢(X) = S2_ ¢(X(n))/N,
where ¢ is any function of the data. Thus, an estimate of @
will be,

~ 1 ~

Q(Yl,...,YK) = 5/{Dy(y1,...,y}()}2dy1...dyK.
where,

ﬁ (yla"'ayK)_

Yk Yk
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O'Yk

P|IIe (- 32) )

and oy, is an empirical version of ¢y, depending only on
the Yy (n).

However, the above expression of @ is not suitable for
computation because it requires multiple integration. For-
tunately, these integrations can be avoided by the use of an
alternative formula. Define a new kernel Ko as Ka(u)
J K(w+ v)K(v)dv. Then, after expanding the square of
Dy, and interchanging the summation and integration :

QY1 ... Yg)=
(- K
§{E7TY HEﬂ'yk Yy) — 2E H }
k: 1 :
where
N K
N 1 yi_Yi(n))
T = — K —
v =y 21l (
N
N 1 yk_Yk(n))
S = =N, ()
) = g2 (

The first remark is that one can get a similar formula as
above for the theoretical measure Q. We do not need it
so we do not write it down. The second remark is that @
depends on K only indirectly through K -, therefore we can
choose K5 directly without ever considering K. But K 5 can-
not be arbitrary. From its definition, X5 must be choosen



such that its Fourier transform is a positive summable even
function, since its Fourier transform corresponds to |1/ x|?
where v is the Fourier transform of a real square summable
function.

Some possible choices for K, are: (K% denoting the
Fourier transform of K »)

1. The Gaussian kernel :
Ko(z) = e, K3(t) = /me /4
2. The square Cauchy kernel:
Ka(z) = 1/(1+2%)% K5(t) = (|t] + 1)e I

3. The negative of the second derivative of the square

Cauchy kernel :

Ka(z) = (2022 — 4)/(1 + 2?)*,

K3(t) = 4273 ([t] + 1)e I,
The first two kernels correspond to density kernels (after
normalizing) and differ only by their tail behavior. But the
last kernel does not and can be negative. One may note that
the kernel K- is related to Mercer kernels which are used
especially in Support Vector Machine [13].

3.2. Gradient of theempirical criterion

To minimize the criterion @ with respect to the separating
transformation g, we need to compute its gradient. Actually,
it is more convenient to work with relative gradient. There-
fore we consider a “small” relative increment of g, namely
Ao gwhere A is a small transformation. This would induce
a small increment A(Y) of Y and A, (Y) of V.

Since @ depends only on the normalized variables Yy /7y, ,
we first compute the variation of Y /&y, and then apply the
result to derive the change in this criterion.

The change of the normalized variable Y} /&y, induced

by a small change A, (Y) in Y}, is KZ(Y(n))/GYk +o(Ay)
where
Ai(y) = Aely) = v BBy, (i) Ax(Y)]
and Slons
Pri (Yi(n)) = N LR (Vi ().

In practice, oy, is often the standard deviation of Y, then

By, (y) = (y—E(Y3))/5y,. Thechange of Q(Y1, ..., Yk ),
corresponding to a small relative increment A o g of g, is

o~

therefore, up to the first order, E[Zf_l @k( Y)A;(Y)] where
Gely) = — 7y, () [T 7w (w) +
I#£k

w5, () [T E(Gvi(V)

12k

I (yA;Y) [1 2w ()

0y, 0y, Ik

o~/
ﬂ-k,Y
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with
~7 1 al Y — Yk(n)
Tey(y) = Noy, ZKz 73}/
k n=1 k
[Tr: (251).
1%k 7Y,

being the k-th component of the gradient of 7+ and

Yk — Yi(n)
O'Yk
being the derivative of 7y, .
Finally, the relative gradient of @) is given by the linear
maps :

7Tyk yk

A, A = — ZZGk n)] Ak (Ye(n))
k 1n=1
where G5 (Y (n)) = Gi[Y (n)]— EDVi G (Y))@y, ) Vi ()]

Note that similar calculations can be applied to obtain
the relative gradient of the theoretical measure ). One gets
the same formula except that gy, and G, are replaced by
their theoretical expression ¢y, = (logoy,)" and

Gely) = ~ayk)_ﬂ-§’k(yk)H7TYz(yl)
I#£k

Fk,Y(yla .

+ 7%, (k) [ [ Elmv, ()]
12k

1 Yo — Y )
- F K v, (V1)
[UYk ? ( Ty, H Yl l ]

12k

where 7y (z) = E[Hf;lcz((z, —Yi)/ov,)], mey isits
partial derivative with respect to the k-th component and
Ty, (2x) = E[K((25 — Yi)/ov,)] and my,is its derivative.
As N — oo, Gy, tends to G, and it is clear that G, van-
ishes when the variables Y71, . . ., Y} are independent. There-
fore the estimating equations, obtained by setting the rela-
tive gradient of () to zero, are satisfied in the limit.
Another remark concerns a property of the relative gra-
dient arising from the invariance with respect to translation
of @ and Q: one has E(G(Y)) = 0 and E(Gr[Y]) = 0.

4. APPLICATION TO PNL MIXTURES

4.1. Theproblem

Let us focus on the PNL mixture, in which case the set F
consists of all mappings f of the form

F1(X ey Avks)
f(Sl, N .

aSK) —

Fic(Chey Axcksi)



where A;;, are the elements of an invertible matrix A and
fi, ..., fx are monotonous functions.

The separating system consists of a mapping ¢ in 7!
of the form

S et Buege (k)

glx1,. .., 2K)

Sht Brckg(xr)

where B;;, are the elements of an invertible matrix B and
g1, - . ., gx are monotonous functions.

In a non parametric approach, only the assumption of
the monotony of the nonlinear mapping g, is made. But
this is generally not enough since some smoothness must be
imposed on these mappings, unless this is done implicitly
through the estimating equations. In a parametric or semi-
parametric approach, the mappings g, are parametrized by
a vector parameter with potentially large dimension in the
latter case, hence they are inherently smoothed. In fact, in
our semi-parametric approach, the mappings g are repre-
sented by piecewise linear continuous functions so that the
vector parameter consists of the slope of these functions in
each “piece”.

In the sequel, we note Z;(n) = g,(Xx(n)) so that
Yii(n) = Y270 BejZ;(n).

4.2. Non parametric approach

The particular form of F and F~! leads us to express the
small relative increment A of g in term of a small relative
change B of B and 4, o gy, of g5, Where ¢ is a “small” matrix
and g, are “small” functions. The expression of A in terms
of ¢ and 4, can be seen to be, up to the first order,

K K
[5ijyj + B;;d; (Z B;klyk)]
k=1

Aily) =)
j=1
where A; denotes the i-th component of (the vector) A and
¢;; are elements of the matrix e.
We take the scale function oy, to be the standard devi-
ation. The expression for the relative gradient can then be
obtained, in this non parametric approach, as follows,

(6,(51,...,(5}() — Z (fkj_fkkikj/ikk)gkj
1<j#h<K
K R K R
=3 e| (S amom s (S mi)
j=1 k=1

where Fk] = E[Gk( ) ] Ek] = E[(Yk — E(Yk))(yj —
E(Y;)) and G5 (y) = Gi(y) — (Tne/Ser) (s — E(Yi))
However, the property of the criterion @ to be invari-
ant with respect to translation shows that it depends only
on the spacings between successive values of the ordered

267

statistics Z;(1 : N) < ... < Z;(N : N) of the sam-
ple Z;(1),...,Z;(N), assuming W|thout loss of general-
ity that ¢; are increasing functions. Consequently, the gra-
dient depends only on the changes in spacings: gj(m) =
3;(Z;(m :N))—=4;(Z;j(im—1:N)),m=2,...,N. This
remark leads to work only with the derivatives of the func-
tions g which yields some constraints on the smoothness.
Explicitly, with some calculations, the relative gradient can
be rewritten as the linear maps

T e

d; — —Z
m=n k=1
4.3. Parametric and semi-par ametric approach

(0j,m) Bk]} 3 i(m)

n=2

These methods consist in parameterizing each g, with a
vector parameter 6. The expression of the relative gradi-
ent is now,

d; — E
where (1) = s, (75(n s N)) = g5, (Z;(n =1 \))
and g; ¢, = g] 6,°9; 9 ,g] 6, being the ordinary gradient of
956, W|th respect tod;.

We have developed two different parameterizations. The
first one consists in approximating the nonlinear transfor-
mations with piecewise linear functions, which yields the
method called semi-parametric. The second one consists
in using an approximation based on the quantile function.
These two methods are not explained here due to lack of
space. We present only an experimental result using them.

N

v 2

n=2

> Y Gy

m=n k=1

(0j,m)) B } 95,9, (n)

5. AN EXPERIMENTAL RESULT

We present on figure 1, the results of a simulation of the
semi-parametric method with:

¢ agrid with 10 bins among the observations.
L4 Kz(l‘) =
part 3.1).
1 1
*A = (_1 1), fi(z) = tanh(4z) + 0.1z and
Jo(z) =2+ 012

(4 — 202%)/(1 + x*)* (given at the end of

Here we present only the result of one simulation. We have
also performed others simulations which have indicated that
the performances of the algorithms depend on the linear
mixture and that the choice of the kernel is very important.
In particular, kernels with heavy tails seem to yield better
results. Here, we present an example using a kernel, writ-
ten above, with heavy tails which is not a density. In future
works, we will attempt to relate some properties of these
different kernels to the performance of the algorithms. The



coefficients ;1 and A which control the gradient descent in
our experiment are fixed empirically : ¢ = 0.2and A = 1.
On figure 1, the top graph represents the distribution of the
observations, and the middle one the distribution of the re-
constructed sources. Finally, the bottom graph represents
the compensation of the nonlinear functions g o f.

Observations

L L L L L L L L
-15 -1 -05 0 05 1 15 2

Distribution of Y at convergence.

- L
-25 -2

= -2 0 2 4 -4 -2 o 2 4

Composition of non linear funtions at convergence.

Fig. 1. Simulation

6. CONCLUSION

In this paper, a quadratic measure is used for blind source
separation. Its estimation based on the sample average and
a computation trick leads to compute its gradient without
requiring numerical integration. Then, its minimization is
achieved througha gradient descent method. The algorithms
has been implemented for PNL mixtures and tested in dif-
ferent situations. But we only present in this paper a sim-
ple simulation. Further perspectives of this work consist of
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choosing the shape of the kernels so as to improve the per-
formances of the algorithms.
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