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ABSTRACT

Irregular changes of electric currents called Seismic Electric Sig-
nals (SESs) are often observed in Telluric Current Data (TCD).
Recently, detection of SESs in TCD has attracted notice for short-
term earthquake prediction. Since most of the TCD collected in
Japan is affected by train noise, detecting SESs in TCD itself is
an extremely arduous job. The goal of our research is automatic
separation of train noise and SESs, which are considered to be in-
dependent signals, using Independent Component Analysis (ICA).
In this paper, we propose an effective ICA evaluation function for
train noise considering statistic analysis. We apply the evaluation
function to TCD and analyze the results.

1. INTRODUCTION

Especially since the great Hanshin earthquake in 1994, short-term
earthquake prediction has been investigated as an emergent and
important research topic in Japan. Long-term (several to dozens of
years) prediction based on past earthquakes is a standard method
for earthquake prediction in conventional seismology. However,
it is obviously difficult to apply the same statistical method to
short-term earthquake prediction which is to predict whether earth-
quakes occur within several weeks or months [1]. Therefore, we
have to apply different methods from conventional ones to short-
term earthquake prediction. Earthquake Prediction Research Cen-
ter of Tokai university has studied short-term earthquake predic-
tion using various electromagnetic methods [2]. We have noticed
Telluric Current Data (TCD) observation method in these meth-
ods. TCD is the measurement of the weak electric current flowing
within the surface layers of the Earth. Irregular changes of electric
currents observed in the TCD are often detected before the occur-
rence of strong earthquakes. We call such irregular changes of
electric currents Seismic Electric Signals (SESs). Detecting SESs
in TCD can make short-term earthquake prediction possible. Ac-
tually, Several earthquakes were successfully predicted using TCD
in Greece [3].

However, the effect of train noise in TCD is the most serious
problem for short-term earthquake prediction in Japan. SESs are
hidden by train noise because the amplitude of train noise is larger
than the amplitude of the SESs. So it is difficult for even experts
on TCD observation method to detect SESs hidden by train noise
for short-term earthquake prediction.

Considering this background, we began research on automatic
short-term earthquake prediction applying engineering methods to
TCD instead of manual detection of SESs by the experts. In this
research, we apply Independent Component Analysis (ICA) which

separates each independent source signal from a mixture of inde-
pendent source signals. We believe that train noise and SESs are
independent source signals because the current generating mecha-
nism is different. We assume TCD is composed of train noise and
SESs. So we believe that train noise and SESs can be separated by
applying ICA to TCD.

In [4], we confirmed that ICA could separate train noise and an
SES from an artificial mixture generated by train noise and an SES
of Matsushiro, Nagano by our experiments. Although we should
have taken a proper ICA evaluation function considering the data
feature, we have done it for TCD by our hunch in the experiments.
We applied ICA taken by our hunch to the data containing train
noise with an SES and containing only train noise. As the result,
we could confirm that the SES can be separated, but the wave pat-
terns of train noise separated from each of the data are different.
We assume that the reason why the ICA could not separate same
train noise from each of the data is that we did not take a proper
ICA evaluation function for TCD.

In this paper, we apply a more proper ICA taken by consid-
ering statistical analysis of train noise to TCD and evaluate the
results.

2. TELLURIC CURRENT DATA (TCD)
2.1. The observation method

TCD measures the electric potential difference between dipoles at
two points. The electrodes are Pb − PbCl2 pipe non-polarizing
dipoles (40cm in length and 3cm in outer diameter) and are buried
at a depth of two meters.

42 observation points have been installed mainly in the Tokai
and Hokuriku area since 1997. Each observation point has either
8 or 16 dipoles in different directions. We label each dipoles dp.1,
dp.2, ..., dp.16.

TCD is sampled at 10 second intervals and telemetered once
a day to Earthquake Prediction Research Center. So TCD is ex-
pressed by timevarying voltage data for each dipole. For example,
Fig.1 shows an example of the TCD from dp.2 observed at Mat-
sushiro, Nagano on 20th of August, 1999. The vertical axis of the
graph represents potential (mV/m) and the horizontal axis repre-
sents time (hour).

2.2. Train Noise

Train noise is generated regularly and the shape of the noise is
always similar. So we can find train noise from TCD using the
timetable of Matsushiro station, which is near the TCD observation
point.



-0.2
-0.1

0
0.1
0.2
0.3
0.4

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Po
te

nt
ial

 (m
V/

m
)

Time (hour)

Fig. 1. Telluric current data (20th of August, 1999, dp.2 of Matsushiro, Nagano).

We can specify the train noise in TCD of Matsushiro shown
in Fig.1 and the timetable. Fig.2 is enlarged in Fig.1 between 6:00
and 7:00. We can find a distinctive wave pattern in Fig.2. The
wave pattern represents the train noise of the first 6:31 train. The
length of a typical train noise is about 50 minutes.
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Fig. 2. A typical train noise.

2.3. Seismic Electric Signals (SESs)

It is known from laboratory experiments that electric current is
generated before rocks fracture under load [5] [6]. Earthquakes
are also a kind of rock fracture phenomenon, so it is known that
electric currents flow within the Earth before great earthquakes.
We call such irregular changes of electric currents Seismic Electric
Signals (SESs). Fig.3 shows an SES as observed at dp.2 between
1:20 and 2:10. In this datum, experts on the TCD observation
method could find the SES because it was observed at midnight,
when no trains were running.

It is known empirically that the features of SESs are 1) the
wave pattern has a positive amplitude, 2) the function consists of
a rapid increase followed by a gradual decrease, 3) the duration of
an SES is from about 10 sec to a few minutes or rarely up to a few
hours.
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Fig. 3. A seismic electric signal.

2.4. Problems of the TCD observation method in Japan

In Japan, the most serious problem for short-term earthquake pre-
diction using TCD is the presence of train noise in TCD. If an SES

is contained in TCD, the SES is often hidden by train noise. For
example, Fig.4 shows train noise observed at dp.2 between 6:6:40
to 7:5:00 on 17th of January 1999 added to the SES of Fig.3 artifi-
cially. The vertical axis of the frame shows potential (mV/m) and
horizontal axis shows frame length (×10 sec). The frame length
represents the number of points whose sampling rate is 10 sec.
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Fig. 4. A train noise with an SES.

The reason why we generate the data artificially is that it is
quite difficult to classify the data which contains both train noise
and SESs in real TCD. We cannot distinguish the SES also in Fig.4
manually.

We have attempted to apply ICA to TCD to separate train noise
and SESs automatically because we assume that they are indepen-
dent source signals. In this paper, we do not take ICA evaluation
function to apply TCD by our hunch, but consider statistical anal-
ysis of train noise. Then we validate whether the ICA can separate
train noise correctly.

3. DETERMINATION OF ICA EVALUATION FUNCTION

3.1. Statistical analysis of train noise

We analyze data statistically to find an efficient ICA evaluation
function. In this paper, we draw histograms and normal distribu-
tion graphs of train noise because the purpose of this research is
to separate train noise from TCD correctly. We use the TCD ob-
served on January, April, August and October 1999 at Matsushiro,
Nagano for statistic analysis of train noise. We collect series of
200 samples so that the middle point is the train departure time at
Matsushiro station using the timetable and obtain ensemble mean
of them. Fig.5 shows a histogram of the distribution of train noise
at dp.2 on August. The dashed line shows the normal distribution
by the mean and the variance of the train noise. The data maxi-
mum, minimum, mean and variance are MAX = 6.25 × 10−1

(mV/m), MIN = −2.73 × 10−1 (mV/m), µ = −1.56 × 10−2

(mV/m) and σ2 = 6.28×10−3 (mV/m), respectively. The number
of classes is 50, and class interval is 1.79 × 10−2 (mV/m).

Fig.5 shows left bias characteristics of the train noise. The
shapes of histograms and normal distribution graphs of the other



train noise data are almost similar to the data at dp.2 on August.
Therefore, it can be assumed that train noise at Matsushiro is asym-
metric data.
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Fig. 5. Histogram and normal distribution of train noise (August,
1999, dp.2 of Matsushiro).

3.2. Effective evaluation function to separate train noise

In section 3.1, we confirmed that train noise at Matsushiro is asym-
metric data. Actually, each wave pattern of train noise separated
from the data without and with an SES is different using JADE
[7], which is a proper ICA algorithm for symmetric data as speech
signal. Therefore we can assume that a more efficient evaluation
function for asymmetric data, which is expressed by odd-order cu-
mulant, can separate train noise from TCD correctly.

In this paper, we apply ICA with third-order cumulants as fol-
lows [8].

Vectorial input signals �(t) = [x1(t), x2(t), · · · , xn(t)]T to
be observed are often a mixture of independent source signals
si(t). In this case, it is assumed that si(t) are train noise or SESs
coming from different sources. The mixing is linear, and it yields
the relation

�(t) = A�(t) (1)

with mixing matrix A and source signal �(t) = [s1(t), s2(t),
· · · , sn(t)]T. �(t) is assumed to be sets of zero mean signals.

The input components are usually dependent, due to the mix-
ing process, while the sources are not. If one succeeds in finding
a matrix R that yields independent output components �(t) =
[u1(t), u2(t), · · · , un(t)]T, given by

�(t) = R�(t), (2)

one can recover the original sources s i(t) up to a permutation and
constant scaling of the sources. R is called the unmixing matrix
and finding the matrix is referred to as independent component
analysis (ICA).

We adopt third-order cumulants as our ICA evaluation func-
tion. Third-order cumulants are defined by Cijk(�) := 〈uiujuk〉
with 〈·〉 indicating the mean over all data points. The off-diagonal
elements of Cijk(�) characterize the statistical dependencies be-
tween components. Thus, obtaining R that diagonalizes the C ijk(�)
is equivalent to making the output data�(t) independent. The sec-
ond order cumulant can be diagonalized easily by whitening the
input data �(t) with an appropriate matrix, and it yields the rela-
tion

�(t) = W�(t). (3)

Thus, Eq(2) can be transformed as the following relation.

�(t) = Q�(t) = QW�(t) (4)

Since the goal is to diagonalize the cumulant tensors, we need to
find a matrix Q that minimizes the square sum over off-diagonal
elements. Because the square sum over all elements of a cumulant
tensor is preserved under any orthogonal transformation, we can
obtain some orthogonal transformation matrices Q. We adopt a
Givens rotation matrix as Q and obtain the Q that maximizes the
square sum over the diagonal elements of C ijk(�) indicating as
the following relation.

Ψ3(�) =
1

3!

�
α

�
Cααα(�)

�2

(5)

We represent ICA with third-order cumulants as 3cumICA in
the following sections.

4. APPLICATION OF OUR ICA TO TCD

4.1. Data with train noise

At the Matsushiro observation point, typical train noise can be ob-
served clearly. So we apply 3cumICA to TCD observed at Mat-
sushiro to examine whether 3cumICA can separate the typical train
noise.

The length of the input data and the number of input dimen-
sions are set to 100 minutes and three, respectively. In this section,
We apply 3cumICA to TCD observed at 20:00 to 21:40 on 20th
August 1999 of dp.2, dp.6, dp.7, where the data is described as
�(t) = [x2(t), x6(t), x7(t)]

T. Fig.6 shows the input data x2(t).
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Fig. 6. Input data of 3cumICA x2(t).

Applying 3cumICA to �(t), we obtained the output compo-
nents �(t) = [u1(t), u2(t), u3(t)]

T shown in Fig.7. Since the
vertical axis of�(t) cannot be determined, it is hard to evaluate the
output components without rescaling. So each u i(t)(i = 1, 2, 3)
is transformed back to the original signal space, and then we eval-
uate how each component affects �(t). To transform u 1(t) to the
original signal space, the value of u1(t) is kept and the value of
the other signals is set to 0. The data is described as � ∗

1(t) =
[u1(t), 0, 0]T. �

∗
1(t) = [x∗

21(t), x
∗
61(t), x

∗
71(t)]

T contains only
the component u1(t), given by

�
∗
1(t) = W−1Q−1

�
∗
1(t)

with Eq(3), (4). Fig.8 shows x∗
21(t), x

∗
22(t), and x∗

23(t) obtained
by transforming u2(t) and u3(t) back to the original space simi-
larly.

As a result, it presumed that the component x∗
23(t) corresponds

to train noise because the amplitude of x∗
23(t) is large and the other

component appear to contain no train noise. Therefore it turned
out that typical train noise can be separated from the TCD using
3cumICA.
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Fig. 7. Independent components �(t).
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Fig. 8. Independent components in the original signal space of x 2(t).

4.2. Data affected by the same train noise

We confirmed that 3cumICA can separate typical train noise in
section 4.1. However, it is difficult to evaluate how correctly train
noise can be separated. In this section, we apply 3cumICA to TCD
observed at two different observation points, Sasadani and Ikeda in
Fukui Prefecture, which contain the same train noise. We examine
whether the same train noise can be separated from each obser-
vation point, namely train noise can be separate correctly using
3cumICA.

The map of Fig.9 shows the location of Sasadani and Ikeda
observation points. Sasadani and Ikeda are located in about 10km
of west and 18km of east from Asouzu station of Fukui railway
Fukutake line, respectively.

Fig. 9. The map showing the location of Sasadai and Ikeda.

In this section, we apply 3cumICA to TCD observed at 20:50
to 22:30 on 18th January 2000 of dp.1, dp.5, dp.7 at Sasadani and
dp.1, dp.2-6, dp.4 at Ikeda. The data of Sasadani and Ikeda are
described as �(t) = [x1(t), x5(t),
x7(t)]

T, �(t) = [x1(t), x2−6(t), x4(t)]
T, respectively.

x2−6(t) of Ikeda are generated by subtracting the data value of
dp.6 from the data value of dp.2. Fig.10 and Fig.11 show the input
data x1(t) of Sasadani and x4(t) of Ikeda, respectively.

Each component of �(t) of Sasadani and Ikeda is transformed
back to the original signal space in the same way explained in sec-
tion 4.1. Fig.12 and Fig.13 show x∗

13(t) and x∗
42(t) which are one

of the component in the original signal space of x 1(t) of Sasadani
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Fig. 10. Input data of 3cumICA x1(t) of Sasadani.
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Fig. 11. Input data of 3cumICA x4(t) of Ikeda.

and x4(t) of Ikeda, respectively. It is assumed that both of the
component x∗

13(t) and x∗
42(t) are train noise. Moreover, since the

wave pattern of x∗
13(t) and x∗

42(t) is extremely similar, it is pre-
sumed that the components are the same train noise affecting TCD
at both of Sasadani and Ikeda. Therefore, it is confirmed that train
noise can be separated correctly using 3cumICA.
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Fig. 12. x∗
13 of Sasadani.

4.3. Data containing both train noise and an SES

We have confirmed that train noise and an SES can be separated
from the data containing both same train noise and an SES using
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Fig. 14. Independent components in the original signal space of x 2(t) (before adding an SES).
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Fig. 15. Independent components in the original signal space of x 2(t) (after adding an SES).
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Fig. 13. x∗
42 of Ikeda.

ICA by our experiments [4]. However, applying ICA to the data
containing the same train noise without SESs, separated train noise
(Fig.16) is different from one separated from the data with both
train noise and an SES (Fig.17) [4]. We assume that the reason
why the ICA could not separate same train noise from each of the
data is that we did not take an effective ICA evaluation function
for TCD.
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Fig. 16. Train noise separated from data without SESs.
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Fig. 17. Train noise separated from data with an SES.

We confirmed that 3cumICA can separate train noise correctly
by our experiments in section 4.1 and 4.2. In this section, we ex-
amine whether the same train noise can be separated from the data
containing train noise with and without SES using 3cumICA. In

addition, we evaluate the FFT frequency domain data of the inde-
pendent components separated from the two sets of data.

4.3.1. Experiment of separating train noise and an SES

We apply 3cumICA to the data containing both train noise and
an SES. However, it is difficult to find the data in real TCD as
explained in section 2.4. We generated artificial data in the same
manner proposed in section 2.4. We use the data without SESs
which is observed at the same time as the data shown in section
2.4 (Fig.18).
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Fig. 18. Data before adding an SES of dp.2.

Both of the data before adding an SES and after adding an
SES are described as �(t) = [x 2(t), x6(t), x7(t)]

T. The length
of the data is set to 3,500 sec. Each component of �(t) of the
two data sets is transformed back to the original signal space in
the same way explained in section 4.1. Fig.14 and Fig.15 show the
independent components in the original signal space of x 2(t) of
the data with an SES and without SESs, respectively.

Comparing x∗
21(t) of Fig.14 and Fig.15, it is supposed that

x∗
21(t) of Fig.15 corresponds to the SES. However, it is difficult

to confirm the SES because the amplitude of the SES is extremely
small. So we evaluate the FFT frequency domain data of x ∗

21(t)
in the next section. It is presumed that each x∗

23(t) of Fig.14
and Fig.15 corresponds to train noise. Moreover, comparing with
x∗

23(t) shown in Fig.16 and Fig.17, the wave pattern of each train
noise is extremely similar. Therefore, it is confirmed that 3cumICA
can separate train noise much more correctly than the ICA we have
used in [4].
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Fig. 19. FFT frequency domain data of independent components of x 2(t) (before adding an SES).
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Fig. 20. FFT frequency domain data of independent components of x 2(t) (after adding an SES).

4.3.2. Evaluation of FFT frequency domain data
Since the amplitude of SESs is extremely small as explained in sec-
tion 4.3.1, it is difficult to find an SES despite of the independent
components. So x∗

23(t) of Fig.14 and Fig.15 are transformed into
the FFT frequency domain data, and the frequency domain data
corresponding the SES is compared with the data without the SES.
To examine the similarity between each train noise separated from
the data with and without the SES, we compare the FFT frequency
domain data corresponding train noise of Fig.14 and Fig.15.

The FFT frequency domain data of x ∗
21(t), x

∗
22(t),

x∗
23(t) of Fig.14 and Fig.15 is f1(t), f2(t), f3(t) of Fig.19 and

Fig.20, respectively. The power of the lowest frequency 1
3,500

≈
2.85 × 10−4 Hz in f1(t) is twice as large as one of Fig.19. More-
over, the power of the lowest frequency in another f 1(t) separated
from the data containing another train noise and the SES is also
1.5 times as large. For the comparison with the experimental re-
sults, we examine the power of the lowest frequency in the FFT
frequency domain data transformed from the SES of Fig.3 and the
data without train noise nor SESs. As a result, the power of the
lowest frequency in the FFT frequency domain data transformed
from an SES is twice as large as one transformed from the data
without train noise nor SESs as well as the experimental results.
It is supposed that the SES affects the lowest frequency power.
Hence, it is presumed that x∗

21(t) corresponds to the SES.
Each frequency domain component f 3(t) of Fig.20 and Fig.19

which is presumed to be train noise is almost correspondent. It is
confirmed that each x∗

23(t) of Fig.14 and Fig.15 corresponds to the
same train noise.

Therefore, we confirmed that train noise can be separated cor-
rectly from the data containing both train noise and an SES, fur-
thermore the SES can be separated using 3cumICA.

5. CONCLUSIONS
In this paper, we applied ICA with third-order cumulants (3cumICA)
to TCD considering statistical analysis of train noise. As the re-
sult, it turned out that 3cumICA can separate both typical train
noise at Matsushiro and train noise which affects TCD observed
at two different observation points, Sasadani and Ikeda. Therefore
3cumICA can separate train noise correctly.

Applying 3cumICA to the data containing both train noise and

an SES, train noise can be separated correctly without the effect of
the SES. The power of the lowest frequency in one of the inde-
pendent components separated from the data containing both train
noise and an SES is twice as large as one separated from the data
containing only train noise. Hence it is assumed that 3cumICA can
separate not only train noise but also SESs.

We intend to apply 3cumICA to more TCD sets at the same
observation points as we used in this paper and different obser-
vation points, and examine whether train noise can be separated
correctly in the future. We have not confirmed that the SESs sep-
arated by 3cumICA are really independent source signal because
of our determination of 3cumICA considering statistic analysis of
train noise. So we intend to analyze the data without train noise,
and investigate methods for separating SESs correctly. We will
try to detect SESs which have not been recognized yet in previous
TCD.
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