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ABSTRACT
We study a relative optimization framework for the quasi-
maximum likelihood blind source separation and relative
Newton method as its particular instance. Convergence of
the Newton method is stabilized by the line search and by
the modification of the Hessian, which forces its positive
definiteness. The structure of the Hessian allows fast ap-
proximate inversion. We demonstrate the efficiency of the
presented approach on example of sparse sources. The non-
linearity in this case is based on smooth approximation of
the absolute value function. Sequential optimization with
the gradual reduction of the smoothing parameter leads to
the super-efficient separation.

1. INTRODUCTION

Several Newton-like methods for blind source separation
have been studied in the literature. They are based on ne-
gentropy approximation with orthogonality constraint [1],
cumulant model [2, 3] and joint diagonalization of corre-
lation matrices [4, 5, 6]. In this work we study a New-
ton method for quasi-maximum likelihood source separa-
tion [7, 8] in batch mode, without orthogonality constraint.
This criterion provides improved separation quality [9, 10],
and is particularly useful in separation of sparse sources.

Consider the blind source separation problem, where an
� -channel sensor signal ���� arises from� unknown scalar
source signals �����, � � �� ��� � , linearly mixed together by
an unknown� �� matrix �

���� � ����� (1)

We wish to estimate the mixing matrix � and the � -
dimensional source signal ����. In the discrete time case
� � �� �� � � � � � we use matrix notation 	 � �
, where 	
and 
 are � � � matrices with the signals ����� and �����
in the corresponding rows. We also denote the unmixing
matrix � � ���.

When the sources are i.i.d, stationary and white, the nor-
malized minus-log-likelihood of the observed data 	 is

��� �	� � � ��� � 	
�� �� �

�

�
���


�
������

�
� (2)
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where �� is i-th row of � , ��� � � ��� ����, and ���� is
the probability density function (pdf) of the sources. Con-
sistent estimator can be obtained by minimization of (2),
also when ��� is not exactly equal to � ��� ����. Such
quasi-ML estimation is practical when the source pdf is un-
known, or is not well-suited for optimization. For exam-
ple, when the sources are sparse or sparsely representable,
the absolute value function or its smooth approximation is
a good choice for ��� [11, 12, 13, 14, 15, 16]. Here we
will use a family of convex smooth approximations to the
absolute value

���� � ��� � ����� � ���� (3)

���� � ������� (4)

with � a proximity parameter: ���� � ��� as � � �.
Widely accepted natural gradient method does not work
well when the approximation of the absolute value becomes
too sharp. In this work we suggest the relative Newton
method, which overcomes this obstacle, and provides fast
and very accurate separation of sparse sources.

2. RELATIVE OPTIMIZATION (RO) ALGORITHM

We consider the following algorithm for minimization of
the quasi-ML function (2)

1. Start with an initial estimate�� of the separation ma-
trix;

2. For � � �� �� ���, until convergence

3. Compute current source estimate �� ���	 ;

4. Starting with � � � (identity matrix), compute ����
producing one or few steps of a conventional op-
timization method, which sufficiently decreases the
function ��� ����;

5. Update the estimated separation matrix ���� �
������ ;

6. End

The relative (natural) gradient method [17, 18, 19] is a par-
ticular instance of this approach, when a standard gradi-
ent descent step is used in p.4. The following remarkable



property of the relative gradient is also preserved in gen-
eral case: given current source estimate � , the progress of
the method does not depend on the original mixing matrix.
This means that even nearly ill-conditioned mixing matrix
influences the convergence of the method not more than a
starting point Convergence analysis of the RO-algorithm is
presented in [20]. In the following we will use a Newton
step in p.4 of the method.

3. HESSIAN EVALUATION

The likelihood ��� �	� is a function of a matrix argument
� . The corresponding gradient is also a matrix

��� � � ���� �	� � ���� �
�

�
���	�	� � (5)

where ���	� is a matrix with the elements �
�
��	���

�
.

The Hessian of ��� �	� is a linear mapping� defined via
the differential of the gradient

�� � ��� (6)

We can also express the Hessian in standard matrix form
converting � into a long vector � � �
��� � using row
stacking. We will denote the reverse conversion � �
������. Let

�����	� � ��������� 	� (7)

so that the gradient

���� � ������	� � �
����� �� (8)

Then
�� � ��� (9)

where � is �� ��� Hessian matrix. We also have

�� � �
����� (10)

3.1. Hessian of � ��� 	
��

Using the expression

������ � ������� �����

which follows from the equality

 � ������� � ��� ���� ���������

we obtain the differential of the first term in (5)

�� � ����� � � ��� ��� � ��� � (11)

where � ����. Particular element of the differential

���� � ������
� ��� � �����
�������

� �� (12)

where �� and �� are �-th row and �-th column of � respec-
tively. Comparing this with (9) and (10), we conclude that
the k-th row of � , where � � �� � ��� � �, contains the
matrix ���� stacked column-wise

�� � �
�� ������
� (13)

3.2. Hessian of �

�

�
��� 

�
������

�
It is easy to see that the Hessian of the second term in
�����	� is a block-diagonal matrix with the following
� �� blocks

�� �
�

�

�
�

���������������
� ���� � � �� ��� � (14)

4. NEWTON METHOD

Newton method is an efficient tool of unconstrained opti-
mization. It often converges fast and provides quadratic
rate of convergence. However, its iteration may be costly,
because of the necessity to compute the Hessian matrix and
solve the corresponding system of equations. In the next
section we will see that this difficulty can be overcome us-
ing the relative Newton method.

First, let us consider a standard Newton approach, in
which the direction is given by solution of the linear equa-
tion

�� � �������	� (15)

where � � �� �����	� is the Hessian of (7). In order to
guarantee descent direction in the case of nonconvex ob-
jective function, we use modified Cholessky factorization1

[21], which automatically finds such a diagonal matrix �,
that the matrix � � � is positive definite, and provides a
solution to the modified system

�� ���� � �������	� (16)

After the direction � is found, the new iterate �� is given
by

�� � � �  � (17)

where the step size  is determined by exact line search

 � ������
�

���� �  ��	� (18)

or by backtracking line search [21].

Backtracking line search

 �� �
While ���� �  ��	� ! �����	� � " ������	�� �

 �� # 
end

The use of the line search guarantees monotonic de-
crease of the objective function at every iteration. In our
computations, we use backtracking line search with the
constants " � # � ��.

1We use the MATLAB code of modified Cholessky factorization by
Brian Borchers, available at http://www.nmt.edu/˜borchers/ldlt.html



Computational complexity. The Hessian is a � � � ��

matrix; its computation requires � � operations in (13) and
��� operations in (14). Solution of the Newton sys-
tem (16) using modified Cholessky decomposition, requires
���� operations for decomposition and � � operations for
back/forward substitution. Totally, we need

��� ���� �����

operations for one Newton step. Comparing this to the cost
of the gradient evaluation (5), which is equal to � �� , we
conclude that Newton step costs about � gradient steps
when the number of sources is small (say, up to 20). Other-
wise, the third term become dominating, and the complexity
grows as � �.

5. RELATIVE NEWTON METHOD

In order to make the Newton algorithm invariant to the
value of mixing matrix, we use the relative Newton method,
which is a particular instance of the RO-algorithm. This ap-
proach simplifies the Hessian computation and the solution
of the Newton system.

5.1. Basic relative Newton step

The optimization in p.4 of the RO-algorithm is produced by
a single Newton-like iteration with exact or backtracking
line search. The Hessian of ��� ��� has a special structure,
which permits fast solution of the Newton system. First, the
Hessian of� ��� 	
�� given by (13), becomes very simple
and sparse, when� � � � � : each row of �

�� � �
�� �$�$
�
� �� (19)

contains only one non-zero element, which is equal to 1.
Here $� is an N-element standard basis vector, contain-
ing 1 at �-th position. Remaining part of the Hessian is
block-diagonal. There are various techniques for solving
sparse symmetric systems. For example, one can use sparse
modified Cholessky factorization for direct solution, or al-
ternatively, conjugate gradient-type methods, possibly pre-
conditioned by incomplete Cholessky factor, for iterative
solution. In both cases, Cholessky factor is often not as
sparse as the original matrix, but it becomes sparser, when
appropriate matrix permutation is applied before factoriza-
tion (see for example MATLAB functions CHOLINC and
SYMAMD.)

5.2. Fast relative Newton step

Further simplification of the Hessian is obtained by consid-
ering its structure at the solution point �� � 
. The ele-
ments of�-th block of the second term of����� �
� given

by (14), are equal to

��
�� �

�

�

�
�

�������������������� �� � � �� ��� ��

When the sources are independent and zero mean, we have
the following zero expectation

%��������������������	 � � �� � 
� ��

hence the off-diagonal elements ��
�� converge to zero as

sample size grows. Therefore we use a diagonal approxi-
mation of this part of the Hessian

��
�� �

�

�

�
�

���&�����&�� ���� � � �� ��� � � � � �� ��� ��

(20)
where &���� are current estimates of the sources. In order
to solve the simplified Newton system, let us return to the
matrix-space form (6) of the Hessian operator. Let us pack
the diagonal of the Hessian given by (20) into��� matrix
', row-by-row. Taking into account that � � � in (11), we
will obtain the following expression for the differential of
the gradient

�� � ��� � �� � �' � ��� (21)

where “�” denotes element-wise multiplication of matrices.
For an arbitrary matrix (

�( � ( � �' � (� (22)

In order to solve the Newton system

( � �' � ( � � (23)

we need to solve ��� � ���� systems of size � � � with
respect to (�� and (��

'��(�� � (�� � ��� � � � �� ��� � � � �� ��� �� �

'��(�� � (�� � ��� (24)

The diagonal elements (�� can be found directly from the
set of single equations

'��(�� � (�� � ��� (25)

In order to guarantee descent direction and avoid saddle
points, we modify the Newton system (24), changing the
sign of the negative eigenvalues [21]. Namely, we compute
analytically the eigenvectors and the eigenvalues of � � �
matrices �

'�� �
� '��

�
�

invert the sign of the negative eigenvalues, and force small
eigenvalues to be above some threshold (say, ��� of the



maximal one in the pair). Than we solve the modified sys-
tem, using the eigenvectors already obtained and the modi-
fied eigenvalues2.

Computational complexity. Computing the diagonal of the
Hessian by (20) requires� �� operations, which is equal to
the cost of the gradient computation. Solution cost of the
set of 2x2 linear equations (24) is about ��� � operations,
which is negligible compared to the gradient cost.

6. SEQUENTIAL OPTIMIZATION

When the sources are sparse, the quality of separation
greatly improves with reduction of smoothing parameter �
in the absolute value approximation (4). On the other hand,
the optimization of the likelihood function becomes more
difficult for small �. Therefore, we use sequential optimiza-
tion with gradual reduction of �. Denote

��� �	��� � � ��� � 	
�� �� �

�

�
���

�
�
������

�
� (26)

where ���� is given by (3–4).

Sequential optimization algorithm

1. Start with �� and ��

2. For � � �� �� ���)

3. Compute current source estimate �� ���	 ;

4. Starting with � � �
find ���� � ������	 ���� ��� ���

5. Update the estimated separation matrix
���� � ������;

6. Update the smoothing parameter ���� � *��

7. End

In our computations we choose the parameters �� � � and
* � ��. Note that p.4 includes the whole loop of uncon-
strained optimization, which can be performed, for exam-
ple, by the relative Newton method.

2After completing this work we have been aware that the Newton equa-
tions similar to (24) were obtained by Pham and Garat [7] using slightly
different considerations. This algorithm was not used in practice because
of possibility of convergence to spurious solutions. In our work we over-
come this difficulty by introducing the line search and by forcing positive
definiteness of the Hessian.
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Fig. 1. Separation of artificial sparse data with 5 mixtures
by 10k samples. Relative Newton with exact Hessian –
dashed line, fast relative Newton – continuous line, natural
gradient in batch mode – squares.

7. COMPUTATIONAL EXPERIMENTS

Two data sets were used. First group of sources was artifi-
cial sparse data with Bernoulli-Gaussian distribution

���� � +Æ��� � ��� +�
��
�,-�


��������-���

generated by the MATLAB function SPRANDN. We used
the parameters + � �� and - � �. The second group of
sources were four natural images from [22]. The mixing
matrix was generated randomly with uniform i.i.d. entries.

In all experiments we used backtracking line search with
the constants " � # � ��. Figure 1 shows typical progress
of different methods applied to the artificial data with 5 mix-
tures of 10k samples. The fast relative Newton method con-
verges in about the same number of iterations as the relative
Newton with exact Hessian, but significantly outperforms
it in time. Natural gradient in batch mode requires much
more iterations, and has a difficulty to converge when the
smoothing parameter � in (4) becomes too small.

In the second experiment, we demonstrate the advantage
of the batch-mode quasi-ML separation, when dealing with
sparse sources. We compared the the fast relative Newton
method with stochastic natural gradient [17, 18, 19], Fast
ICA [1] and JADE [23]. All three codes were obtained
from public web sites [24, 25, 26]. Stochastic natural gra-
dient and Fast ICA used ���� nonlinearity. Figure 2 shows
separation of artificial stochastic sparse data: 5 sources of
500 samples, 30 simulation trials. The quality of separation
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Fig. 2. Separation of stochastic sparse data.
Top – interference-to-signal ratio, bottom – CPU time.

is measured by interference-to-signal ratio (ISR) in ampli-
tude units. As we see, fast relative Newton significantly
outperforms other methods, providing practically ideal sep-
aration with the smoothing parameter � � ���. Timing is
of about the same order for all the methods, except of JADE,
which is known to be much faster with relatively small ma-
trices.

In the third experiment, we separated four natural im-
ages [22], presented in Figure 3. Sparseness of images
can be achieved via various wavelet-type transforms [14,
15, 16], but even simple differentiation can be used for
this purpose, since natural images often have sparse edges.
Here we used the stack of horizontal and vertical deriva-
tives of the mixture images as an input to separation al-
gorithms. Figure 4 shows the separation quality achieved
by stochastic natural gradient, Fast ICA, JADE and the
fast relative Newton method. Like in the previous experi-
ment, our method provides practically ideal separation with
� � ���, achieving ISR of about ���. It outperforms the
other methods by several orders of magnitude.

8. CONCLUSIONS

We have studied a relative optimization framework for
quasi-ML blind source separation, and the relative New-

Fig. 3. Separation of images with preprocessing by differ-
entiation. Top – sources, middle – mixtures, bottom – sepa-
rated by the fast relative Newton method
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Fig. 4. Interference-to-signal ratio (ISR) of image sepa-
ration: 1 – stochastic natural gradient; 2 – Fast ICA; 3 –
JADE; 4-5 – the fast relative Newton with � equal to ���

and ���, respectively. Bar 5 is not visible because of very
small ISR, of order ���.

ton method as its particular instance. Efficient approxi-
mate solution of the corresponding Newton system provides
gradient-type computational cost of the Newton iteration.

Experiments with sparsely representable artificial data
and natural images show that quasi-ML separation is practi-
cally perfect when the nonlinearity approaches the absolute
value function. The corresponding optimization problem is
solved efficiently by the relative Newton method using se-
quential optimization with gradual reduction of smoothing
parameter.

Currently we are conducting more experiments with
non-sparse source distributions and various kinds of non-
linearities. Preliminary results confirm fast convergence of
the relative Newton method.
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