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ABSTRACT 

 
The analysis of kinetic data monitored using 
spectroscopic techniques and its resolution into its 
unknown components is described. Independent 
Component Analysis (ICA) can be considered a 
calibration free technique with the outcome of the 
analyses being the spectral profiles of the unknown 
species. This enables the realisation of qualitative 
information concerning the identification of the 
number and type of components present within the 
reaction mixture over time. The ICA approaches of 
FastICA and JADE and the calibration free technique 
of multivariate curve resolution-alternating least 
squares were applied to the mixture spectra of a first 
order synthetic reaction. For all approaches the signal 
was successfully separated from the constituent 
components. 

 
 

1. INTRODUCTION 
 
Reaction monitoring is a major challenge across the 
process industries. This form of monitoring typically 
involves the measurement and prediction of the 
concentration of a number of components in a 
chemical reaction and the determination of the 
number of components in the mixture.  Furthermore 
the qualitative information extracted from the 
spectral analysis is of importance in terms of process 
understanding.   
Traditionally  calibration models are built to predict 
the property of interest.  However the success of the 
approach depends on a number of factors. 
Calibration modelling is time consuming with the 
final model being sensitive to changes in process 
conditions. In addition it only provides quantitative 
information about the property of interest with no 
information about side reactions and intermediates 
[1]. Moreover in industrial processes a number of 
unknown components may be present in the mixture 
because of operational disturbances or a lack of 

detailed understanding of the reaction mechanisms. 
Thus by-products may be produced that are unknown 
and information on their existence cannot be 
determined using existing spectral interpretation 
methods. There is consequently a need for more 
advanced methods for the resolution of mixtures of 
chemical reactions.    
The paper investigates a number of calibration free 
methods for the resolution of mixtures.  A simulated 
data set from a first order reaction was generated for 
different reaction rates. Techniques included 
Multivariate Curve Resolution-Alternating Least 
Squares (MCR-ALS) [2] and Independent 
Component Analysis (ICA) [3]. Specifically two ICA 
algorithms were investigated, FastICA [4] and Joint 
Approximate Diagonalization of Eigenmatrices 
(JADE) [5] with the results of JADE being used as 
an initial estimate in the MCR-ALS algorithm. 
Applications of ICA have previously been reported 
in the areas of voice and sound separation, 
biomedical signal processing, financial time series, 
wireless communications and image feature 
extraction.  
 

2. DETERMINATION OF THE NUMBER OF 
COMPONENTS 

 
The first step is the estimation of the number of 
components in the mixture. This factor is related to 
the amount of variance present as a result of sources 
such as noise, background and baseline changes. One 
method that has been applied for the identification of 
the number of latent variables [6] is Principal 
Component Analysis (PCA). PCA has been widely 
applied for the decomposition of the covariance 
matrix. A data matrix representing I observations on 
J variables can be decomposed as follows: 
 

TVTD ⋅=  (1) 
 



 

where D is the spectral response, ( )JI× , V is the 
loadings matrix, ( KJ× ) and T is the scores matrix, 
( KI× ). Each principal component is a linear 
combination of the J variables and accounts for the 
main sources of variation. The current principal 
component is mutually orthogonal to the set of 
principal components previously calculated. 
Evolving Factor Analysis (EFA) [7] is an alternative 
approach to the estimation of the number of 
components in a mixture.  It uses the idea of the 
sequential expanding window. A series of spectra 
from a reaction mixture are measured for different 
wavelengths and these are arranged into a data 
matrix. The order of the spectra provides additional 
information on the behaviour of a chemical reaction. 
This is taken into account through the formation of 
sub-matrices by adding rows to an initial top sub-
matrix, top down, or by adding rows to an initial 
bottom sub-matrix, bottom up. The rank of the 
matrix increases every time a row is added and by 
analysing these ranks as a function of the number of 
added rows, time widows are derived where a 
specific number of principal components are present. 
This is the first step in EFA. The number of species 
involved is equal to the number of significant 
eigenvalues of the second moment matrix. Thus as 
new absorbing species start to become significant, 
new factors/eigenvalues evolve. Hence as a new 
component elutes in the overlapping peak, the 
presence of an additional eigenvalue is required to 
explain this variability. EFA thus takes advantage of 
information, which is sometimes unused in the time 
domain. In a reaction, the compound that appears 
first in the spectra should also be the first to 
disappear. 
 

3. MULTIVARIATE CURVE RESOLUTION-
ALTERNATE LEAST SQUARES (MCR-ALS) 

 
MCR-ALS is an iterative resolution method 
developed by Tauler. It has been applied to mixture 
dynamic processes that have been monitored through 
spectroscopic techniques and also to other chemical 
data whose instrumental responses obey Beer-
Lambert law. Beer’s law states that the spectral 
response of the components is independent of time 
and concentration [8]. In the case of reaction 
monitoring, the spectroscopic response, R, is a 
function of two variables, the time, t, and the spectral 
wavelength, l.  As a result, a mixture of K 
components gives a response: 
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where )t(ic  is the concentration of component, i, at 
time, t, and )l(is  is the spectral response of 
component, i, at wavelength, l.   
An advantage of this method is that knowledge of the 
concentration of all the compounds at the beginning 
of the kinetic process is not required. Tauler et al [9] 
developed a technique to reconstruct the 
concentration profiles in reactions. For this approach, 
the compound windows were found by connecting 
the line of the compound that first appears with the 
line of the last compound that appears.  Both lines 
are combined in a single figure from which the 
concentration windows can be reconstructed. These 
profiles of the eigenvalues can be considered as a 
first rough estimate of the concentration profiles. 
Based on the Beer Lambert law, the aim of MCR-
ALS is the optimal decomposition of the data matrix 
D into the product of two smaller matrices, C , that 
relates to the concentrations and TS  that denotes the 
spectral profiles: 
 

ECSD += T  (3) 
 
E  is the error-related matrix. The decomposition of 
data matrix D is performed by iterative optimization.  
The error in the raw data set is minimised using the 
following equations under suitable constraints for C  
and TS :  
 

T
T
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S
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A description of the MCR-ALS algorithm can be 
found in the work of De Juan et al, [10], [11] 
 

4. INDEPENDENT COMPONENT ANALYSIS 
 

An alternative calibration free resolution method that 
is considered is Independent Component Analysis 
(ICA). ICA can be used to identify the spectral 
profile of each species in a mixture, i.e. to identify 
the unknown components. ICA is a method designed 
to offer a solution to the Blind Source Separation 
problem, i.e. separate the source signals from the 



 

mixture observations. ICA can be considered as an 
extension to PCA in that while PCA finds principal 
components that are uncorrelated and that are linear 
combinations of the observed variables, ICA is 
designed to extract components that are independent 
and that constitute the observed variables. 
Basically an ICA model is a “statistical latent 
variable model” in the sense that it describes how the 
observed data are generated by a process of mixing 
the recorded signals, is .  The signals is  are 
statistically mutually independent by definition and 
are called independent components. The basic 
problem is: 
 

nin22i11ii sasasad +++= …   ∀   n1i ,,…=    (6) 
 
where id  are the observed random variables that are 
modeled as a linear combination of n random 
variables, is , and n,1,ji, ,a ij …=  are real 

coefficients that are assumed to be unknown. It is 
also assumed that each mixture id  and each 
independent component is  are random variables and 
not true time signals or time series. Equation 6 can be 
rewritten in vector matrix notation: 
 

Asd =  (7) 
 
where d  is a column random vector whose elements 
are id , s  is a column random vector whose 
elements are is  and A  is a matrix with elements ija . 

The statistical estimation problem concentrates on 
two aspects, first under what conditions can the 
model be estimated and secondly what can be 
estimated. In practice both the mixing coefficients, 

ija , and the independent components, is , could be 

estimated using the observed variables id . For 
simplicity it is assumed that d  is a pre-whitened 
vector, i.e. all its components are uncorrelated and 
their variances are equal to unity. An alternative way 
to express the ICA model is: 
 

Wds =ˆ  (8) 
 
where ŝ  is the estimate of s, id  is the observed 
random variables and W is a separating matrix which 
has to be estimated. W can be defined as the weight 
matrix of a two-layered feed-forward network where 
ŝ  is the output and d is the input. The network is 
constrained to have statistically independent 

elements of ŝ , i.e. they have non-Gaussian 
distributions. Non-gaussianity can be measured by 
either kurtosis or negentropy. 
Two ICA methodologies were evaluated, FastICA 
and Joint Approximate Diagonalization of 
Eigenmatrices (JADE). JADE is a cumulative-based 
batch algorithm for source separation. Specifically it 
is a method that uses higher-order cumulative tensors 
that are a generalisation of the covariance matrix. For 
this family of methods, the fourth-order cumulative 
tensor is used to make the fourth-order cumulants 
zero or as small as possible. JADE computes the 
eigenvalue decomposition of a symmetric matrix.  
 

5. EXPERIMENTAL 
GENERATING THE SYNTHETIC DATA SET 

 
A first-order synthetic data set was generated by 
considering a starting material A to which a reagent 
was added. As a result A is converted to product B 
with a specific rate constant, k1, and B is converted 

to product C with reaction rate, k2, i.e. CBA
21 KK

→→ .  
Several experiments were performed for different 
rate constants.  For the data set generated from the 
first order synthetic reaction, the reaction rates took 
the values: 
 
k1=0.8 k2=0.8  Experiment 1 
k1=0.8 k2=0.08 Experiment II 
k1=0.8 k2=0.008 Experiment III 
 
The data was obtained from the following kinetic 
equations: 
 
[ ] [ ] )tkexp(AA i10i

−=  (9) 

[ ] [ ]
))tkexp()tk(exp(

kk
kA

B i2i1
12

10
i

−−−
−

=  (10) 
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i
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where [ ]0A  is the initial concentration of A, and 
[ ]iA , [ ]iB  and [ ]iC  are the concentrations of A, B 
and C respectively at time point i. 
Fig. 2 shows the concentration profiles of the three 
components for the reaction for experiments I, II and 
III respectively. The spectral profiles for the 
components are the same for all experiments since 
the same data was used in all three experiments and 
are presented in Fig. 1 (lower right hand-side). 
Based on the data decomposition, it is expected that 
the pure spectra of the components should be the 



 

same for all experiments, although the concentration 
profiles in the different experiments need not have a 
common shape. The varying shape of the kinetic 
profiles in the different experiments can be due either 
to different underlying kinetic models, different 
initial concentrations or to different reaction 
constants. In this case the different reaction constants 
produce the different concentration profiles for each 
experiment. 

Fig. 1: Concentration profiles of A, B and C for 
experiment I, II and III respectfully as defined by 
equations 9, 10 and 11 
 

 

Fig. 2: Graphical representation of matrix D 

 

The concentration and pure component spectra 
profiles can be combined to produce a matrix, D that 
consists of a number of spectra for different 
wavelengths. The plots of this matrix can be seen in 
Fig. 2. 
 

spectraconcT ⋅=D  (12) 

 
The matrix D is then used to resolve the spectral 
profiles of each species. The aim of this paper is to 
show that although different experiments are 
performed, in each case the results are the same and 
the components are identified successfully. 
 

6. RESULTS AND DISCUSSION 
 
After creating the experimental data sets, PCA was 
initially applied for the estimation of the number of 
components. For the specific reaction being 
considered, and for all three experiments, three 
components were selected since the eigenvalue of the 
third component was still in excess of unity. This is 
in accord with the expected result. 
EFA was also used to estimate the number of 
components and to define the reaction process. The 
results of the first experiment are plotted in Fig.3. 
Similar results were obtained for the other two 
experiments. It can be observed that the forward 
analysis indicates that three independent factors have 
evolved. One factor appears at the onset of the 
reaction, a second soon after the first and a third after 
the second. It is clear that these three factors 
correspond to the reagent, the intermediate and the 
final product. The backward analysis suggests that 
there is only one factor remaining at the end of the 
reaction with the other two factors disappearing. 
Once again the results confirm what is known about 
the reaction. 
The next step was to define the spectral profiles for 
each of the experiments. The problem of spectral 
analysis in chemical mixtures represents a very 
similar problem to that of ICA since it is assumed in 
spectral analysis that the components of interest are 
strongly related to the data of the mixture through 
Beer Lambert's law. FastICA was used for the 
separation of the spectral profiles (Fig.4). ICA was 
performed with ‘tanh’ non-linearity and the 
independent components were estimated in parallel 
by FastICA. This approach is similar to the 
maximum likelihood estimation for supergaussian 
data. The results from the application of the JADE 
algorithm can be seen in Fig. 5. 
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Fig. 3: EFA plots for the first experiment. The thick 
line defines the noise level and the solid lines above 
the noise level show the number and possible 
location of components appearing and disappearing 
during the kinetic process. 

Fig. 4. Estimated spectral profiles by the FastICA 
algorithm for all experiments 

These results indicate that ICA is very effective for 
the analysis of spectral data. The difference in 
scaling does not affect the qualitative information 
gained.  The main peaks are situated where expected 
and the componets are easily recognisable.  

 

Fig. 5: Estimated spectral profiles from the JADE 
algorithm for all  the experiments 

Although the results appear almost perfect, further 
improvement can be achieved. This can be done by 
applying constraints to the data. As mentioned before 
MCR-ALS is a method used for the improvement of 
an initial estimate. During the procedure, the initial 
estimates of the concentration profiles, or of the 
species spectra, are given and new concentration 
profiles are calculated by least-squares. Normally for 
MCR-ALS, the results from EFA are used. However 
in this application the results from the JADE 
algorithm were used as an initial estimate of the 
spectral profiles. A comparison of the results of this 
procedure for the three experiments and of what was 
expected can be seen in Fig 6. A number of 
constraints such as unimodality and non-negativity 
were also imposed. Once the concentration profiles 
and the pure spectra become stable, the resulting data 
matrix can be resolved. 
From Fig.6 it can be observed that the results are 
extremely promising. In all three experiments, the 
spectra were resolved identically, showing that the 
different reaction rates and mixture spectra do not 
influence the hidden information relating to the 
identification of the species. Component A had an 
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overlap between what was expected and what was 
estimated. Component’s C predicted and real values 
were almost identical. Finally component’s B 
estimated peaks were situated at the same 
wavelengths as the real peaks have to be situated 
making component B easily recognisable. 

Fig. 6: Results of MCR-ALS with an initial estimate 
by JADE. Solid lines are the true profiles. Dotted 
lines are the estimated profiles  
 

7. CONCLUSIONS 
 
The ability of ICA to handle component spectra was 
examined. The application of ICA to an artificially 
generated spectral data set for different reaction rates 
has demonstrated that it is an effective approach to 
its resolution. Both FastICA and JADE can be 
regarded as another method for the resolution of 
chemical mixtures since they both extracted 
recognizable spectra. The combination of MCR-ALS 
and JADE also gave good results. ICA has shown 
that unknown components in a mixture can be 
identified by the spectra of separated independent 
components. A further advantage of ICA is that it 
enables the implementation of the resolution of data 
in limited time. ICA can also be applied in process 
monitoring and control.  This area is now under 
consideration. 
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