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ABSTRACT

In this paper we propose a general method for separating mixtures
of multiple audio signals observed in a real acoustic environment.
The multipath nature of acoustic propagation is addressed by the
use of the FIR polynomial matrix algebra, while spatio-temporal
separation is achieved by entropy maximization using the natural
gradient algorithm. The undesired temporal whiteness of the es-
timates is overcome with the use of linear prediction (LP) analysis.
As opposed to a previous LP-based method, no assumptions on re-
lative strengths of individual sources to specific mixtures are made.
Other benefits such as reduced computational complexity and in-
creased convergence speed are also emphasized. Finally, a number
of experiments demonstrate the validity and general applicability
of the proposed method.

1. INTRODUCTION

Consider the scenario in which multiple sounds emitted from a
number of different acoustic sources are perceived by us humans.
Despite the fact that all sounds arrive as a single waveform, it is
possible to clearly distinguish between them and recognize those
of particular interest. This phenomenon, referred to as the cocktail-
party effect [3], demonstrates the ability of humans to focus on
sounds of interest even in the presence of many competing sounds.
In the context of a digital system, the most promising approach to
mimic this human skill is blind source separation. BSS first began
to receive attention in the early work of [7], where a neuromimetic
structure was proposed to extract the independent components that
generate a set of observable data.

In this work, we address the blind separation of simultan-
eous audio sources recorded in a reverberant environment. In this
case, each microphone captures a direct copy of the sound sources
as well as several reflected and modified copies of the signals at
totally different propagation delays. The recorded signals not only
suffer from attenuation, caused by loss of energy as the sound
propagates, but also from multipath propagation effects due to
multiple sound reflections. These delays depend on the relative
locations of the sensors and the sound sources and on the speed of
the signal [8]. Assuming now that the signals are combined lin-
early, each microphone captures a weighted sum of time-delayed
versions of the original sources, which is a convolution of the ori-
ginal source with the appropriate acoustic transfer function [13].
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In [14], the important distinction between multichannel blind
deconvolution (MBD) and convolutive BSS methods is stressed.
The former aim to render the outputs both spatially and tempor-
ally independent making them unsuitable for the blind separation
of acoustic mixtures. The latter yield spatially separated estimates
only, and are thus better suited to acoustic signal separation. Still,
due to their many advantages, the MBD methods have been widely
used in the problem of convolutive BSS. In [15]–[16], a feedback
network structure with FIR filters is combined with MBD to sep-
arate delayed and convolutive mixtures by the information max-
imization approach. The desired solution is reached under the as-
sumption that the mixing filters are minimum-phase systems, an
assumption which may not always hold in practice. More recently
in [6], a solution has been given to the problem of single and mul-
tichannel blind deconvolution in the case of i.i.d. source signals
with the application of the natural gradient algorithm and the min-
imization of the mutual information criterion. In [10]–[12], the
natural gradient algorithm is combined with the FIR polynomial
algebra and experiments with real room recordings demonstrate
the separation of two speech signals.

While the aforementioned approaches seem to yield good sep-
aration results, in the case of self-correlated inputs — speech be-
ing a prime example — they exhibit the side effect of whitening.
Whitening is defined as the effect of flattening of the signal power
spectrum, causing energy at higher frequencies to increase at the
expense of energy in the lower frequency bands, generating estim-
ates of a significantly impaired quality. To overcome this problem,
[14] suggests a cascaded separating system consisting of separat-
ing and linear prediction (LP) filters. Operating on the assumption
that each source and hence its spectral characteristics is domin-
ant over the rest in each mixture, it uses a natural gradient al-
gorithm for directly updating the separating filter matrix, while
preserving the source colour at its output. However, in realistic re-
cording scenarios where this assumption cannot be guaranteed, the
LP filters could introduce reconstruction artifacts. This distortion
is mainly due to the fact that the LP coefficients are estimated from
a sum of speakers (speech mixtures), instead of from each isolated
source and are then applied on the recovered outputs.

In this paper we present a novel method to eliminate the un-
desired whitening effect in the extracted estimates without availing
ourselves of the above assumption. The method is based on the
temporal prewhitening of the acoustic mixtures via the use of LP
analysis filters. The extracted temporally independent signals are
then used to perform BSS in the residual domain. Since BSS filters
only perform spatial separation, their application to the sensor out-
put is expected to yield spatially but not temporally independent
estimates, thus avoiding the undesired effect of spectral flattening.



2. PROBLEM STATEMENT

Given m measured signalsx(t) = [x1(t), . . . , xm(t)]T being
mixtures ofn source signalss(t) = [s1(t), . . . , sn(t)]T , the aim
of blind separation is to produce outputs that recreate the original
source signals. Note the term ‘blind’ that stresses the fact that
nothing is known about the source signals themselves nor about
their mixing structure. The only assumption made, which in most
cases is realistic, is that the source signals are statistically inde-
pendent. This, also known as the source spatial whiteness or spa-
tial independence assumption, is the core assumption of blind sep-
aration. It is also generally assumed that all the signals are zero–
mean and that the number of sensors is equal to the number of
sources i.em = n. Thus, fors(t) ∈ IRn andx(t) ∈ IRm, the
ith sensor signalxi(t) is given by the noiseless linear convolutive
mixing model:

xi(t) =

n∑
j=1

l−1∑
k=0

hij(k) sj(t − k), i = 1, 2, . . . , m. (1)

wheret is the discrete-time index,{hij(k)} is the room impulse
response characterizing the path from sourcej to sensori, andl−1
defines the order of the FIR filters used to model the room effects.
Thez–transformHij(z) of the acoustic transfer function between
thejth source and theith sensor can be written as:

Hij(z) =

l−1∑
t=0

hij(t) z−t (2)

wherez−t is the time–shift (delay) operator, yielding the BSS
model in thez–domain given by:

Xi(z) =

n∑
j=1

Hij(z) Sj(z), i = 1, 2, . . . , m. (3)

with the convolution operation becoming a simple multiplication.
The unmixing model can also be rewritten in thez–domain as:

Ui(z) =

n∑
j=1

Wij(z) Xj(z), i = 1, 2, . . . , m. (4)

whereWij(z) represents the unmixing or separation system. The
design ofWij(z) must allow for noncausal expansion, since the
stable inverse filter of a non-minimum phase system–such as the
acoustic transfer function–is noncausal.

3. APPROACHES BASED ON NATURAL GRADIENT
ALGORITHM

3.1. Instantaneous Mixtures

In [2], the BSS problem is put into an information theoretic frame-
work. This method, also corroborated by [4], uses a feedforward
neural network structure to blindly separate the linear and instant-
aneous mixturesx = [x1, . . . , xm]T of the independent sources
s = [s1, . . . , sn]T using the principle of information maximiza-
tion. The observations (mixtures) are transformed and processed
through a nonlinear functiong(·) that approximates the cumulat-
ive density function (cdf) of the sources. The basic idea is that
by maximizing the joint signal entropy defined byH(y) it is pos-
sible to minimize the mutual information between the outputs of
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i

Fig. 1. Geometric representation of the FIR filter matrix.

the network. Separation is achieved when the mutual information
I(y1, yn) = 0 making the nonlinear outputsy = [y1, . . . , yn]T =
g(u) statistically independent. For maximization ofH(y), a blind
adaptive algorithm is used to estimate the separation matrixW so
thatu = [u1, . . . , un]T = Wx. The separation matrixW can be
proportionally updated to its natural gradient yielding the natural
gradient algorithm [1]:

Wk+1 = Wk + µ
(
I− g(u) uT )

Wk (5)

whereµ is the step size andI is the identity matrix. The algorithm
in (5) avoids matrix inversion and thus proves to be more compu-
tationally efficient than the entropy gradient method proposed in
[2].

3.2. Convolutive Mixtures

Driven by the problem of representing the multipath effects in-
troduced in the case of convolutive mixtures, [9] extends the in-
stantaneous BSS problem by replacing the scalars in the mixing
matrices by FIR filter polynomials. In the FIR polynomial matrix
algebra the traditional matrix and vector algebra rules and tools
remain intact, while the mixing system elements are represented
by FIR filters. The implication is that single channel adaptive filter
techniques can easily be extended to the multichannel blind source
separation case. Hence, we may define anH (i×k×j) matrix of
FIR filters in the time–domain, where each element of the matrix
is an FIR filter defined ashij = [hij(0), hij(1), . . . , hij(k)].
Note the indices,i = [1, 2, . . . , m], j = [1, 2, . . . , n] andk =
[0, 1, . . . , l − 1], corresponding to the observations, sources and
to each filter tap, respectively. Fori, j = 1, 2, i.e., the two–source
and two–sensor mixing case, the FIR matrix in the time–domain
may be written as in:

H (i×k×j) =

[
h11 h12

h21 h22

]
, i, j = 1, 2. (6)

In a similar manner, moving to the frequency domain, we may
define the FIR polynomial matrix as:

H (i×k×j) =


k∑

ξ=0

h11(ξ)z
−ξ

k∑
ξ=0

h12(ξ)z
−ξ

k∑
ξ=0

h21(ξ)z
−ξ

k∑
ξ=0

h22(ξ)z
−ξ

 (7)

where each FIR polynomial is defined as
∑k

ξ=0 hijz
−ξ for i, j =



1, 2 i.e a moving–average (MA) process. Any functionf(·) acting
on an FIR filter with an impulse responseh(n), is defined as :

f(h) = IFFT
[
f

(
FFT

[
0 . . . h(n) . . . 0

])]
(8)

where sufficiently many zeros are prepended and postpended to
allow the FIR representation to sufficiently approximate the trans-
formed filter and with the functionf(·) acting elementwise on the
Fourier transform of the filter. With the FIR matrices expressed
in the frequency domain, filter convolution operations are reduced
to elementwise multiplications, whereas deconvolution operations
become simple divisions [9]. In general, the FIR matrix algebra
appears to be an effective approach to address the problem of blind
separation of convolutive mixtures.

The natural gradient algorithm is combined with the FIR poly-
nomial matrix algebra and the update equation for estimating the
FIR separating systemW can be written as in [6] and [10]–[12]:

Wk+1 = Wk + µ
(
I− g(u) u

H)
Wk (9)

whereµ is the step size,g(u) the nonlinearity and(·)H denotes
the Hermitian operator, while the unit FIR polynomial matrixI is
given by:

I =

[
0̄ 1 0̄ 0̄

0̄ 0̄ 1 0̄

]
(10)

where 0̄ is a sequence of zeros. This adaptive algorithm is the
blind multichannel deconvolution natural gradient algorithm. The
objective is to blindly extract the original sources from the convo-
lutive mixtures by estimating the separating FIR polynomial mat-
rix W in order to produce the estimates

u(z) = W x(z) = W H s(z) = ∆ s(z) (11)

where∆ should approximate a scaled permutation FIR polyno-
mial matrix. Note the column vectors of the estimates, mixtures
and sources defined as inu(z) = [U1(z), . . . , Um(z)]T , x(z) =

[X1(z), . . . , Xm(z)]T ands(z) = [S1(z), . . . , Sn(z)]T , respect-
ively. The recovered estimates are considered equivalent to the
original sources if the whole mixing-unmixing system, namely
the global FIR polynomial matrixG, is equal toG = I with
g11, g22 = δii, i.e., the Kronecker delta. Careful consideration
must be taken in the choice of a particular nonlinearity to approx-
imate the pdfs of the sources. This solely depends on the nature
of the inputs to be separated. The chosen nonlinearity can be of a
parametric form, being continuously adapted, or of a fixed (static)
form. It is a well-known assumption that audio and speech signals
closely follow a Laplacian distribution with a super-Gaussian pdf
model given by:

ps(si) =
1√
2 σi

exp

(
−
√

2 |s|
σi

)
(12)

whereσ2
i defines the variance. The ideal form of the nonlinear

function is the one that approximates the cdf of the sources and
hence for the natural gradient update method [1]:

gu(ui) = −∂ log ps(ui)

∂(ui)
, i = 1, 2, . . . , m. (13)

Combining the above with (12) and assuming unit variance source
signals, yields the sigmoid function g(·) = sign(·) as the typical
choice for the nonlinear function to be used in the algorithm.
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Fig. 2. Proposed system setup for blind separation of convolutive
audio mixtures via LP residual analysis.

4. NATURAL GRADIENT ALGORITHM WITH LP
ANALYSIS

In this section, we introduce the main concepts behind LP ana-
lysis and we further explain the modification proposed on the typ-
ical natural gradient algorithm. The system configuration is shown
on Fig.2. The rationale behind this approach is to introduce an
LP analysis stage, which involves a type of temporal prewhitening
of the observed acoustic mixtures. Linear prediction analysis, in
general, is used to estimate the LP coefficients that minimize the
mean square error between the original signal and the predicted
one based on a linear combination of past samples [18]. Hence,
we may define apth order linear predictor filter whose transfer
function is given by:

A(z) = 1 −
p∑

k=1

α(k) z−k (14)

where the vector{α(k)}p
k=1 represents the linear predictor coeffi-

cients (LPC’s). The LP residual analysis stage is then carried out
by filtering the observed speech mixtures with the estimated LP
coefficients. This yields the LP residuals, which are temporally
independent and are given by:

y(z) =

m∑
i=1

Ai(z) Xi(z), i = 1, 2, . . . , m (15)

The extracted LP residuals are then used to blindly adapt the coeffi-
cients of the separating FIR polynomial matrixW in the frequency
domain, using the standard natural gradient update equation as in
(9):

Wk+1 = Wk + µ
(
I− g(u) u

H)
Wk (16)

with the nonlinearityg(·) operating in the time domain. The main
advantage of this approach is that there can be little to no further
entropy increase due to temporal decorrelation. Hence, the entropy
maximization criterion is being assisted by the LP analysis and the
algorithm follows the directions that spatially separate rather than
temporally whiten the signals. The estimated outputs given in the
frequency domain by:

u(z) = [U1(z), . . . , Um(z)]T = W y(z) (17)



are both spatially and temporally independent. To resolve this we
use an extended modification of the method proposed in [5], which
was specifically applied in the case of single channel speech dere-
verberation. The unique spectral characteristics of the original
sources are hence restored, by applying the separating FIR mat-
rix to the original mixtures without modification. This is carried
out at the extra cost of having to adapt two filters. The outputs
of the algorithm, i.e., the extracted estimates being only spatially
independent are given by:

ŝ(z) =
[
Ŝ1(z), . . . , Ŝm(z)

]T
= W x(z) (18)

The proposed algorithm operates in the frequency domain using
the overlap-save block method. At every iteration,q blocks for
each of the input mixtures are processed, with a predefined block-
sizeL given by:

Xi(z) = FFT[xi(q − 1)L, . . . , xi(q − 1)(L − 1)]T (19)

for i = 1, 2, . . . , m. The LP analysis is then performed for every
block of the mixture data, yielding the LP residuals in time do-
main:

yi(q) = xi(q) −
p∑

k=1

αi(k) xi(q − k), i = 1, 2, . . . , m (20)

and in the frequency domain:

Yi(z) = Xi(z) − Ai(z) Xi(z), i = 1, 2, . . . , m (21)

In a similar manner to the input mixtures, blocks of the LP resid-
uals given by:

Yi(z) = FFT[yi(q − 1)L, . . . , yi(q − 1)(L − 1)]T (22)

are then evaluated at every iteration. The assumptions made are:
(A1) the system employing the separating FIR polynomial filters
is linear; (A2) the LP residuals retain enough information to pre-
serve the optimization criterion. Assumption A1 is satisfied if the
chosen step sizes of the update equations are kept small [5]. As-
sumption A2 is an important one as it underlines a basic problem
of LP analysis. The solution lies in estimating the set of LP coeffi-
cients directly from the mixtures in a way that ensures an accurate
estimate of the spectral properties of the signals. Because of the
time varying nature of speech the LP coefficients must be calcu-
lated from relatively short signal segments. Thus for the LP ana-
lysis stage, we propose manipulation of the LP residuals in fairly
short, i.e., 20-30 ms segments.

4.1. Connections

Although reminiscent of the approach of [14], the above method
presents a number of advantages. The reduction of the correlation
achieved by the LP analysis filtering stage proves to be useful in
that it removes short-term correlations. By performing filtering on
(temporally) prewhitened samples, i) weight updates are rendered
independent of one another, ii) the algorithm operation is reduced
to spatial separation. All this greatly increases stability and speed
of convergence. In terms of algorithm implementation, the LP ana-
lysis filtering stage is carried out in a per block basis independently
of the general update equation. Avoiding inverse LP filtering for
every iteration reduces convergence time as well as computational
complexity.
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The two-stage methodology adopted in the proposed audio
separation scheme is typical of blind space-time equalization meth-
ods in multiuser wireless digital communication systems (see, e.g.,
[17]). In these methods, the first stage aims to remove intersym-
bol interference, which can essentially be considered as a temporal
whitening step. The second stage aims at co-channel interference
cancellation through spatial source separation.

In this approach, it is also conjectured that the filters which
perform spatial separation on the temporally independent observa-
tions, are also capable of spatially separating the coloured observa-
tions. The experimental results presented in the following section
point to the validity of this assumption.

5. EXPERIMENTAL RESULTS

A number of computer experiments illustrate the above results and
evaluate the proposed method in a variety of scenarios. The as-
sessment of the algorithm performance, under synthetic mixing
conditions, is based on two different criteria.

5.1. Separation Performance

To assess the capability of the algorithm to separate convolutive
mixtures, we employ the interference-to-signal (ISR) performance
measure index, expressed in terms of the overall system response
as:

ISR =

∥∥Gij

∥∥2∥∥Gii

∥∥2 , i 6= j (23)

with the global system defined asG = W H.
Two audio sets of speech signals are convolved with random

3–tap mixing filters to test the algorithm. The first, audio set 1,
consists of two recordings of 10 sec each of a male and female
anechoic voice. The recording of the second, audio set 2, of a dur-
ation of 7 sec has taken place inside a natural environment (noisy
room). Both audio sets have been recorded using a sampling fre-
quency of 8 kHz. The mixtures are first tested with the standard
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natural gradient algorithm and then with the proposed method em-
ploying the LP analysis stage. Both algorithms are executed with
step sizeµ = 0.001 and blocksizeL = 128, whereas in the pro-
posed method the LP analysis stage is carried out using a 4th-order
linear predictor for every block. Fig.3 shows the results of the ex-
periments.

In the case of the first audio set, the proposed algorithm clearly
exhibits a better overall performance both in terms of stability and
speed of convergence when compared with the natural gradient al-
gorithm when no LP analysis is employed. However, in the case
of the second audio set, the algorithm appears to be slower in con-
vergence, yet to some extent, still capable of a lower ISR value.

5.2. Spectral Preservation

In this section, we examine the capability of the algorithm to pre-
serve the spectral characteristics of the original sources, while ex-
tracting the estimates. In order to assess this aspect of perform-
ance, we introduce a new performance parameter, namely the spec-
tral preservation index (SPI) defined as:

SPI= E
[
|Sxi(f) − Sx̂i(f)|2

]
(24)

wheref is a certain frequency,Sxi(f), Sx̂i(f), denote the ori-
ginal and estimated spectral densities, normalized to unit variance,
and where E{·} stands for the mathematical expectation operator.
For both sets used, the SPI values have been calculated after the
algorithms have converged to a separating solution. We calculate
the SPI values between the original and estimated signals when
only the natural gradient algorithm is used and also when the pro-
posed method with the LP analysis stage, is carried out. These are
summarized on Table 1.

Fig.4 shows the power spectral densities plotted against fre-
quency when LP analysis is followed. The similarity of the power
spectral densities between the recovered and the original signals
validates the spectrum preservation due to the proposed algorithm.
On the other hand, note the spectrum of the output from the natural

gradient algorithm, which remains nearly flat for the entire range
of frequencies, clearly showing that the estimates are whitened.
Analogous is the case for both audio sets used in the experiments.
Note that audio listening tests have also confirmed the quality of
the estimates.

Audio Sets SPI–LP SPI–NoLP

AS1–S1 0.077 1.299
(−11.13) (1.13)

AS1–S2 0.250 1.646
(−6.01) (2.16)

AS2–S1 0.670 1.160
(−1.73) (0.64)

AS2–S2 0.465 1.490
(−3.32) (1.73)

Table 1. SPI values of the power spectral densities of the estimated
sources. In parentheses, values given in dB. AS1–S1: Audio Set
1-Source 1, AS1–S2: Audio Set 1-Source2. AS2–S1: Audio Set
2-Source 1, AS2–S2: Audio Set 2-Source2.

5.3. Room Mixtures

We further test the proposed algorithm with real room recordings,
corresponding to two male speakers speaking simultaneously in an
office. The signals1 have a duration of 7sec and were recorded at a
sampling rate of 16kHz. For a more detailed description of the ex-
perimental topology, the reader is referred to [12]. The algorithm
is executed with a step size ofµ = 0.002, whereas the separat-
ing FIR polynomial matrix filters are 1024 taps long and the fixed
blocksize is 512. To estimate the LP residuals, we use a 17th-order
linear predictor corresponding to a processed speech frame size
of approximately 30 ms. The mixtures and the recovered sources
are shown in Fig.5. Audio listening tests indicate a clean separa-
tion. To further assess the performance of the method, we com-
bine the natural gradient algorithm of (16) with the nonlinearity
φ(u) = tanh(u) + u, as derived in [12]. The LP analysis stage
is carried out in the same way as before with identical simulation
parameters. Experiments using the same audio set, yield clearly
separated outputs.

The power spectral densities of the estimates for each of the
different nonlinearities, the non-LP natural gradient estimates and
the estimates obtained in [12] and [14] are all shown in Fig.5.
When LP analysis is used, the extracted estimates are found to
preserve the original speech spectral characteristics. By contrast,
when the LP analysis stage is omitted, the resulting spectra appear
to be flat, indicating the unwanted whitening effect imposed on the
extracted signals. In addition, the capability of the method to pre-
serve the spectrum of each output source seems to be invariant with
respect to the nonlinearity used. Note also the close similarity of
the spectra of our estimates with the post-processed (dewhitened)
outputs of [12] and the estimates of [14]. Worth emphasizing is
also the fact that the similarity between the spectra of the estim-
ates is not always indicative of the separation level achieved. Yet
in this particular example, listening tests indicate that our estimates
have the same perceptive quality when compared with the outputs
in [12], whereas marginally improve the estimates of [14]. This
will be demonstrated in the presentation of this work.

1The speech mixtures used in the experiments are available on-line at
http://www.cnl.salk.edu/ ∼tewon/Blind/blind audio.html.
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6. CONCLUSIONS AND FURTHER WORK

This paper has concentrated on blind separation of speech signals
in real acoustic environments. The dynamic nature of the mixing
process has been dealt with the use of the FIR polynomial matrix
algebra, capable of efficiently representing the multipath and mul-
tichannel nature of the problem. We have employed the natural
gradient algorithm, which when combined with the entropy max-
imization criterion yields the successful separation of the audio
mixtures. The problem of the temporal whiteness of the estimates,
which hinders their listening quality, is overcome by the use of LP
analysis in the algorithm. Results have demonstrated the spectrum
preservation of the estimates. The fast convergence to a separating
solution and the inherent simplicity of this method substantiate it
as a significant improvement over previously suggested methods.
Further work is focused on extending the proposed method in more
realistic scenarios of real room recording situations.
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