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ABSTRACT

Similarities and distinctions have been pointed out be-
tween ICA and traditional multivariate methods such
as factor analysis, principal component analysis and
projection pursuit. In this paper, a new important con-
nection between ICA and traditional factor analysis is
made. The key of the connection is “factor rotation.”

1. INTRODUCTION

Let X be an observed p-vector. The factor analysis
model for X is written as

X = µ + As + u, (1)

where s is an m-vector of latent (or hidden) factors
or blind signals, u being a vector of unique factors or
error factors, and µ is a general mean vector and A
is a factor loading matrix or mixing matrix. When
u = 0, the model is said to be noise-free ICA or sim-
ply ICA (e.g., Hyvärinen 1999); otherwise, it is called
noisy ICA. Here we do not seriously distinguish be-
tween noisy and noise-free ICA. In traditional factor
analysis, u is an important term (to be zero hardly)
and considered as a sum of a unique factor vector and
an error vector.

Although the equation (1) represents both ICA and
traditional factor analysis, there are substantial differ-
ences between them. In ICA, the components of s
are distributed independently and nonnormally.1 The
independence and nonnormality are key assumptions.
The traditional factor analysis does not use the inde-
pendence and nonnormality assumptions, and rather
than those, normality is often assumed. The second
distinction is that ICA uses information other than
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1One component is allowed to follow normally (see Comon

(1994)).

second-order moments such as third-order and fourth-
order moments in estimation, while the traditional fac-
tor analysis only uses second-order moments. When
latent factors are not actually independent of one an-
other, ICA is equivalent to projection pursuit (Fried-
man and Tukey 1974). See Hyvärinen and Kano (in
press) for instance.2

Traditional factor analysis requires factor rotation.
Here we simply consider the orthogonal factor model,
Var(s) = Im, so that the covariance structure of X is
derived as

Var(X) = AAT + Ψ, (2)

where Var(u) = Ψ. If a matrix A satisfies the equation
(2), so does AP for any orthogonal matrix P . The so-
called factor rotation problem is caused by the fact that
the factor analysis uses only second-order moments.
On the other hand, ICA does not have this problem,
and determine the rotation matrix P by maximizing
independency among latent factors s. This is the third
distinction.

As a result, ICA and traditional factor analysis are
totally different procedures, and of course, they result
in completely different outputs for the same data set.

2. QUICK REVIEW OF ESTIMATION
PROCEDURE IN ICA

When noise-free ICA is considered (i.e., u = 0 in (1)),
it is useful to sphere X as a pre-analysis of ICA. We can
assume that Var(s) = Im with no loss of generality. If
the shpering is made for X, then the mixing matrix A
is column-orthogonal. Sphering is often made by prin-
cipal component analysis (PCA). PCA is also useful in
dimensional reduction. If the dimension of X reduces
to the number m of blind signals, the A may be re-
stricted to be an orthogonal matrix of order m. Here

2ICA provides an important characterization of projection
pursuit that if an observed vector consists of linearly-mixed in-
dependent latent factors, the projection pursuit identifies the in-
dependent factors.



we consider the simple case where p = m, u = 0 and
X is sphered.

Let �̂ = W T
� and let us estimate W = [�1, . . . ,�m],

an m× m (orthogonal) matrix. A traditional criterion
in estimation of ICA is to maximize the sum of squared
fourth-order cumulants or kurtoses of ŝ, that is,

max
W :m×m

m∑
r=1

Cum2(ŝr) = max
W :m×m

m∑
i=1

Cum2(wT
r X).

(3)

See Comon (1994, Theorem 16) for instance. If one
has sphered X, W can be restricted to be orthogonal
as noted in the previous section.

Let κr1...rk
be the k-th order cumulants of ŝ. The

criterion above is written as
∑m

r=1 κ2
rrrr. Comon has

proposed many types of criteria in estimation of ICA,
which includes

1
48

m∑
r=1

(
4κ2

rrr + κ2
rrrr + 7κ4

rrr − 6κ2
rrrκrrrr

)
. (4)

This comes from the minimization of the mutual in-
formation approximated by the Edgeworth expansion
of a density function. A simpler version of this was
presented as 1

48

∑m
r=1

(
4κ2

rrr + κ2
rrrr

)
(e.g., Hyvärinen

et al. 2001, page 115). This is what Jones and Sib-
son (1987) studied in the context of projection pursuit.
Comon (1994) also studied a criterion using all the k-th
order cumulants:

∑
r1,... ,rk

κ2
r1...rk

.
Cardoso and Souloumiac (1996) made an alterna-

tive approach using the cumulants of the data vector
X. Recall that X = As and let N = (nij) be an arbi-
trary given matrix of order m. The m×m matrix C(N)
with the (i, j) element

∑m
k,l=1 Cum(Xi, Xj, Xk, Xl)nkl

can be expressed as

ADN,AAT , (5)

where DN,A is a diagonal matrix possibly depending on
N , A and the kurtoses of s. Note that A is indepen-
dent of N . When one can take A to be an orthogonal
matrix, (5) represents the diagonalization of the sym-
metric matrix C(N). The so-called JADE procedure is
to find an orthogonal matrix A that makes the joint-
diagonalization of C(N) for several fixed matrices N ’s.

Although the idea of ICA using cumulants is sim-
ple, it may not be stable nor robust against outliers
because neither is estimation of the higher-order mo-
ments. Hyvärinen (1999b) suggested

max
A∈O(m)

[
E(G(As)) − E(G(AZ))

]2

, (6)

where G(·) is a nonlinear and nonquadratic function
and Z follows according to the standard multivariate

normal distribution. Hyvärinen suggests the hyper-
bolic tangent function as the G(·).

In the context of factor analysis, Mooijaart (1985)
studied the generalized least squares estimation using
the second- and third-order moments for the model
with nonnormal independent factors, and found that
the rotation problem does not take place if the skew-
ness’ of the factors are all different. Thus, this is equiv-
alent to an estimation procedure in the noisy ICA using
skewness. However, Mooijaart and his followers have
not noticed that his procedure is able to seperate inde-
pendnet blind signals.

3. FACTOR ROTATION AND ICA
ESTIMATION

For the rotation problem as described in Section 1,
the factor analysis chooses most interpretable rotation.
High interpretability often achieves when the elements
of A have high contrast and many zeros. This idea
connects with several techniques of ICA, for example
sparse coding. Many mathematical ways for imple-
menting the idea have been developed and they are
installed as a standard option in the programs of fac-
tor analysis. The varimax rotation by Kaiser (1958)
among others is most often applied. The orthomax
procedure is an extension of the varimax.

Let O(m) be the class of all orthogonal matrices
of order m. Let B = (bir) = AP for a P ∈ O(m).
The varimax rotation procedure determines the rota-
tion matrix P as a solution to the maximization prob-
lem:

max
P∈O(m)

m∑
r=1

p∑
i=1

(b2
ir − b̄2

r)
2, (7)

where b̄2
r is the average of the squared elements of the

r-th column of B. The orthomax procedure (Crawford
and Ferguson 1970) is given as

max
P∈O(m)

[
m∑

r=1

p∑
i=1

b4
ir −

ω

p

m∑
r=1

( p∑
i=1

b2
ir

)2
]

. (8)

The orthomax criterion provides a family of rotation
methods by choosing values of ω. The orthomax with
ω = 1 gives the varimax procedure. The idea behind
them is that when many of b2

ir are close to zero or large,
these criteria, which are basically variance of b2

ir, will
have a large value.

The idea that the variance of b2
ir (i = 1, . . . , p) be

maximized is closely related to the maximization of the
cumulant of bir (i = 1, . . . , p). In fact, if we take ω = 3



in (8), the criterion of the orthomax becomes

p
m∑

r=1

[
1
p

p∑
i=1

b4
ir − 3

(1
p

p∑
i=1

b2
ir

)2
]

. (9)

Let κrrrr be the fourth-order cumulant of the elements
of the r-th column of B. If we centralize bir within the
r-th column for each r, the quantity in (9) is expressible
(the multiplier p is omitted) as

m∑
r=1

κrrrr. (10)

We can regard (10) as a criterion that can be used
in ICA because κrrrr’s are measures of nonnormal-
ity. As a consequence, if one considers a centered m-
dimensional data set as a factor loading matrix, the
factor rotation implements ICA.

As noted in Section 2, Comon (1994) has studied a
variety of criteria using cumulants in order to perform
ICA, among which the criterion

∑m
r=1 κ2

rrrr is close to
(10).

The criterion in (10) has a problem for a case where
there are both leptokurtic (super-Gaussian) and platy-
kurtic (sub-Gaussian) distributions in the m-
dimensional distribution. Comon takes the square of
the cumulants for the reason. Thus, for use of (10), all
the marginal distributions must be leptokurtic.

If the data vectors X’s are sphered, one can re-
strict the transformation matrix W to be orthogonal,
so the maximization in (8) can do the ICA. If they are
not orthogonal but just centralized, we can use oblique
rotations to implement the ICA.

The orthomax criterion can produce a variety of
factor rotation methods with changing values of ω, and
the rotation methods for several specific values of ω are
given specific names, for example, quartimax (ω = 0),
biquartimax (ω = 1/2), varimax (ω = 1), equamax
(ω = m/2), persimax (ω = p(m− 1)/(p + m− 2)), and
factor parsimony (ω = p). No specific name has been
given for ω = 3.

The varimax criterion is known to have the follow-
ing alternative expression:

min
P∈O(m)

∑
r �=s

[
p∑

i=1

b2
irb

2
is −

1
p

( p∑
i=1

b2
ir

)( p∑
i=1

b2
is

)]
, (11)

which is the sum of the covariances between the squares
of elements of the r-th and s-th columns of B. The
corresponding correlation is called energy correlation in
the context of the topographic ICA (see e.g., Hyvärinen,
Hoyer and Inki 2000).

The objective functions as in (8) is called the sim-
plicity functions for rotations in factor analysis. The

program SAS(2001) uses the generalized Crawford-
Ferguson family (Jennrich 1973).

4. SIMULATION

A small simulation experiment was conducted to study
performance of the varimax-based ICA described above.
We generated five-dimensional random variates s of
size T = 500(= p) as source signals where their com-
ponents are independently distributed according to the
Gamma distribution with parameters yielding kurtoses
from 6 to 2. The population kurtosis and simulated-
data kurtosis are shown in Table 1. We took as a mix-
ing matrix

A =




1 1 0 0 0

1 1 1 0 0

1 0 1 1 0

1 0 0 1 1

1 0 0 0 1




.

We implemented the varimax-based ICA with ap-
plying the procedure PROC FACTOR in SAS (2001),
Release 8.1. The varimax rotation without Kaiser’s
normalization for each row of a factor loading matrix
was made. As a pre-analysis, principal component anal-
ysis was made to sphere the observed data X = As so
that the resultant variates have zero means and unit
variances and they are orthogonal. Note that in the
case

∑p
i=1 b2

ir = 1 for any r in (8), and hence, any or-
thomax procedure for an arbitrarily chosen value of ω
are equivalent to each other.

To compare with it, we used the FastICA developed
by Hyvärinen and Oja (1997) and Hyvärinen(1999a) to
analyze the same data set, where the symmetric orthog-
onalization was applied. Table 2 shows the correlation
matrix between the source signals s and estimated sig-
nals ŝ estimated by the ICA methods. It is seen that
the estimated correlations are all very close to 1 and
those are identical over the two methods up to the sec-
ond decimal places. Table 1 shows achieved kurtosis
estimates by the both methods. Here again, they are
identical over the methods up to the second decimal
places. Thus the both ICA’s perform equally nicely for
the data set.

We have also applied oblique rotations for the cen-
tralized data. However, the use of oblique rotations
does not perform as well as the FastICA and the varimax-
based ICA. The average correlation estimate between
the source signals and estimated signals is approxi-
mately 0.95. So it is not reported here. There have
been proposed so many oblique rotation procedures,



Table 1: Population and estimated kurtosis

s1 s2 s3 s4 s5

population 6.000 5.000 4.000 3.000 2.000

simulated data 6.685 4.433 4.110 4.314 0.920

varimax 7.279 4.488 4.484 4.481 0.827

FastICA 7.279 4.488 4.484 4.481 0.828

Table 2: Correlation between source signals and esti-
mated signals

estimated source signal

signal s1 s2 s3 s4 s5

ŝ1 0.984 0.055 0.186 0.054 -0.079

ŝ2 -0.099 0.993 -0.050 0.067 0.055

varimax ŝ3 -0.145 -0.022 0.981 0.004 -0.092

ŝ4 0.029 -0.089 0.019 0.995 -0.091

ŝ5 0.029 -0.058 0.001 0.056 0.987

ŝ1 0.984 0.055 0.186 0.054 -0.079

ŝ2 -0.099 0.992 -0.050 0.068 0.057

FastICA ŝ3 -0.145 -0.022 0.981 0.004 -0.092

ŝ4 0.029 -0.090 0.019 0.995 -0.091

ŝ5 0.029 -0.060 0.001 0.055 0.987

among which there might be a certain oblique rotation
that can work nicely.

5. DISCUSSION

In this paper we showed that the factor rotation options
in traditional factor analysis can be used to implement
the ICA for the case where every blind signal of s has
excess kurtosis. We could mention that factor anal-
ysis developers had noticed many important notions
in ICA such as maximization of kurtosis, sparse cod-
ing and energy correlation when they developed factor
rotation procedures. They did not use these terminolo-
gies though. However, they did not pay any attention
to applications to the blind source separation problem.

In this paper, we do not have any intention to argue
that factor analysis can do the ICA as well as many ICA
methods (e.g., FastICA and JADE) developed in the in-
formatics, and/or that factor rotation programs are no
longer necessary which may be replaced with the ICA
in near future. Apparently, the current varimax-based
ICA can not analyze data sets where some components

are super-Gaussian and the others are sub-Gaussian.
In addition, it could not handle data sets of extremely
large sample size, and it does not offer any on-line al-
gorithm.

We would like to promote crossing useful informa-
tion between each other by pointing out the connection
between the ICA and traditional factor analysis.
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